Engineering Is Not Science

Engineers are not a sub-category of scientists. So often the two terms are used interchangeably, but they are separate, albeit related, disciplines. Scientists explore the natural world and show us how and why it is as it is. Discovery is the essence of science. Engineers innovate solutions to real-world challenges in society. While it is true that engineering without science could be haphazard; without engineering, scientific discovery would be a merely an academic pursuit.

We hear a lot about American students falling behind in math and science, but we rarely hear that we are lagging in engineering and in creating the innovative spirit. A good example of this confusion was found in a July 2010 issue of Time magazine that featured Thomas Edison on the cover. Although Edison was much more of an engineer than a basic scientist, the word “science” appeared 25 times in the article and “engineering” only four times. The first paragraph focused on a solar-powered car designed and built by third graders; the writer called it a science project. Public education in America has already begun to re-emphasize quantitative skills, but the Edisons of the 21st century will likely derive more from students who pursue engineering than science.

Of course, the subtext for asking questions about our students’ quantitative and science abilities is the future of America’s economic competitiveness in the age of technology. And while many important scientific discoveries are being made at American universities and companies, too often foreign manufacturers are reaping their economic benefits. We need to insure that Americans sustain a unique passion and capacity to translate our discoveries into new economic and quality-of-life values for society. Such passion rests at the soul of engineering. To ensure our discoveries benefit our economy in the coming decades, we need to excite our children about engineering and innovation, not just science.

College of Engineering staff and students are making presentations aimed at doing just that in Massachusetts high schools. We talk to students about the National Academy of Engineering’s Grand Challenges, those extraordinary opportunities for profoundly impacting our quality of life. The students seem stunned to learn that engineers do not spend their days doing math and science isolated in cubicles, but rather work in teams of diverse professionals creating exciting new technologies that improve healthcare, enable alternative energy, make us safer, improve communication, enhance our social infrastructures, and so on. They are surprised to learn that an engineering education can holistically prepare them for leadership roles in organizations, even if they don’t remain practicing engineers for life. Once they learn what an engineer does, they are tremendously excited. Tellingly, their teachers are equally surprised by this perspective and this information, something that needs to change if we are to tap into kids’ innate creativity. But, it doesn’t take much to make a big difference.

Recently, my daughter, a 5th grade teacher, invited me to talk about the process and concept of invention with her students. We discussed the greatest inventions of all time (among these 5th graders, only Edison’s light bulb is more important than the portable DVD player). After I left, Ms. Lutchen asked the children to write me a thank-you card, without coaching them on what to say. Some excerpts:

“Maybe I will make an invention one day,” “I learned a lot about how you can invent something by making it easier and cheaper or just inventing something no one has ever invented,” and, my favorite, “I love engineering and want to be an engineer when I grow up.”

Nearly all of the kids’ notes had similar themes. I bring these up not to brag but because I am certain our field has produced many individuals with engineering degrees who could have conveyed a similar level of clarity and passion to these children. Just imagine if we scaled and amplified this approach nationally a bit more.

We all must play a role in creating a pipeline of students who are excited about being the innovators of tomorrow. We stand at a crossroads as we look to the economic future of this country. With the right education and the right investments, this country will solidify a pipeline of people driven to participate in the innovative advantage and we will be an economic powerhouse for a long time to come.

This essay originally appeared in the Fall 2010 issue of The Engineer.