cuau

Nicholas Angelo Gross
Department of Science and Mathematics, College of General Studies
Boston University

Ken Elder
Department of Physics, Oakland University

Bulbul Chakraborty
Department of Physics, Brandeis University

Relaxation dynamics is used to study the nucleation of the modulated phase of CuAu from systems prepared in the disordered and ordered phases.

Binary alloys are made by mixing two species of metals, in this case: Copper and Gold. If the two species are of roughly the same size, then simple phase order will take place; that is to say, at high temperatures (but still below the melting point of both species, so there is still a crystalline structure), the two types of atoms are distributed randomly on the crystalline lattice while at low temperatures the two types of atoms will order in an alternating structure. In many alloys, however, the two species are of different sizes, and the ordering is accompanied by a structural change in which the lattice size changes. This structural change induces an additional phase between the high-temperature disordered and low-temperature ordered phases. This third phase is modulated, where the ordering of the atoms oscillates in space between the two types. These video sequences will explore the formation of the modulated phase. The two sequences represent 2D simulations of a system prepared with two different initial conditions and then quenched to the temperature regime where the modulated phase is dominant. The system is prepared in the disordered regime in the first sequence, while in the second sequence, it is prepared in the ordered phase. The modulated phases from these initial conditions have different structures and time evolution.

Video Segments

cuau

Video Sequence

Quench from the Disordered Phase – 2D slice

cuau

Video Sequence

Quench from the Disordered Phase – 3D volume

cuau

Video Sequence

Quench from the Ordered Phase – 2D slice

cuau

Video Sequence

Quench from the Ordered Phase – – 3D volume

cuau

Video Sequence

Isosurface of Idealized Modulated Phase

A larger and slower 1.9 megabyte MPEG version is also available.

You can see additional details on the science behind this experiment.


Hardware: 18 processor SGI Power Challenge.
Software: Fortran 90, simpim imaging tools (2D), IDL (3D isosurface), AVS (ray-traced volumes)
Graphics programming and video production: 2D segments by Kathleen Curry, 3D ray-traced segments by Kathleen Curry, Scientific Computing and Visualization Group, Boston University; 3D isosurface by Erik Brisson, Scientific Computing and Visualization Group, Boston University.