Lindsay Farrer
Profiles

Lindsay A Farrer, PhD

Professor, Biostatistics - Boston University School of Public Health

Biography

Dr. Lindsay Farrer is a medical geneticist at Boston University Schools of Medicine and Public Health where he is the Chobanian and Avedisian School of Medicine Distinguished Professor of Genetics, Chief of Biomedical Genetics, and a Professor of Medicine, Neurology, Ophthalmology, Epidemiology, and Biostatistics. Dr. Farrer is a graduate of the University of North Carolina in Chapel Hill, received his Ph.D. from the Indiana University School of Medicine, and gained additional training in genetic epidemiology at Yale University. He holds adjunct faculty positions at Harvard Medical School, Massachusetts General Hospital, and the Veterans Administration Medical Center in Bedford, Massachusetts. He is a Founding Fellow of the American College of Medical Genetics. Dr. Farrer teaches several courses in human genetics and addiction science at Boston University, directs the BU Transformative Training Program in Addiction Science (TTPAS) that features transdisciplinary training for students enrolled in PhD programs across the Medical and Charles River campuses, directs Boston University’s Molecular Genetics Core Facility which offers DNA genotyping and sequencing services to investigators at Boston University and elsewhere, and provides genetic counseling and testing to patients with a variety of inherited conditions.

Dr. Farrer’s research has lead to more than 450 publications on genetic risk factors for several familial neurodegenerative and other chronic diseases. In collaboration with other laboratories worldwide, his group has localized genes causing a variety of rare and common disorders, most notably Alzheimer disease (AD), substance use disorders (SUDs), age-related macular degeneration (AMD), Wilson disease, Machado-Joseph disease, Waardenburg syndrome, hypertension, sensorineural deafness, and osteoarthritis. His group identified a functional genetic variant in the complement factor H gene which accounts for more than 30% of the attributable risk for AMD, the leading cause of progressive vision loss and blindness in the elderly. In collaboration with other researchers, Dr. Farrer is conducting genome wide association studies (GWAS) and whole genome/exome sequencing studies for several disorders including AD, SUDs (cocaine, opiates, nicotine, alcohol and cannabis), and AMD. Dr. Farrer’s team is also developing methods for locating genes that influence the natural history of complex diseases and pharmacogenetic response.

Under Dr. Farrer’s leadership, the MIRAGE Project, a multi-center study of AD funded since 1991 by the National Institute on Aging, has made several important contributions to our understanding of the interactions between genetic and environmental factors for the disorder. This study has a particular emphasis on the genetics of AD in African Americans. MIRAGE was the first study to demonstrate that genetic factors have a major role in the development of AD and that APOE e4 is more weakly associated with disease in men and persons older than 75 years. Dr. Farrer co-directed the international effort which demonstrated that SORL1 is genetically and functionally associated with AD, thus implicating intracellular protein trafficking as integral pathway in AD. His laboratory conducted genome wide association studies (GWAS) for AD in several populations including African Americans and an inbred Israeli-Arab community, and identified rare AD causal mutations in the AKAP9 gene which are specific to African Americans. Dr. Farrer serves on the Executive Committee of the national Alzheimer Disease Genetics Consortium and co-directs the data analysis effort for this large NIH-funded project. He is also a Principal Investigator of the national Alzheimer Disease Sequencing Project and a study to identify AD risk and protective variants in Koreans. in 2020, Dr. Farrer co-founded the Framingham Heart Study Brain Aging Program (FHS-BAP), an NIH-funded infrastructure program that continues surveillance of FHS participants for cognitive decline and dementia, conducts neuropsychological and brain MRI exams, houses the FHS brain tissue repository, and conducts several projects utilizing genetics, various omics, and wealth of phenotype data on FHS participants to develop predictive models, identify biomarkers and discern vascular and inflammatory processes leading to AD.

Other Positions

  • Professor, Epidemiology - Boston University School of Public Health
  • Boston University Distinguished Professor of Genetics, Medicine - Boston University Chobanian & Avedisian School of Medicine
  • Section Chief, Medicine - Boston University Chobanian & Avedisian School of Medicine
  • Professor, Medicine - Boston University Chobanian & Avedisian School of Medicine
  • Professor, Ophthalmology - Boston University Chobanian & Avedisian School of Medicine
  • Professor, Neurology - Boston University Chobanian & Avedisian School of Medicine
  • Investigator - Framingham Heart Study
  • Member, Evans Center for Interdisciplinary Biomedical Research - Boston University
  • Member, Genome Science Institute - Boston University
  • Member, Bioinformatics Graduate Program - Boston University
  • Graduate Faculty (Primary Mentor of Grad Students) - Boston University Chobanian & Avedisian School of Medicine, Graduate Medical Sciences

Education

  • Indiana University School of Medicine, PhD Field of Study: Genetics & Genomics
  • University of North Carolina at Chapel Hill, BA Field of Study: Genetics & Genomics

Publications

  • Published on 2/29/2024

    Panitch R, Sahelijo N, Hu J, Nho K, Bennett DA, Lunetta KL, Au R, Stein TD, Farrer LA, Jun GR. APOE genotype-specific methylation patterns are linked to Alzheimer disease pathology and estrogen response. Transl Psychiatry. 2024 Feb 29; 14(1):129. PMID: 38424036.

    Read At: PubMed
  • Published on 2/28/2024

    Malamon JS, Farrell JJ, Xia LC, Dombroski BA, Das RG, Way J, Kuzma AB, Valladares O, Leung YY, Scanlon AJ, Lopez IAB, Brehony J, Worley KC, Zhang NR, Wang LS, Farrer LA, Schellenberg GD, Lee WP, Vardarajan BN. A comparative study of structural variant calling in WGS from Alzheimer's disease families. Life Sci Alliance. 2024 May; 7(5). PMID: 38418088.

