The empirical forecasting is conducted by introducing a segmented machine learning approach of leveraging hierarchical clustering tied to machine learning and deep learning techniques. These features allow the model to yield more precise estimates. This study evaluates an extensive range of social media–derived words with the most significant probability of gradually establishing an understanding of an optimal outcome. Analyzes were performed on a major hotel chain in an urban market setting within the USA.
Findings
The findings indicate that while traditional methods, being the naïve approach and ARIMA models, struggled with forecasting accuracy, segmented boosting methods (XGBoost) leveraging social media predict hotel occupancy with greater precision for all examined time horizons. Additionally, the segmented learning approach improved the forecasts’ stability and robustness while mitigating common overfitting issues within a highly dimensional data set.
Research limitations/implications
Incorporating social media into a segmented learning framework can augment the current generation of forecasting methods’ accuracy. Moreover, the segmented learning approach mitigates the negative effects of market shifts (e.g. COVID-19) that can reduce in-production forecasts’ life-cycles. The ability to be more robust to market deviations will allow hospitality firms to minimize development time.