Online Master of Science in Computer Information Systems Concentration in IT Project Management
The MS in Computer Information Systems concentration in IT Project Management is particularly valuable for those engaged in the administration of technical projects. Students are introduced to general concepts embodied in the Project Management Institute’s Project Management Body of Knowledge (PMBOK® Guide), while exploring specialized techniques for software risk management, software cost estimation, and software quality management. Students also learn virtual project management, enabling them to manage geographically distributed software development.
The MSCIS is accredited by the Project Management Institute Global Accreditation Center for Project Management Education Programs (GAC). Students taking any course in this concentration are eligible to take a PMP® preparation course for free—an important step toward certification as a Project Management Professionals.
Students who complete the MSCIS degree concentration in IT Project Management will be able to demonstrate:
- Advanced knowledge of the following project management process groups: Initiating, Planning, Executing, Monitoring and Controlling, and Closing; knowledge of agile software development practices, and planning and governance of large projects and programs.
- Proficiency in all basic project management tools and software techniques, including software architecture, project communications, risk analysis, cost estimation and budgeting, and quality control; proficiency in planning and developing a comprehensive project plan and software development life cycle.
- Competence sufficient to architect, design, and implement software systems.
Awards & Accreditations

Accredited by the Project Management Institute® (PMI) Global Accreditation Center for Project Management Education Programs (GAC)
The GAC Accredited Program seal is a mark of Project Management Institute, Inc.

Certified by the Committee on National Security Systems (CNSS)
Newsweek magazine ranked Boston University’s online programs #4 in the nation in its 2023 survey.
Why Choose BU’s IT Project Management?
In 2025, the MSCIS ranked #10 among the Best Online Master's in Computer Information Technology Programs (U.S. News & World Report).
- The MSCIS program is accredited by the Project Management Institute Global Accreditation Center for Project Management Education Programs (GAC).
- Students benefit from a supportive online network, with courses developed and taught by PhD-level full-time faculty and professionals with hands-on expertise in the industry.
- Small course sections ensure that students get the attention they need, while case studies and real-world projects ensure that they gain in-depth, practical experience with the latest technologies.
- Students taking any course in this concentration are eligible to take a PMP® preparation course for free—an important step toward certification as a Project Management Professional.
Meet Dr. Suresh Kalathur, one of the faculty members you’ll work with in the Computer Information Systems program.
Career Outlook
Computer and Information Systems Managers
10% increase in jobs through 2029
$146,360 median annual pay in 2019
Computer and Information Research Scientists
15% increase in jobs through 2029
$122,840 median annual pay in 2019
Network and Computer Systems Administrators
4% increase in jobs through 2029
$83,510 median annual pay in 2019
Database Administrators
10% increase in jobs through 2029
$93,750 median annual pay in 2019
Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, 2020
Best Technology Jobs, 2025 U.S. News & World Report
- #1 IT Manager
- #2 Software Developer
- #3 Information Security Analyst
- #4 Data Scientist
- #5 Actuary
- #6 Computer Network Architect
- #7 Operations Research Analyst
- #8 Computer Systems Analyst
- #9 Statistician
- #10 Web Developer
- #11 Database Administrator
- #12 Computer Support Specialist
- #13 Mathematician
- #14 Computer Systems Administrator
- #15 Computer Programmer
The U.S. demand for project practitioners is expanding by more than 12 percent, resulting in almost 6.2 million jobs in 2020.
PMI® Talent Gap Report
Tuition & Financial Assistance
Money Matters
Boston University Metropolitan College (MET) offers competitive tuition rates that meet the needs of part-time students seeking an affordable education. These rates are substantially lower than those of the traditional, full-time residential programs yet provide access to the same high-quality BU education. To learn more about current tuition rates, visit the MET website.
Financial Assistance
Comprehensive financial assistance services are available at MET, including scholarships, graduate loans, and payment plans. There is no cost to apply for financial assistance, and you may qualify for a student loan regardless of your income. Learn more.
Curriculum
The online Master of Science in Computer Information Systems consists of ten courses (40 credits).
