To achieve the grand vision of creating functional heart tissue, CELL-MET implemented a research approach with two key phases:

  • Phase one: Technology-Focused Thrust Areas
  • Phase two: Integrated Engineering (Goals and Testbeds)

Phase one efforts focus on developing a number of technologies critical to engineering heart tissue. During this phase, on the team assesses their performance and identifying which are most promising.

Figure showing the transition from four thrusts to two integrated goals and testbed

Phase two focuses on Integrated Engineering. Using integrated Systems Engineering approaches, the data gathered during phase one was used to determine how to best combine the technologies developed within Thrust Areas in service of meeting our ultimate goal: create functional, clinically significant heart tissue.

We have set out to achieve two technical Integrated Engineering Goals, which will be assessed by Integrated Engineering Testbeds:

CELL-MET is housed at Boston University, the lead institution on the grant. David Bishop, an ENG professor of electrical and computer engineering, a College of Arts & Sciences professor of physics, and head of ENG’s Division of Materials Science & Engineering, directs the center. Two partner institutions—the University of Michigan and Florida International University—as well as 11 affiliate institutions—Brown University, the Centro Atómico Bariloche (CNEA)/Instituto Balseiro in Argentina, Columbia University, the École polytechnique fédérale de Lausanne in Switzerland, Fort Valley State University, Harvard Medical School, the National University of Ireland, North Carolina State University, Nueta Hidatsa Sahnish College, Queen’s University Belfast in Northern Ireland, and the Wyss Institute at Harvard—offer additional expertise in bioengineering, nanotechnology, and other areas.