Online Web Application Development Graduate Certificate
The graduate certificate program in Web Application Development introduces the fundamental concepts of web applications, providing a comprehensive coverage of both client-side and server-side development. The latest topics in JavaScript, CSS, HTML5, jQuery, AngularJS, PHP, and Node.js are widely covered. Students also learn, and work with, cutting-edge technologies for building desktop and mobile web applications, such as Ruby on Rails, AJAX, Flex, and Google Web Toolkit (GWT). Students create real-world web application projects that also involve interacting with databases such as Oracle, MySQL, and NoSQL databases like MongoDB.
Students who complete the Graduate Certificate in Web Application Development will be able to demonstrate:
- Advanced knowledge of web application development languages.
- Proficiency in one or two server-side web language/platform-specific technologies like Java and .NET, and client-side languages like JavaScript.
- Competence sufficient to apply acquired knowledge in migrating to new and emerging standards and technologies.
Why Choose BU’s Certificate in Web Application Development?
- Four-course certificate program comprises courses shared by the MS in Computer Information Systems, ranked #10 among the nation’s Best Online Master's in Computer Information Technology Programs (U.S. News & World Report 2023).
- Students benefit from a supportive online network, with courses developed and taught by PhD-level full-time faculty and professionals with hands-on expertise in the industry.
- Small course sections ensure that students get the attention they need, while case studies and real-world projects ensure that they gain in-depth, practical experience with the latest technologies.
Meet Dr. Suresh Kalathur, one of the faculty members you’ll work with in the Computer Information Systems program.
Career Outlook
Computer and Information Systems Managers
10% increase in jobs through 2029
$146,360 median annual pay in 2019
Computer and Information Research Scientists
15% increase in jobs through 2029
$122,840 median annual pay in 2019
Software Developers
22% increase in jobs through 2029
$107,510 median annual pay in 2019
Computer Network Architects
5% increase in jobs through 2029
$112,690 median annual pay in 2019
Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, 2020
Best Technology Jobs, 2023 U.S. News & World Report
- #1 Software Developer
- #2 Information Security Analyst
- #3 IT Manager
- #4 Web Developer
- #5 Computer Systems Analyst
- #6 Data Scientist
- #7 Database Administrator
- #8 Computer Network Architect
- #9 Computer Systems Administrator
- #10 Computer Support Specialist
- #11 Computer Programmer
Tuition & Financial Assistance
Money Matters
Boston University Metropolitan College (MET) offers competitive tuition rates that meet the needs of part-time students seeking an affordable education. These rates are substantially lower than those of the traditional, full-time residential programs yet provide access to the same high-quality BU education. To learn more about current tuition rates, visit the MET website.
Financial Assistance
Comprehensive financial assistance services are available at MET, including scholarships, graduate loans, and payment plans. There is no cost to apply for financial assistance, and you may qualify for a student loan regardless of your income. Learn more.
Curriculum
Boston University’s Graduate Certificate in Web Application Development consists of four required online courses (16 credits).
Academic credits earned toward the certificate may be transferred to the Master of Science in Computer Information Systems, concentration in Web Application Development.
Courses
(Four courses/16 credits)
METCS601 Web Application Development
This course focuses on building core competencies in web design and development. It begins with a complete immersion into HTML essentially XHTML and Dynamic HTML (DHTML). Students are exposed to Cascading Style Sheets (CSS), as well as Dynamic CSS. The fundamentals of JavaScript language including object-oriented JavaScript is covered comprehensively. AJAX with XML and JSON are covered, as they are the primary means to transfer data from client and server. Prereq: MET CS 200, MET CS 231, MET CS 232 or MET CS 300. Or instructor consent. [4 credits]
METCS602 Server-Side Web Development
The Server-Side Web Development course concentrates primarily on building web applications using PHP/MySQL and Node.js/MongoDB. The course is divided into various modules covering in depth the following topics: PHP, MySQL, Object oriented PHP, PHP MVC, Secure Web applications, Node.js and MongoDB. Along with the fundamentals underlying these technologies, several applications will be showcased as case studies. Students work with these technologies starting with simple applications and then examining real world complex applications. At the end of this course, students would have mastered the web application development on the server-side. Prerequisite: MET CS 601. Or instructor's consent. [4 credits]
METCS701 Rich Internet Application Development
The Rich Internet Application (RIA) Development course concentrates primarily on building rich client web applications in the browser for desktop and mobile devices. The course is divided into various modules covering in depth the following technologies: HTML5, AngularJS, and Ionic framework. Along with the fundamentals underlying these technologies, several applications will be showcased as case studies. Students work with these technologies starting with simple applications and then examining real world complex applications. At the end of this course, students would have mastered the latest and widely used RIA methodologies. Course Prerequisites: METCS520 (Information Structures) and METCS601 (Web Application Development), or instructor's consent. [4 credits]
And one course selected from the following:
METCS544 Foundations of Analytics and Data Visualization
Formerly titled CS 544 Foundations of Analytics with R.