Courses
Students pursuing the concentration in IT Project Management must complete the following courses:
Core Courses
(Five courses/20 credits)
METCS625 Business Data Communication and Networks
Undergraduate Prerequisites: On Campus Prerequisites: MET CS 200 Fundamentals of Information Techno logy. Or instructor^s consent. ; Undergraduate Corequisites: Restrictions: MS CIS only. This course may not be taken in conjunction with CS 425 (undergraduate) or CS 535. Only CS 535 or CS 625 can be c ounted towards degree requirements. - This course presents the foundations of data communications and takes a bottom-up approach to computer networks. The course concludes with an overview of basic network security and management concepts. Prereq: MET CS 200, or instructor's consent. This course may not be taken in conjunction with MET CS 425 (undergraduate) or MET CS 535. Only one of these courses can be counted towards degree requirements. [4 credits]
METCS669 Database Design and Implementation for Business
Undergraduate Prerequisites: Restrictions: Only for MS CIS. This course may not be taken in conjunc tion with MET CS 469 (undergraduate) or MET CS 579. Only one of these courses can be counted towards degree requirements. - Students learn the latest relational and object-relational tools and techniques for persistent data and object modeling and management. Students gain extensive hands- on experience using Oracle or Microsoft SQL Server as they learn the Structured Query Language (SQL) and design and implement databases. Students design and implement a database system as a term project. Restrictions: This course may not be taken in conjunction with MET CS 469 (undergraduate) or MET CS 579. Only one of these courses can be counted towards degree requirements. [4 credits]
METCS682 Information Systems Analysis and Design
Undergraduate Prerequisites: Basic programming knowledge or instructor's consent. - Object-oriented methods of information systems analysis and design for organizations with data- processing needs. System feasibility; requirements analysis; database utilization; Unified Modeling Language; software system architecture, design, and implementation, management; project control; and systems-level testing. Prerequisite: Basic programming knowledge or instructor's consent. [4 credits]
METCS782 IT Strategy and Management
Undergraduate Prerequisites: Restrictions: Only for MS CIS students. - This course describes and compares contemporary and emerging information technology and its management. Students learn how to identify information technologies of strategic value to their organizations and how to manage their implementation. The course highlights the application of I.T. to business needs. CS 782 is at the advanced Masters (700) level, and it assumes that students understand IT systems at the level of CS 682 Systems Analysis and Design. Students who haven't completed CS 682 should contact their instructor to determine if they are adequately prepared. Prereq: MET CS 682, or instructor's consent. [4 credits]
And one of the following*:
METCS520 Information Structures with Java
Undergraduate Prerequisites: Prerequisites: MET CS 201, Introduction to Programming (On Campus and Blended); MET CS 200, Fundamentals of Information Technology (Online O nly) - This course covers the concepts of object-oriented approach to software design and development using the Java programming language. It includes a detailed discussion of programming concepts starting with the fundamentals of data types, control structures methods, classes, applets, arrays and strings, and proceeding to advanced topics such as inheritance and polymorphism, interfaces, creating user interfaces, exceptions, and streams. Upon completion of this course the students will be able to apply software engineering criteria to design and implement Java applications that are secure, robust, and scalable. Prereq: MET CS 200 or MET CS 300 or Instructor's Consent. Not recommended for students without a programming background. For undergraduate students: This course may not be taken in conjunction with METCS232. Only one of these courses can be counted towards degree requirements. [4 credits]
METCS521 Information Structures with Python
This course covers the concepts of the object-oriented approach to software design and development using Python. It includes a detailed discussion of programming concepts starting with the fundamentals of data types, control structures methods, classes, arrays and strings, and proceeding to advanced topics such as inheritance and polymorphism, creating user interfaces, exceptions and streams. Upon completion of this course students will be able to apply software engineering principles to design and implement Python applications that can be used in with analytics and big data. Effective Fall 2021, this course fulfills a single unit in each of the following BU Hub areas: Quantitative Reasoning II, Creativity/Innovation, Critical Thinking.
Prerequisite: Programming experience in any language. Or Instructor's consent. [4 credits]
*If a student chooses to take both MET CS 520 and MET CS 521, the first course completed will fulfill the core requirement and the second course completed will count as an elective.
Students who have completed courses on core curriculum subjects as part of their undergraduate degree program or have relevant work-related experience may request permission from the Department of Computer Science to replace the corresponding core courses with graduate-level computer information systems electives. Please refer to the MET CS Academic Policies Manual for further details.
