Engineering

Courses in: Engineering Core | Biomedical Engineering | Electrical and Computer Engineering | Mechanical Engineering

College of Engineering

Engineering Core

Introduction to Engineering Design

ENG EK 210

A two credit introductory course to the principles of engineering design, intended to give second-year undergraduates a basic understanding of the process of converting a product from concept through design and deployment. Students work in multi-disciplinary teams with time and budget constraints on externally sponsored design projects. Web-based lectures cover topics concurrent with specific phases of the projects. The course culminates in a "Design Competition." 2 cr. Tuition: $1280

Summer 1 (May 24-June 30)

Top

Engineering Mechanics I

ENG EK 301

Prereq: (CAS PY 211 & ENG EK 127). Coreq: (CAS MA 225). Fundamental statics of particles, rigid bodies, trusses, frames, and virtual work. Distributed forces, uni-axial stress and strain, shear and bending moment diagrams. Application of vector analysis and introduction to engineering design. Includes design project. 4 cr. Tuition: $2560

Twelve-week course (May 24-August 11)

Top

Electric Circuits

ENG EK 307

Coreq: (CAS PY 212). Introduction to electric circuit analysis and design; voltage, current, and power, circuit laws and theorems; element I-V curves, linear and nonlinear circuit concepts; operational amplifier circuits; transient response of capacitor and inductor circuits, sinusoidal steady-state response, frequency response, transfer functions. Includes design-oriented laboratory. 4 cr. Tuition: $2560; lab fee: $200; total charge: $2760

Twelve-week course (May 24-August 11)

Top

Biomedical Engineering

Next Generation Sequencing - Technologies and Applications

ENG BE 569

Prereq: (ENG BE 200 & ENG BE 401) or permission of instructor. The advent of high throughput sequencing is virtually changing biology and medicine. The technology enables us to catalog the entire functional parts list of living organisms from bacteria to human, develop and validate regulatory networks for controlling gene expression in systems biology models, and develop novel biomarkers for personalized medicine that guide pharmacological treatments. In this course we review the foundations of the field, starting from the biophysical foundations of current or emerging single molecule DNA sequencing techniques, continuing with an introduction to the analytical tools to model and analyze NGS Data, and finally discussing clinical applications such as predicting drug response, focusing on cancer. The course involves bi-weekly homework assignments that include theoretical analysis and modeling, working with multiple analysis tools for NGS data including assembly, re-sequencing, alignments, RNA-seq, ChIP-seq, DNA methylation, mutation analysis and detection, and copy number variation detection, and their applications to cancer. 4 cr. Tuition: $5928

Summer 2 (July 5-August 11)

Top

Electrical and Computer Engineering

Introduction to Software Engineering

ENG EC 327

Prereq: (ENG EK 127 or ENG EK 128). Introduction to software design, programming techniques, data structures, and software engineering principles. The course is structured bottom up, beginning with basic hardware followed by an understanding of machine language that controls the hardware and the assembly language that organizes that control. It proceeds through fundamental elements of functional programming languages, using C as the case example, and continues with the principles of object-oriented programming, as principally embodied in C++ but also its daughter languages Java, C#, and objective C. The course concludes with an introduction to elementary data structures and algorithmic analysis. Throughout, the course develops core competencies in software engineering, including programming style, optimization, debugging, compilation, and program management, utilizing a variety of Integrated Development Environments and operating systems. 4 cr. Tuition: $2560

Twelve-week course (May 24-August 11)

Top

Introduction to Electronics

ENG EC 410

Prereq: (ENG EK 307). Principles of diode, BJT, and MOSFET circuits. Graphical and analytical means of analysis. Piecewise linear modeling; amplifiers; digital inverters and logic gates. Biasing and small-signal analysis, microelectronic design techniques. Time-domain and frequency domain analysis and design. Includes lab. 4 cr. Tuition: $2560; lab fee: $200; total charge: $2760

Twelve-week course (May 23-August 12)

Top

Electromagnetic Systems I

ENG EC 455

Prereq: (CAS PY 212 & CAS MA 226). Time varying electric and magnetic fields. Maxwell equations. Electromagnetic waves. Propagation, reflection, and transmission. Remote sensing applications. Radio frequency coaxial cables, microwave waveguides, and optical fibers. Microwave sources and resonators. Antennas and radiation. Radio links, radar, and wireless communication systems. Electromagnetic effects in high-speed digital systems. ENG EC 455 and EC 456 may be taken at the same time. Includes lab. 4 cr. Tuition: $2560

Summer 1 (May 23-June 30)

Top

Electromagnetic Systems II

ENG EC 456

Prereq: (CAS PY 212 & CAS MA 226). Electric field, energy, and force. Lorenz force. Dielectric materials. Steady electric currents. Magnetic field, energy, and force. Magnetic materials. Applications of electrostatics, magnetostatics, and electrodynamics. Electromagnetic waves in dielectric and conducting materials. Solution techniques for electromagnetic fields and waves. ENG EC 455 and EC 456 may be taken at the same time. 4 cr. Tuition: $2560

Summer 1 (May 23-June 30)