The goal of this course is to provide students with the mathematical and practical background required in the field of data analytics. Probability and statistics concepts will be reviewed as well as the R tool for statistical computing and graphics. Different types of data are investigated along with data summarization techniques and plotting. Data populations using discrete, continuous, and multivariate distributions are explored. Errors during measurements and computations are analyzed in the course. Confidence intervals and hypothesis testing topics are also examined. The concepts covered in the course are demonstrated using R. Laboratory Course. Prereq: MET CS546 and (MET CS520 or MET CS521), or equivalent knowledge, or instructor's consent. [4 credits]
METCS555 Foundations of Machine Learning
Formerly titled CS 555 Data Analysis and Visualization with R.
This course provides an overview of the statistical tools most commonly used to process, analyze, and visualize data. Topics include simple linear regression, multiple regression, logistic regression, analysis of variance, and survival analysis. These topics are explored using the statistical package R, with a focus on understanding how to use and interpret output from this software as well as how to visualize results. In each topic area, the methodology, including underlying assumptions and the mechanics of how it all works along with appropriate interpretation of the results, are discussed. Concepts are presented in context of real world examples. Recommended Prerequisite: MET CS 544 or equivalent knowledge, or instructor's consent. [4 credits]
METCS570 Biomedical Sciences and Health IT
This course is designed for IT professionals, and those training to be IT professionals, who are preparing for careers in healthcare-related IT (Health Informatics). This course provides a high-level introduction into basic concepts of biomedicine and familiarizes students with the structure and organization of American healthcare system and the roles played by IT in that system. The course introduces medical terminology, human anatomy and physiology, disease processes, diagnostic modalities, and treatments associated with common disease processes. IT case studies demonstrate the key roles of health informatics and how IT tools and resources help medical professionals integrate multiple sources of information to make diagnostic and therapeutic decisions. [4 credits]
METCS580 Health Informatics
This course presents the technological fundamentals and integrated clinical applications of modern Biomedical IT. The first part of the course covers the technological fundamentals and the scientific concepts behind modern medical technologies, such as digital radiography, CT, nuclear medicine, ultrasound imaging, etc. It also presents various medical data and patient records, and focuses on various techniques for processing medical images. This part also covers medical computer networks and systems and data security and protection. The second part of the course focuses on actual medical applications that are used in health care and biomedical research. [4 credits]
METCS581 Health Information Systems
Health Information Systems are comprehensive application systems that automate the activities of healthcare delivery including clinical care using electronic health records (EHRs), coordination of care across providers, telehealth, management of the business of healthcare such as revenue cycle management, and population health management. The course covers the functionality of these systems, the underlying information technology they require and their successful operations. It addresses challenges in this rapidly changing field such as complex data, security, interoperability, mobile technology and distributed users. The course emphasizes applied use of health information systems through case studies, current articles, and exercises. [4 credits]
METCS632 Information Technology Project Management
This course provides students with a comprehensive overview of the principles, processes, and practices of software project management. Students learn techniques for planning, organizing, scheduling, and controlling software projects. There is substantial focus on software cost estimation and software risk management. Students will obtain practical project management skills and competencies related to the definition of a software project, establishment of project communications, managing project changes, and managing distributed software teams and projects. Effective Fall 2020, this course fulfills a single unit in the following BU Hub area: Teamwork/Collaboration. [4 credits]
METCS633 Software Quality, Testing, and Security Management
