Computer Networks Graduate Certificate

The Graduate Certificate in Computer Networks offers a broad foundation in information technology, along with an in-depth exploration of computer data communication and modern networking. Students undertake a comprehensive examination of network design and implementation, network performance analysis and management, network security, and the latest networking technology. The program is designed to empower students with extensive knowledge and hands-on experience, in order to analyze, design, procure, manage, and implement cutting-edge computer networking solutions and technologies.

Students who complete the Graduate Certificate in Computer Networks will be able to demonstrate:

  • Advanced knowledge of data communication protocols and networks; of issues involved in multi-access media, including wired and wireless; performance analysis of networks; and management of large networks.
  • Proficiency in data communication protocols and networks, including error control and flow control, distributed synchronization, error detection and correction, and forwarding and techniques to implement it.
  • Competence sufficient to design, specify, and develop data transfer protocols for specific purposes; design, specify, plan, and define networks of any size; and analyze, evaluate, and select network technologies.

Prerequisites

Applicants to the program are required to have a bachelor’s degree. Some courses may have additional prerequisites.

Courses

(Four courses/16 credits)

This course provides a robust understanding of networking. It teaches the fundamentals of networking systems, their architecture, function and operation and how those fundamentals are reflected in current network technologies. Students will learn the principles that underlie all networks and the application of those principles (or not) to current network protocols and systems. The course explains how layers of different scope are combined to create a network. There will be a basic introduction to Physical Media, the functions that make up protocols, such as error detection, delimiting, lost and duplicate detection; and the synchronization required for the feedback mechanisms: flow and retransmission control, etc. Students will be introduced to how these functions are used in current protocols, such as Ethernet, WiFi, VLANs, TCP/IP, wireless communication, routing, congestion management, QoS, network management, security, and the common network applications as well as some past applications with unique design solutions. Prereq: MET CS 575 and MET CS 201 or MET CS 231 or MET CS 232. Or instructor's consent. Restrictions: This course may not be taken in conjunction with MET CS 625 or MET CS 425 (undergraduate). Only one of these courses can be counted towards degree requirements.  [ 4 cr. ]

Sum1 2017
Section Type Instructor Location Days Times
SC1 IND Day MCS B31 M 6:00 pm – 9:30 pm
Fall 2017
Section Type Instructor Location Days Times
D1 IND Day MCS B33 R 6:00 pm – 8:45 pm

The purpose of this course is to provide students with a deeper understanding of Media-specific Technologies not only so that they will be able to use the ones covered in this course, but more importantly be able to analyze and evaluate new technologies. This course applies the principles from CS 535 to understand the engineering that lead to them as well as the special problems that confront network technologies that operate directly over the physical media. These Media specific layers have three problems to solve: the usual one of multiple users of a common resource, accommodating the particular characteristics of the media, and providing (to the degree possible) a media- independent service to the layers above. While CS 535 provides a high-level view of some of these technologies, in this course, they are considered in much greater detail as to how these technologies address their requirements and take advantage of the assumptions made. The emphasis is on those technologies that are either representative of a type or take a unique perspective on the problem. Hence, the traditional data link protocols, such as HDLC, modern Ethernet (primarily VLANs), WiFi (802.11) represent the first type, while media technologies, such as DOCSIS, RFIDs, IoT, and cellular mobile networks are representative of the second. The course will consider how these technologies solve mobility, routing, congestion, QoS (multi-media), security, etc. A major project is part of this course. Prereq: MET CS 231 or MET CS 232 and either MET CS 625 or MET CS 535; or instructor's consent.   [ 4 cr. ]

This course will cover advanced network security issues and solutions. The main focus on the first part of the course will be on Security basics, i.e. security services, access controls, vulnerabilities, threats and risk, network architectures and attacks. In the second part of the course, particular focus and emphasis will be given to network security capabilities and mechanisms (Access Control on wire-line and wireless networks), IPsec, Firewalls, Deep Packet Inspection and Transport security. The final portion of the course will address Network Application security (Email, Ad-hoc, XML/SAML and Services Oriented Architecture security. As part of our course review we will explore a number of Network Use Cases. Prereq: MET CS 535 or MET CS 625; Familiarity with OSI and TCP/IP protocol stack; Background-familiarity with binary numbers, prime numbers, binary- hexadecimal-decimal conversions, etc; Familiarity with computer programming concepts; or instructor's consent.  [ 4 cr. ]

Section Type Instructor Location Days Times
A1 IND Jacobs SHA 206 M 6:00 pm – 8:45 pm
E1 IND Jacobs SHA 206 M 6:00 pm – 8:45 pm

And one of the following:

. This course will cover contemporary integrated network management based on FCAPS (Fault, Configuration, Administration, Performance, and Security management) model. The introduction to the course will be an overview of data transmission techniques and networking technologies. The middle part of the course will be on Network Management Model, SNMP versions 1, 2 and 3, and MIBs. In the second part of the course, particular focus and emphasis will be given to current network management issues: various wireless networks technologies (WLAN, WiFi, WiMax), Voice-over-IP, Peer-to-Peer Networks, networking services, Identity Management, and Services Oriented Architecture Management. Prereq: MET CS 535 or MET CS 625. or instructor's consent.  [ 4 cr. ]

Section Type Instructor Location Days Times
D1 IND Ellabidy CAS 227 R 6:00 pm – 8:45 pm

The purpose of this course is to provide a solid foundation for the networking practitioner. While CS 535 introduces the basic networking concepts, this course provides the deep understanding that the practitioner who may be developing or evaluating network products needs to know. Consequently, this course does a much 'deeper dive' into the topics that tend to be the most counter-intuitive such as naming and addressing, synchronization, congestion management and routing. Naming and addressing is the least understood topic in networking and the most important. This topic is not covered in any current textbooks. The student will explore why the necessary and sufficient condition for synchronization for reliable data transfer is to bound 3 timers and independent of message exchanges. This is not at all obvious and has deep implications for protocols. To engineer networks, it is important to understand the degree to which the behavior of error and flow control protocols can be modified and to what purposes. Congestion management is the second least understood topic in networking. The course emphasizes congestion avoidance as opposed to congestion control and explores the impact in different environments. Routing is the third least understood topic in networking. This course is most concerned with its role in resource allocation but also that "routing protocols" are really distributed database protocols. In addition, the course will consider the interactions among these topics and the necessity of keeping the system effects in perspective. Prereq: MET CS 535; or instructor's consent.   [ 4 cr. ]

Apply Online

View all Computer Science graduate courses.