Top

Enterprise Client-Server Software Systems Design

ENG EC 512

Prereq: Programming experience in C++, Java, or C#, basic knowledge of internet protocols and HTML. A personal computer running Microsoft Windows 7 or later is required. Examination of past, current, and emerging technologies. Client side technologies including HTML and DHTML, CSS, scripting. Server side technologies including HTTP, CGI, ISAPL, and active server pages. Current and emerging server technologies including ASP.NET, XML/SOAP web services, REST, wireless and handheld access limitations, SQL databases, streaming media, cloud services and CMS. Design and implementation of solutions involving SQL database connectivity, session state, security requirements, SSL, and authentication of clients. Programming using C# and ASP.NET. Small-team projects involving design through implementation. 4 cr. Tuition: $5928

Twelve-week course (May 24-August 11)

Top

Nano/microelectronic Device Technology

ENG EC 579

Prereq: graduate standing plus an undergraduate course in semiconductors at the level of ENG EC 410, ENG EC 471, CAS PY 313, or CAS PY 354, or consent of instructor. Physical processes and manufacturing strategies for the fabrication and manufacture of microelectronic devices. Processing and device aspects instrumental in silicon, including the fabrication of doping distributions, etching, photolithography, interconnect construction, and packaging. Discusses future directions and connections to novel devices, MEMS, photonics, and nanoscale structures. Emphasizes "designing for manufacturability." Covers the overall integration with methods and tools employed by device and circuit designers. Same as ENG ME 579. Students may not receive credit for both. 4 cr. Tuition: $5928

Summer 1 (May 23-June 30)

Top

Mechanical Engineering

Engineering Mechanics II

ENG ME 302

Prereq: (ENG EK 301). Fundamentals of engineering dynamics. Kinetics and kinematics of rigid bodies in two and three dimensions. Newton's Laws. Lagrangian methods. Introduction to mechanical vibrations. 4 cr. Tuition: $2560

Twelve-week course (May 24-August 11)

Top

Energy and Thermodynamics

ENG ME 304

Prereq: (CAS PY 211). Coreq: (CAS MA 225). Macroscopic treatment of the fundamental concepts of thermodynamic systems. Zeroth, first, and second laws; properties of simple compressible substances; entropy; energy availability; ideal gas mixtures and psychometrics; and thermodynamic cycles. Application to engines, refrigeration systems, and energy conversion. Includes lab. 4 cr. Tuition: $2560

Twelve-week course (May 23-August 10)

Top

Instrumentation and Theory of Experiments

ENG ME 310

Prereq: (ENG ME 303 & ENG EK 307 & ENG ME 366). Designing, assembling, and operating experiments involving mechanical measurements; analyzing experimental data. Safety considerations in the laboratory. Wind tunnel testing. Mechanical and electrical transducers for flow, pressure, temperature, velocity, strain, and force. Electric circuits for static and dynamic analog signal conditioning. Computer use for digital data acquisition and analysis; instrument control. Introduction to frequency domain analysis. Professional standards for documenting experiments and preparing reports, including formal uncertainty analysis involving elementary statistics. Discussion of commercial instrument development. Interpretation of experimental results. Includes lab and design project. Students must register for two sections: lecture and laboratory. 4 cr. Tuition: $2560

Twelve-week course (May 23-August 10)

Caleb Farny

Top

Product Design

ENG ME 360

Prereq: (ENG ME 359). Emphasizes the profitable conversion of product ideas to useful and attractive products desired by customers. Includes aspects of both engineering design and industrial design. Consists of a series of design projects of increasing complexity, including the development of an operations plan for product manufacture and delivery. Exercises include product manufacturing considerations. Use is made of SolidWorks CAD software. Resources for design exercises are presented in working studio sessions. 4 cr. Tuition: $2560

Summer 1 (May 23-June 29)

Top

Invention: Technology Creation, Protection, and Commercialization

ENG ME 502

Prereq: senior or graduate standing in an engineering or science discipline or consent of instructor. Provides students with the knowledge and tools necessary to create, protect, and commercialize engineering and scientific intellectual assets. Students first make use of creativity tools to attack posed engineering problems, then turn to means for protecting their solutions. Rapidly growing areas that are affecting nearly all businesses (e.g., software and the internet) as well as "high-tech" areas including microelectronics, communications, and bioengineering are emphasized. Extensive patent searches and analyses are carried out to develop skills for quickly ascertaining the protected technical content of patents, and for recognizing what intellectual property (IP) should be and can be protected. Legal aspects for protecting creative ideas are studied at a level appropriate for engineers to interact easily and smoothly during their technical careers with IP lawyers. Various business models for the commercialization of intellectual assets are analyzed. Extensive class exercises and projects explore in-depth all three of these important areas of IP, with emphasis on key contributions during engineering and scientific research and development activities. (Formerly ENG MN 505). 4 cr. Tuition: $5928

Summer 1 (May 23-June 30)

Top

Nano/microelectronic Device Technology

ENG ME 579

Prereq: graduate standing or consent of instructor. Physical processes and manufacturing strategies for the fabrication and manufacture of microelectronic devices. Processing and device aspects instrumental in silicon, including the fabrication of doping distributions, etching, photolithography, interconnect construction, and packaging. Discusses future directions and connections to novel devices, MEMS, photonics, and nanoscale structures. Emphasizes "designing for manufacturability." Covers the overall integration with methods and tools employed by device and circuit designers. Same as ENG EC 579; students may not receive credit for both. (Formerly ENG MN 579). 4 cr. Tuition: $5928

Summer 1 (May 23-June 30)

Top