Theory and practice of security and quality assurance and testing for each step of the software development cycle. Verification vs. validation. Test case design techniques, test coverage criteria, security development and verification practices, and tools for static and dynamic analysis. Standards. Test-driven development. QA for maintenance and legacy applications. From a project management knowledge perspective, this course covers the methods, tools and techniques associated with the following processes -- Plan Quality, Perform Quality Assurance, and Perform Quality Control. [4 credits]
METCS634 Agile Software Development
This course provides students with a comprehensive overview of the principles, processes, and practices of agile software development. Students learn techniques for initiating, planning and executing on software development projects using agile methodologies. Students will obtain practical knowledge of agile development frameworks and be able to distinguish between agile and traditional project management methodologies. Students will learn how to apply agile tools and techniques in the software development lifecycle from project ideation to deployment, including establishing an agile team environment, roles and responsibilities, communication and reporting methods, and embracing change. We also leverage the guidelines outlined by the Project Management Institute for agile project development as a framework in this course. [4 credits]
METCS674 Database Security
The course provides a strong foundation in database security and auditing. This course utilizes Oracle scenarios and step-by-step examples. The following topics are covered: security, profiles, password policies, privileges and roles, Virtual Private Databases, and auditing. The course also covers advanced topics such as SQL injection, database management security issues such as securing the DBMS, enforcing access controls, and related issues. Prereq: MET CS 579 or MET CS 669; or instructor's consent. [4 credits]
METCS683 Mobile Application Development with Android
This course discusses the principles and issues associated with mobile application development using Android as the development platform. Topics covered will include Android application components (Activities, Services, Content Providers and Broadcast Receivers), ICC (Inter-component Communication), UI design, data storage, asynchronous processing, 2D graphics, and Android security. Students will develop their own apps in Java and/or Kotlin using Android Studio in their semester-long projects. Prior knowledge of Java programming is required. Prerequisite: MET CS 342 OR MET CS 520 OR MET CS 521. Or instructor's consent. [4 credits]
METCS684 Enterprise Cybersecurity Management
This course covers important topics that students need to understand in order to effectively manage a successful cybersecurity and privacy program, including governance, risk management, asset classification and incidence response. Students are first introduced to cybersecurity & privacy policy frameworks, governance, standards, and strategy. Risk tolerance is critical when building a cybersecurity and privacy program that supports business goals and strategies. Risk management fundamentals and assessment processes will be reviewed in depth including the methodology for identifying, quantifying, mitigating and controlling risks. Asset classification and the importance of protecting Intellectual Property (IP) will prepare students to understand and identify protection mechanisms needed to defend against malicious actors, including industry competitors and nation states. Incident Response programs will cover preparation and responses necessary to triage incidents and respond quickly to limit damage from malicious actors. [4 credits]
METCS685 Network Design and Management
. This course will cover contemporary integrated network management based on FCAPS (Fault, Configuration, Administration, Performance, and Security management) model. The introduction to the course will be an overview of data transmission techniques and networking technologies. The middle part of the course will be on Network Management Model, SNMP versions 1, 2 and 3, and MIBs. In the second part of the course, particular focus and emphasis will be given to current network management issues: various wireless networks technologies (WLAN, WiFi, WiMax), Voice-over-IP, Peer-to-Peer Networks, networking services, Identity Management, and Services Oriented Architecture Management. Prereq: MET CS 535 or MET CS 625. or instructor's consent. [4 credits]
METCS688 Web Mining and Graph Analytics
Formerly titled CS 688 Web Analytics and Mining.