Concentration Requirements
(Five courses/20 credits)
METCS546 Introduction to Probability and Statistics
Undergraduate Prerequisites: Academic background that includes the material covered in a standard c ourse on college algebra. - The goal of this course is to provide students with the mathematical fundamentals required for successful quantitative analysis of problems. The first part of the course introduces the mathematical prerequisites for understanding probability and statistics. Topics include combinatorial mathematics, functions, and the fundamentals of differentiation and integration. The second part of the course concentrates on the study of elementary probability theory, discrete and continuous distributions. Prereq: Academic background that includes the material covered in a standard course on college algebra or instructor's consent. For undergraduate students: This course may not be taken in conjunction with MET MA 213, only one of these courses will count toward degree program requirements. Students who have taken MET MA 113 as well as MET MA 123 will also not be allowed to count MET CS 546 towards degree requirements. [4 credits]
METCS632 Information Technology Project Management
This course provides students with a comprehensive overview of the principles, processes, and practices of software project management. Students learn techniques for planning, organizing, scheduling, and controlling software projects. There is substantial focus on software cost estimation and software risk management. Students will obtain practical project management skills and competencies related to the definition of a software project, establishment of project communications, managing project changes, and managing distributed software teams and projects. Effective Fall 2020, this course fulfills a single unit in the following BU Hub area: Teamwork/Collaboration. [4 credits]
METCS632S Information Technology Project Management
A comprehensive overview of the principles, processes, and practices of software project management. Students learn techniques for planning, organizing, scheduling, and controlling software projects. There is substantial focus on software cost estimation and software risk management. Students obtain practical project management skills and competencies related to the definition of a software project, establishment of project communications, managing project changes, and managing distributed software teams and projects. Effective Fall 2020, this course fulfills a single unit in the following BU Hub area: Teamwork/Collaboration. [4 credits]
METCS633 Software Quality, Testing, and Security Management
Theory and practice of security and quality assurance and testing for each step of the software development cycle. Verification vs. validation. Test case design techniques, test coverage criteria, security development and verification practices, and tools for static and dynamic analysis. Standards. Test-driven development. QA for maintenance and legacy applications. From a project management knowledge perspective, this course covers the methods, tools and techniques associated with the following processes -- Plan Quality, Perform Quality Assurance, and Perform Quality Control. [4 credits]
SFTW QUAL MGMT [4 credits]
METCS633S Distributed Software Development and Management
Many of today's software systems are developed by geographically distributed teams. The course examines software engineering in this context, from the project and program management perspective. The term project consists of in-process submissions that are thoroughly reviewed, including among peers, together with a working system prototype. No programming background is required. Prereq: MET CS 520 or MET CS 521, and MET CS 682. Or instructor's consent. [4 credits]
METCS634 Agile Software Development
This course provides students with a comprehensive overview of the principles, processes, and practices of agile software development. Students learn techniques for initiating, planning and executing on software development projects using agile methodologies. Students will obtain practical knowledge of agile development frameworks and be able to distinguish between agile and traditional project management methodologies. Students will learn how to apply agile tools and techniques in the software development lifecycle from project ideation to deployment, including establishing an agile team environment, roles and responsibilities, communication and reporting methods, and embracing change. We also leverage the guidelines outlined by the Project Management Institute for agile project development as a framework in this course. [4 credits]
METCS634B AGILE SFTWR DEV
AGILE SFTWR DEV [4 credits]
METCS634S Agile Software Development
A comprehensive overview of the principles, processes, and practices of Agile software development. Students learn techniques for initiating, planning, and executing software development projects using Agile methodologies. Students obtain practical knowledge of Agile development frameworks and distinguish between Agile and traditional project management methodologies. Students learn how to apply Agile tools and techniques in the software development lifecycle from project ideation to deployment, including establishing an Agile team environment, roles and responsibilities, communication and reporting methods, and embracing change. Also leverages the guidelines outlined by the Project Management Institute for Agile project development as a framework. [4 credits]
METCS783 Enterprise Architecture
Graduate Prerequisites: (METCS682) or strategic IT experience or instructor's consent - This course builds upon the strong technical foundation of our MSCIS and MSCS curricula, by providing students with the CIO-level management perspective and skills of an enterprise architect, in the context of the technologies that implement those architectures. Current technologies and processes explored in the enterprise architecture context include blockchain, microservices, multimodal/analytic databases, DevOps, SAFe (Scaled Agile Framework), containers/Docker, and some leverage of AI techniques. We cover both the migration of legacy enterprise systems and de novo enterprise architecture development, vendor selection and management, cybersecurity in the enterprise, and complex system integration. Enterprise architecture decisions are presented in the context of the business goals and alignment that are critical for success, given globalization and the reality that "all companies are now technology companies." The course content is rich with case studies that illustrate practical application of enterprise architecture approaches and lessons learned. The course also includes a number of realistic enterprise architecture assignments and an incremental term project with components spanning the course, to provide students with hands on enterprise architecture experience. Students develop the understanding and skills needed to define and implement successful enterprise architectures that provide real strategic and concrete value to organizations, such as substantially reducing IT costs while improving performance, agility and alignment of information technology to business goals. On-campus classrooms follow a "flipped classroom" format, where significant class time is devoted to in-class group workshops. Prereq: MET CS 682. Or strategic IT experience. Or instructor's consent. [4 credits]
Admission & Prerequisite Information
Admissions
Visit the Metropolitan College Graduate application page to learn more and apply.
