BU Today

Science & Tech

BU Researchers ID Possible Biomarker for Diagnosing CTE during Life

MED’s Ann McKee calls findings a hopeful step


Chronic traumatic encephalopathy (CTE), a progressive degenerative brain disease found in people with a history of repeated head trauma, can currently be detected only after death, through an autopsy. Absent being able to diagnose the disease in living patients, researchers cannot develop treatments for CTE.

In the past several years, scientists have taken small steps forward in identifying possible biomarkers for the disease, and now researchers from the Boston University School of Medicine and the VA Boston Healthcare System (VABHS) have discovered a new biomarker that may potentially allow the disease to be diagnosed in the living.

In a study published Tuesday in the journal PLOS ONE, the researchers found that the biomarker, the protein CCL11, might also help distinguish CTE from Alzheimer’s disease, which often presents with symptoms similar to CTE and also can be definitively diagnosed only postmortem. The ability to diagnose CTE in the living would allow not only for the development of possible therapies to treat the disease, but also for research into prevention.

“This is a step forward from our knowledge gained in understanding CTE from brain donations,” says study senior author Ann McKee, a MED professor of neurology and pathology, director of BU’s CTE Center, and chief of neuropathology at VABHS. “It’s a hopeful step. The whole point is to understand as much as we can from the individuals who’ve fallen, so we can apply it to our future veterans and athletes.”

The new research “offers a possible mechanism for distinguishing between CTE and other diseases,” says study first author Jonathan Cherry, a MED postdoctoral fellow in neurology. “By making it possible to distinguish between normal individuals and individuals with Alzheimer’s disease, CTE therapies can become more targeted and hopefully more effective.”

Microscopic images of tau, stained red, embedded in samples of normal, mild CTE, and severe CTE brain tissue

A sample of normal brain tissue (top, left), alongside samples showing mild and severe CTE. The brown stain indicates tangles of tau protein. Defective tau is associated with CTE, Alzheimer’s disease, and Parkinson’s disease. The bottom row shows microscopic images of tau, stained red, embedded in brain tissue. Photo by Ann McKee

Cherry and the other researchers studied the brains of 23 former college and professional football players. They compared them to the brains of 50 nonathletes with Alzheimer’s disease and 18 nonathlete controls.

They found baseline levels of CCL11 in the brains of the nonathlete controls and the nonathletes with Alzheimer’s disease, but the CCL11 levels were significantly elevated in the brains of people with CTE. They then compared the degree of elevation of CCL11 to the number of years those people played football and found that there was a positive correlation between the CCL11 levels and the number of years played.

The researchers were able to take postmortem samples of the cerebrospinal fluid (CSF) from four of the control individuals, seven of the people with CTE, and four of the people with Alzheimer’s. They found that CCL11 levels in the CSF were similarly normal in the control individuals and people with Alzheimer’s, but elevated in those people with CTE. Cherry says that this suggests that the presence of CCL11 might one day be able to assist in the detection of CTE in the living.

Additional studies are needed, the study authors say, to determine whether increased levels of CCL11 occur early or late in the CTE disease process, and whether CCL11 levels might be able to predict the severity of a person’s disease.

“What’s most likely going to happen is that we’ll end up with a panel of biomarkers—maybe three or four—that will let us diagnose CTE reliably,” Cherry says.

Sara Rimer, Director, Research Communications at Boston University
Sara Rimer

Sara Rimer can be reached at srimer@bu.edu.

3 Comments on BU Researchers ID Possible Biomarker for Diagnosing CTE during Life

  • Robert Conniff on 09.26.2017 at 7:31 pm

    I know for obvious reason that CTE has been associated with Sports/Football and such, but lets be real, it’s the actual brain injury that caused the “CTE” not just the sport, so anyone who has had a head or repeated head injuries could also plausibly suffer from said “CTE” wouldn’t you say?

    • Berry Britton on 09.27.2017 at 1:06 pm

      Yep, and I often wonder if I’ll be a candidate for a test whenever they get a test in place. I had a few sports related concussions in my 20s. However, the big accident that I’m worried about is the time when I was 4 years old in which I fell, bounced my head off the concrete, and went into a violent seizure(woke up 8 hours later.) It was bad enough to where I couldn’t walk(paralyzed state in my legs) for 3 days. Through the years, I thought I was fine, but I often wonder now?

  • Susan VanHemert on 10.09.2017 at 10:42 am

    I’m so glad to see this progress. It’s a known fact that the symptoms of CTE can destroy a beautiful life. I’m curious if there are any free or low-cost resources available for early testing. Someone very dear to me, under the age of 30, I believe is a candidate for evaluation.

Post Your Comment

(never shown)