The Web Mining and Graph Analytics course covers the areas of web mining, machine learning fundamentals, text mining, clustering, and graph analytics. This includes learning fundamentals of machine learning algorithms, how to evaluate algorithm performance, feature engineering, content extraction, sentiment analysis, distance metrics, fundamentals of clustering algorithms, how to evaluate clustering performance, and fundamentals of graph analysis algorithms. Laboratory Course. Prerequisites: MET CS 544, or MET CS 555 or equivalent knowledge, or instructor's consent. [4 credits]
METCS690 Network Security
This course will cover advanced network security issues and solutions. The main focus on the first part of the course will be on Security basics, i.e. security services, access controls, vulnerabilities, threats and risk, network architectures and attacks. In the second part of the course, particular focus and emphasis will be given to network security capabilities and mechanisms (Access Control on wire-line and wireless networks), IPsec, Firewalls, Deep Packet Inspection and Transport security. The final portion of the course will address Network Application security (Email, Ad-hoc, XML/SAML and Services Oriented Architecture security. As part of our course review we will explore a number of Network Use Cases. Prereq: MET CS 535 or MET CS 625; Familiarity with OSI and TCP/IP protocol stack; Background-familiarity with binary numbers, prime numbers, binary- hexadecimal-decimal conversions, etc; Familiarity with computer programming concepts; or instructor's consent. [4 credits]
METCS693 Digital Forensics and Investigations
Provides a comprehensive understanding of digital forensics and investigation tools and techniques. Learn what computer forensics and investigation is as a profession and gain an understanding of the overall investigative process. Operating system architectures and disk structures are discussed. Studies how to set up an investigator's office and laboratory, as well as what computer forensic hardware and software tools are available. Other topics covered include importance of digital evidence controls and how to process crime and incident scenes, details of data acquisition, computer forensic analysis, e-mail investigations, image file recovery, investigative report writing, and expert witness requirements. Provides a range of laboratory and hands-on assignments either in solo or in teams. With rapid growth of computer systems and digital data this area has grown in importance. Prereq: Working knowledge of windows computers, including installing and removing software. Access to a PC meeting the minimum system requirements defined in the course syllabus. [4 credits]
METCS694 Mobile Forensics and Security
Overview of mobile forensics investigation techniques and tools. Topics include mobile forensics procedures and principles, related legal issues, mobile platform internals, bypassing passcode, rooting or jailbreaking process, logical and physical acquisition, data recovery and analysis, and reporting. Provides in-depth coverage of both iOS and Android platforms. Laboratory and hands-on exercises using current tools are provided and required. [4 credits]
This course introduces fundamental concepts, principles of cybersecurity and their use in the development of security mechanisms and policies. Topics include basic risk assessment and management; basic legal and ethics issues, various cyber attacks, defense methods and tools; security principles, models and components; different crypto protocols, techniques and tools, including symmetric and asymmetric encryption algorithms, hashing, public key infrastructure, and how they can be used; security threats and defense to hardware, operating systems, networks and applications in modern computing environments. Hands-on labs using current tools are provided and required. Prerequisite: METCS535 or METCS625 or instructor's consent. [4 credits]
The goal of this course is to study basic concepts and techniques of data mining. The topics include data preparation, classification, performance evaluation, association rule mining, and clustering. We will discuss basic data mining algorithms in the class and students will practice data mining techniques using data mining software. Students will use Weka and JMP Pro. Prereq: CS 546 and either CS 579 or CS 669. Or instructor's consent. [4 credits]
METCS779 Advanced Database Management
This course covers advanced aspects of database management including normalization and denormalization, query optimization, distributed databases, data warehousing, and big data. There is extensive coverage and hands on work with SQL, and database instance tuning. Course covers various modern database architectures including relational, key value, object relational and document store models as well as various approaches to scale out, integrate and implement database systems through replication and cloud based instances. Students learn about unstructured "big data" architectures and databases, and gain hands-on experience with Spark and MongoDB. Students complete a term project exploring an advanced database technology of their choice. Prereq: MET CS 579 or MET CS 669; or instructor's consent. [4 credits]
METCS781 Advanced Health Informatics
This course presents the details of information processing in hospitals, hospital information systems (HIS), and more broadly health information systems. It presents the architecture, design, and user requirements of information systems in health care environment. It focuses on Information Technology aspects of Health Informatics specifically addressing the design, development, operation, and management of HIS. The first part of this course covers the introductory concepts including information processing needs, and information management in health care environment. The second part covers detailed description of HIS including hospital process modeling, architecture, quality assessment, and applicable tools. The final part of the course covers management of HIS and related issues and extension of this topic to other health care organizations. The course will have a term project providing students a hands-on experience in design and research of HIS. Prereq: MET CS 580; or instructor's consent. [4 credits]
METCS783 Enterprise Architecture
This course builds upon the strong technical foundation of our MSCIS and MSCS curricula, by providing students with the CIO-level management perspective and skills of an enterprise architect, in the context of the technologies that implement those architectures. Current technologies and processes explored in the enterprise architecture context include blockchain, microservices, multimodal/analytic databases, DevOps, SAFe (Scaled Agile Framework), containers/Docker, and some leverage of AI techniques. We cover both the migration of legacy enterprise systems and de novo enterprise architecture development, vendor selection and management, cybersecurity in the enterprise, and complex system integration. Enterprise architecture decisions are presented in the context of the business goals and alignment that are critical for success, given globalization and the reality that "all companies are now technology companies." The course content is rich with case studies that illustrate practical application of enterprise architecture approaches and lessons learned. The course also includes a number of realistic enterprise architecture assignments and an incremental term project with components spanning the course, to provide students with hands on enterprise architecture experience. Students develop the understanding and skills needed to define and implement successful enterprise architectures that provide real strategic and concrete value to organizations, such as substantially reducing IT costs while improving performance, agility and alignment of information technology to business goals. On-campus classrooms follow a "flipped classroom" format, where significant class time is devoted to in-class group workshops. Prereq: MET CS 682. Or strategic IT experience. Or instructor's consent. [4 credits]
Admission & Prerequisite Information
MET prioritizes the review and admission of applications submitted earlier in the rolling admission process. You are encouraged to submit your application as soon as possible and no later than the priority application deadlines for each term.