Prerequisites
Applicants are not required to have a degree in computer science for entry to a program within the Department of Computer Science. Upon review of your application, the department will determine if the completion of prerequisite coursework will be required, based on your academic and professional background. The following prerequisite courses may be required:
METCS200 Introduction to Computer Information Systems
This course is a technically-oriented introductory survey of information technology. Students learn about basic computer information, different types of business systems and basic systems analysis, design and development. Students also study basic mathematics, software development and create simple Java programs. [4 credits]
A maximum of two graduate-level courses (8 credits) taken at Metropolitan College before acceptance into the program may be applied towards the degree.
Eric Braude
Associate Professor and Director of Digital Learning, Computer Science
PhD, Columbia University; MS, University of Miami; MS, University of Illinois; BS, University of Natal (South Africa)
Lou Chitkushev
Associate Dean, Academic Affairs; Associate Professor, Computer Science; Director, Health Informatics and Health Sciences
PhD, Boston University; MS, Medical College of Virginia; MS, BS, University of Belgrade
John Day
Lecturer, Computer Science
MSEE, BSEE, University of Illinois
View all Faculty
Stu Jacobs
Lecturer, Computer Science
MS, Southern Connecticut State University; BS, University of Wisconsin, Madison
Suresh Kalathur
Assistant Professor, Computer Science; Director, Analytics
PhD, Brandeis University; MS, Indian Institute of Technology; BS, Regional Engineering College (Warangal, India)
Vijay Kanabar, PMP
Associate Professor, Computer Science and Administrative Sciences; Director, Project Management
PhD, University of Manitoba (Canada); MS, Florida Institute of Technology; MBA, Webber College; BS, University of Madras (India)
Jae Young Lee
Assistant Professor, Computer Science; Coordinator, Databases
PhD, MS, University of Texas at Arlington; BS, Seoul National University (Korea)
Robert Schudy
Associate Professor, Computer Science
PhD, MS, University of Rochester; BA, University of California San Diego
Victor Shtern
Associate Professor Emeritus, Computer Science
PhD, Leningrad Aluminum Institute (Russia); MS, Leningrad Institute of Technology; MBA, Boston University
Anatoly Temkin
Assistant Professor Emeritus, Computer Science
PhD, Kazan University (Russia); MS, Moscow University
Guanglan Zhang
Associate Professor and Chair, Computer Science; Coordinator, Health Informatics
PhD, MEng, Nanyang Technological University, Singapore; BS, Luoyang Institute of Technology
Yuting Zhang
Assistant Professor, Computer Science; Coordinator, Information Security
PhD, Boston University; MS, BS University of Science and Technology Beijing
Tanya Zlateva
Dean, Metropolitan College; Professor of the Practice, Computer Science and Education; Director, Information Security
PhD, Dresden University of Technology (Germany); MS, Dresden University of Technology; BS, Dresden University of Technology
Getting Started
To learn more or to contact an enrollment advisor before you get started, request information using the button below and tell us a little about yourself. Someone will be in touch to answer any questions you may have about the program and detail the next steps in earning your degree. You can also start your application or register for a course at Metropolitan College.