TitleEarly Detection of Reverse Transcriptase Activity in Plasma of Neonates Infected with HIV-1: A Comparative Analysis with RNA-based and DNA-based Testing Using Polymerase Chain Reaction
AuthorsReisler R. B., Thea D. M., Pliner V., Green T., Lee F., Nesheim S., Brown T., Kalish M., Folks T. M., Heneine W.
PublicationJ Acquir Immune Defic Syndr. 2001 Feb; 26(1):93-102.
AbstractPlasma viral load from 71 HIV-1-infected neonates was measured by using Amp-RT, an ultrasensitive quantitative reverse transcriptase (RT) assay and by nucleic acid sequence-based amplification (NASBA), an RNA-based quantitative assay. Results were then compared with those obtained from detection of proviral DNA in peripheral blood mononuclear cells (PBMCs) by polymerase chain reaction (PCR) using Turnbull analysis. At 5 days of life, 50% of neonates were positive by Amp-RT, 30% were NASBA positive, and 20% were DNA-PCR positive. Through the first 12 days of life, Amp-RT was more sensitive than either NASBA or DNA-PCR in detecting HIV-1 infection. Amp-RT values correlated well with NASBA RNA values, with an overall Pearson's r = 0.63 (95% confidence interval [CI], 0.40-0.78). In proportional hazards analysis of infants aged 14 to 61 days (N = 31), a one-log increase in RNA-based viral load was associated with a > fivefold risk of disease progression when using the U.S. Centers for Disease Control and Prevention (CDC) clinical Category C (CDC-C) or death as an endpoint (p =.014). Kaplan-Meier analysis of these data found that RNA viral loads were able to predict disease progression using CDC-C/death as an endpoint (p = .013). Early quantitative viral load measurements may assist clinicians in diagnosing HIV-1 infection, stratifying risk of disease progression, and implementing a treatment plan using highly active antiretroviral therapy for infants within the first few weeks of life.