Applicants must have an earned bachelor’s degree, in any field of study, from a regionally accredited college/university (or the international equivalent) prior to enrollment at Metropolitan College. The following materials are required for a complete application:
Prerequisites
Applicants are not required to have a degree in computer science for entry to a program within the Department of Computer Science. Upon review of your application, the department will determine if the completion of prerequisite coursework will be required, based on your academic and professional background.
A maximum of two graduate-level courses (8 credits) taken at Metropolitan College before acceptance into the program may be applied towards the certificate.
Eric Braude
Associate Professor and Director of Digital Learning, Computer Science
PhD, Columbia University; MS, University of Miami; MS, University of Illinois; BS, University of Natal (South Africa)
Lou Chitkushev
Associate Dean, Academic Affairs; Associate Professor, Computer Science; Director, Health Informatics and Health Sciences
PhD, Boston University; MS, Medical College of Virginia; MS, BS, University of Belgrade
John Day
Lecturer, Computer Science
MSEE, BSEE, University of Illinois
View all Faculty

Stu Jacobs
Lecturer, Computer Science
MS, Southern Connecticut State University; BS, University of Wisconsin, Madison
Suresh Kalathur
Assistant Professor, Computer Science; Director, Analytics
PhD, Brandeis University; MS, Indian Institute of Technology; BS, Regional Engineering College (Warangal, India)
Vijay Kanabar, PMP
Associate Professor, Computer Science and Administrative Sciences; Director, Project Management
PhD, University of Manitoba (Canada); MS, Florida Institute of Technology; MBA, Webber College; BS, University of Madras (India)
Jae Young Lee
Assistant Professor, Computer Science; Coordinator, Databases
PhD, MS, University of Texas at Arlington; BS, Seoul National University (Korea)
Robert Schudy
Associate Professor, Computer Science
PhD, MS, University of Rochester; BA, University of California San Diego
Victor Shtern
Associate Professor Emeritus, Computer Science
PhD, Leningrad Aluminum Institute (Russia); MS, Leningrad Institute of Technology; MBA, Boston University
Anatoly Temkin
Assistant Professor and Chair, Computer Science
PhD, Kazan University (Russia); MS, Moscow University
Guanglan Zhang
Associate Professor, Computer Science; Coordinator, Health Informatics
PhD, MEng, Nanyang Technological University, Singapore; BS, Luoyang Institute of Technology
Yuting Zhang
Assistant Professor, Computer Science; Coordinator, Information Security
PhD, Boston University; MS, BS University of Science and Technology Beijing
Tanya Zlateva
Dean, Metropolitan College; Professor of the Practice, Computer Science and Education; Director, Information Security
PhD, Dresden University of Technology (Germany); MS, Dresden University of Technology; BS, Dresden University of Technology
Getting Started
To learn more or to contact an enrollment advisor before you get started, request information using the button below and tell us a little about yourself. Someone will be in touch to answer any questions you may have about the program and detail the next steps in earning your degree. You can also start your application or register for a course at Metropolitan College.