Core Faculty - Reza Rawassizadeh

Reza Rawassizadeh

Assistant Professor, Computer Science

Dr. Rawassizadeh’s research interest focuses on ubiquitous technologies, including wearables, mobile devices, and robots. He has made notable contributions in designing resource-efficient machine learning algorithms to operate on battery-powered devices. These machine learning algorithms are cloud-independent and small devices, such as smartwatches or fitness trackers, can execute them without any network requirement. Before joining academia, Rawassizadeh has worked in seven different countries and four different states in the US, including time with Siemens (the largest European Engineering Corporation) and the United Nations.