    Read At: PubMed
  • Published on 1/23/2024

    Leung YY, Naj AC, Chou YF, Valladares O, Schmidt M, Hamilton-Nelson K, Wheeler N, Lin H, Gangadharan P, Qu L, Clark K, Kuzma AB, Lee WP, Cantwell L, Nicaretta H, Haines J, Farrer L, Seshadri S, Brkanac Z, Cruchaga C, Pericak-Vance M, Mayeux RP, Bush WS, Destefano A, Martin E, Schellenberg GD, Wang LS. Human whole-exome genotype data for Alzheimer's disease. Nat Commun. 2024 Jan 23; 15(1):684. PMID: 38263370.

    Read At: PubMed
  • Published on 1/5/2024

    Vance JM, Farrer LA, Huang Y, Cruchaga C, Hyman BT, Pericak-Vance MA, Goate AM, Greicius MD, Griswold AJ, Haines JL, Tcw J, Schellenberg GD, Tsai LH, Herz J, Holtzman DM. Report of the APOE4 National Institute on Aging/Alzheimer Disease Sequencing Project Consortium Working Group: Reducing APOE4 in Carriers is a Therapeutic Goal for Alzheimer's Disease. Ann Neurol. 2024 Apr; 95(4):625-634. PMID: 38180638.

    Read At: PubMed
  • Published on 1/1/2024

    Rehman H, Ang TFA, Tao Q, Espenilla AL, Au R, Farrer LA, Zhang X, Qiu WQ. Comparison of Commonly Measured Plasma and Cerebrospinal Fluid Proteins and Their Significance for the Characterization of Cognitive Impairment Status. J Alzheimers Dis. 2024; 97(2):621-633. PMID: 38143358.

    Read At: PubMed
  • Published on 12/30/2023

    Montoliu-Gaya L, Alosco ML, Yhang E, Tripodis Y, Sconzo D, Ally M, Grötschel L, Ashton NJ, Lantero-Rodriguez J, Sauer M, Gomes B, Nilsson J, Brinkmalm G, Sugarman MA, Aparicio HJ, Martin B, Palmisano JN, Steinberg EG, Simkin I, Turk KW, Budson AE, Au R, Farrer L, Jun GR, Kowall NW, Stern RA, Goldstein LE, Qiu WQ, Mez J, Huber BR, Alvarez VE, McKee AC, Zetterberg H, Gobom J, Stein TD, Blennow K. Optimal blood tau species for the detection of Alzheimer's disease neuropathology: an immunoprecipitation mass spectrometry and autopsy study. Acta Neuropathol. 2023 Dec 30; 147(1):5. PMID: 38159140.

    Read At: PubMed
  • Published on 12/1/2023

    Belloy ME, Andrews SJ, Le Guen Y, Cuccaro M, Farrer LA, Napolioni V, Greicius MD. APOE Genotype and Alzheimer Disease Risk Across Age, Sex, and Population Ancestry. JAMA Neurol. 2023 Dec 01; 80(12):1284-1294. PMID: 37930705.

    Read At: PubMed
  • Published on 11/21/2023

    Shwani T, Zhang C, Owen LA, Shakoor A, Vitale AT, Lillvis JH, Barr JL, Cromwell P, Finley R, Husami N, Au E, Zavala RA, Graves EC, Zhang SX, Farkas MH, Ammar DA, Allison KM, Tawfik A, Sherva RM, Li M, Stambolian D, Kim IK, Farrer LA, DeAngelis MM. Patterns of Gene Expression, Splicing, and Allele-Specific Expression Vary among Macular Tissues and Clinical Stages of Age-Related Macular Degeneration. Cells. 2023 Nov 21; 12(23). PMID: 38067097.

    Read At: PubMed
  • Published on 11/20/2023

    Archer DB, Eissman JM, Mukherjee S, Lee ML, Choi SE, Scollard P, Trittschuh EH, Mez JB, Bush WS, Kunkle BW, Naj AC, Gifford KA, Cuccaro ML, Pericak-Vance MA, Farrer LA, Wang LS, Schellenberg GD, Mayeux RP, Haines JL, Jefferson AL, Kukull WA, Keene CD, Saykin AJ, Thompson PM, Martin ER, Bennett DA, Barnes LL, Schneider JA, Crane PK, Dumitrescu L, Hohman TJ. Longitudinal change in memory performance as a strong endophenotype for Alzheimer's disease. Alzheimers Dement. 2024 Feb; 20(2):1268-1283. PMID: 37985223.

    Read At: PubMed
  • Published on 11/20/2023

    Eissman JM, Archer DB, Mukherjee S, Lee ML, Choi SE, Scollard P, Trittschuh EH, Mez JB, Bush WS, Kunkle BW, Naj AC, Gifford KA, Cuccaro ML, Cruchaga C, Pericak-Vance MA, Farrer LA, Wang LS, Schellenberg GD, Mayeux RP, Haines JL, Jefferson AL, Kukull WA, Keene CD, Saykin AJ, Thompson PM, Martin ER, Bennett DA, Barnes LL, Schneider JA, Crane PK, Hohman TJ, Dumitrescu L. Sex-specific genetic architecture of late-life memory performance. Alzheimers Dement. 2024 Feb; 20(2):1250-1267. PMID: 37984853.

    Read At: PubMed

News & In the Media