Bravaya Named 2014 Hariri Junior Faculty Fellow

November 7th, 2014 in Award, Faculty, Front Page

image005The Junior Faculty Fellows program of Boston University’s Rafik B. Hariri Institute for Computing and Computational Science & Engineering was established in 2011 both to recognize outstanding junior faculty at Boston University working in diverse areas of the computational sciences, as well as to provide focal points for supporting broader collaborative research in these areas at BU and beyond. Junior Fellows are selected by the Hariri Institute Executive Steering Committee based on nominations received each spring, and are appointed for a two-year term.  Each Fellow will give a Hariri Institute Distinguished Lecture.

Chemistry’s Professor Ksenia Bravaya was named one of the four faculty selected as a Fellow for the 2014-2016 term. Professor Bravaya joined the Department of Chemistry in 2013.  Her research focuses on state-of-the-art applications and fundamental studies of the microscopic processes at the heart of bio-imaging of cellular processes and excited state reactions, as well as on the development of new quantum chemical computational methodology aimed at addressing unsolved critical challenges in the simulation of a wide variety of excited electronic state processes in complex systems.

Professor Lawrence Ziegler, Chemistry Department Chair, describes her as “a Theoretical and Computational Chemist of national standing and a rising star in the international community,” adding that “given her strong upward trajectory in highest quality research productivity and her pivotal role in developing University Research initiatives in computational materials science, it is no surprise that she has received this honor to be a Hariri Junior Faculty Fellow. She will be an excellent ambassador for Computational Science.

New Center Enables Translational Biomedical Research

September 16th, 2014 in Uncategorized

The newly configured Center for Molecular Discovery (CMD) builds on the legacy of Boston University’s NIH-funded Center of Excellence, the Center for Chemical Methodology and Library Development (2002-2007 and 2008-2013) to create a new functional core with a focus on the development of small molecule probes and therapeutic leads.

Integrating its small molecule screening collection and medicinal chemistry capabilities with the efforts of high-impact researchers in the biomedical field, the CMD is an enabling core resource for advancing translational science at Boston University.

The CMD will continue to engage in high-throughput screening (HTS) and medicinal chemistry collaborations with external researchers as part of the Chemical Library Consortium (CLC) network formed by the CMLD.  The Center has new and ongoing collaborations with several research groups on the BU Charles River Campus, the BU School of Medicine, and the  National Emerging Infectious Diseases Laboratories.  While some of these collaborations are in early stages, others have progressed to the point of early proposal development, proposal submission,  and extramural funding.   The CMD has also developed collaborations with companies (e.g., Cubist, AstraZeneca, and Vertex) and scientists at other research universities to further leverage its compound collection.

The CMD leadership team is comprised of Profs. John PorcoAaron Beeler, Scott Schaus, Lauren Brown, and Ms. Lisa Holik.

Ziegler Funded to Develop New Forensics Tool

September 15th, 2014 in Front Page, Research

Prof. Lawrence Ziegler, Principal Investigator of the New NIJ Award

Prof. Lawrence Ziegler, Principal Investigator of the New NIJ Award

Among the most important forensic evidence that can be collected at a crime scene are body fluids.   The National Institute of Justice (NIJ) has funded Prof. Lawrence Ziegler and his group to develop a novel detection and identification platform for these fluids based on the optical methodology,  Surface Enhanced Raman Spectroscopy (SERS).

SERS Spectra showing the unique, distinguishable, and reproducible signature of each body fluid type

SERS Spectra showing the unique, distinguishable, and reproducible signature of each body fluid type

The purpose of this research is to learn about the fundamental capabilities of SERS for detecting, identifying, and characterizing trace amounts of body fluids as a new forensics tool.  The investigators believe that development of this optical methodology will lead to a single instrumental platform for the rapid, sensitive, easy-to-use, cost-effective, on-site, non-destructive, detection and identification of human body fluids at a crime scene.  No such platform is currently available for this purpose. The successful development of their SERS technology could be transformative allowing the identification of the type of biological materials/fluids with minimal destruction to evidence samples at crime scene locations or from evidence taken from crime scenes.  Due to the sensitivity of SERS, suspected human body fluid samples that may be invisible to the eye (but may be evident with the aid of alternate light sources), may be identified leaving sufficient quantity for subsequent DNA analysis.  In forensic lab settings, SERS can be used to identify the original body fluid at the time of genetic analysis.  The molecular basis for these characteristic SERS signatures will b determined.  In addition, SERS can determine the age of some biological stains and corresponding time since a violent crime.  Thus, these SERS measurements have the capability to inform criminal investigation directions prior to traditional confirmatory laboratory testing.

NIJLogoThis project leverages the Ziegler group’s expertise developed for other SERS-based bioanalytical applications. At the end of this award period, all the elements for an integrated SERS-based, portable trace body fluid detection and identification platform (sample preparation protocols, spectral reference library, software procedures) will be available for field deployment and testing.



DOE Funds Bioenergy Study

July 31st, 2014 in Faculty, Front Page, Research

Professor Sean Elliott

Professor Sean Elliott

Professor Sean Elliott and his group have received funding from the Department of Energy’s Office of Science for their project, “Tuning directionality for CO2 reduction in the oxo-acid: ferredoxin superfamily.”  Their aim  is to provide a unique, molecular perspective on how electron transfer processes are coupled to catalytic processes that can either be oxidations that liberate CO2, or reductive reactions that capture CO2.

Developing catalytic chemistry for bioenergy production requires a detailed understanding of the molecular mechanisms of multi-electron redox processes, particularly those that transform/capture CO2, producing molecules useful as fuel sources or chemical feed stocks.  Understanding the molecular details of how multi electron catalysis can be achieved is a major challenge in modern energy science, particularly in the context of CO2 transformations. While synthetic chemistry addresses the design and implementation of multi-electron transformations through the generation of homogenous or heterogenous catalysts, biological systems, such as plants and microorganisms, use diverse redox-active enzymes to achieve CO2 capture.  Such enzymes can be highly powerful catalysts; however, very little is known about their mechanisms of action, let alone how a potential reversible catalyst can be tuned to favor CO2 reduction chemistry.

The Elliott group aims to address this knowledge gap in the context of the enzymatic chemistry of the oxo-acid:ferredoxin oxidoreductase (OFOR) superfamily (see structure above right), which is capable of CO2 reduction.  Collaborating with them are  metalloprotein crystallographer, Professor Catherine Drennan (Massachusetts Institute of Technology) and Professor Stephen Ragsdale (University of Michigan).