GenAI
The aim of the GenAI Initiative is to promote research and an open flow of ideas on how to safely and responsibly shape our future. Our focus will be on investigating the impact and responsible use of Generative AI in firms, their operations, industries, markets, and societies. We firmly believe that business leaders are responsible for transforming scientific discoveries and engineering innovations into practical products and services that improve the quality of human life and well-being.
GenAI Faculty Fellows
Current Research
Recent publications from Digital Business Institute Faculty Fellow Bin Gu, Everett w. Lord Distinguished Faculty Scholar, Professor, Information Systems, Department Chair, Information Systems:
The Effect of AI-Enabled Credit Scoring on Financial Inclusion: Evidence from One Million Underserved Population
forthcoming in MIS Quarterly.
Is College Education Less Necessary with AI? Evidence from Firm-Level Labor Structure Changes, Journal of Management Information Systems.
InnoVAE: Generative AI for Understanding Patents and Innovation
Zhaoqi “ZQ” Cheng, Boston University – Questrom School of Business
Dokyun “DK” Lee, Boston University – Questrom School of Business
Sonny Tambe, Wharton School, U. Pennsylvania
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3868599
A lack of interpretability limits the use of common unsupervised learning techniques (e.g., PCA, t-SNE) in contexts where they are meant to augment managerial decision-making. We develop a generative deep learning model based on a Variational AutoEncoding Large Language Model (“InnoVAE”) that converts unstructured patent text into an interpretable, spatial representation of innovation (“Innovation Space”). After validating the internal consistency of the model, we apply it to approximately 0.5 million AI patents to show that our approach can be used to construct economically interpretable measures—at scale—that characterize a firm’s IP portfolio from the text of its patents, such as whether a patent is a breakthrough innovation, the volume of intellectual property enclosed by a portfolio of patents, or the density of patents at a point in Innovation Space. We show that for explaining innovation outcomes, these interpretable, engineered features have explanatory power that augments and often surpasses the structured patent variables that have informed the very large and influential literature on patents and innovation.
Our findings illustrate the potential of using generative methods on unstructured data to guide managerial decision-making. The same methodology can be applied to a wide variety of different business objects such as embedding businesses into business strategy space, jobs into skills space, assets into risk space, products into attribute space, and more. This embedding space enables further combinational synthesis as well as a high-resolution exploration into the multi-modal business entity.
Generative AI, Human Creativity, and Art
Eric Zhou
Dokyun Lee
Artificial intelligence (AI) has demonstrated its ability to produce outputs that society traditionally considers “creative”. One such system is text-to-image generative AI (e.g., MidJourney, Stable Diffusion), which automates humans’ execution to generate high-quality digital artworks. To assess its impact, we collected a dataset of over 4 million artworks from more than 50,000 unique users on a prominent art-sharing platform, including over 5,800 AI adopters. Our research shows that text-to-image AI substantially enhances human creative productivity by 25% and doubles the perceived worth of the artifacts, gauged by favorites per view. Interestingly, although the peak novelty of creations rises over time, the average novelty diminishes, implying an expanding realm of creative possibilities but with some inefficiencies. Furthermore, we provide additional insights into the specific circumstances and artist-level differences for which generative AI enhances creativity and productivity. The results identify clear winners and losers in human-AI collaborative creation and offer guidance on how best to leverage this technology to enhance human creativity and productivity.
Figure 1 Innovation Space
Figure 2 Art Sharing Platform
Figure 3 Human-AI Generative Synesthesia
Figure 4 Human-AI Collaborative Art
The Consequences of Generative AI for UGC and Online Community Engagement
Gordon Burtch, Boston University – Questrom School of Business
Dokyun Lee, Boston University – Questrom School of Business
Zhichen Chen, Boston University – Questrom School of Business
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4521754
Generative AI technologies like ChatGPT are transforming how people create, share, and consume content in various domains. Though these technologies have the potential to democratize information access and streamline content production, they may also have unintended consequences for the health and sustainability of online knowledge communities, particularly those that focus on information exchange and lack robust mechanisms of social attachment. We provide initial evidence of this, examining the impact that ChatGPT has had on user activity at StackOverflow, contrasting with user activity at Reddit. We analyze a large sample of data for a period spanning October 2021 and March 2023, capturing content posted to Stack Overflow and Reddit related to the most popular StackOverflow topics. We find that ChatGPT has led to large, significant declines in StackOverflow questions related to these topics, with larger effects manifesting for topics where ChatGPT is more likely to excel, based on the volume of public, online data that would have been available for training. By contrast, considering Reddit sub-communities focused on the same topics, we find no evidence that ChatGPT has had any effect, suggesting the importance of social attachment in online knowledge communities for community survival. Finally, we consider potential shifts in the quality of answers provided at StackOverflow, considering users’ potential reliance on ChatGPT when providing answers, and potential declines in collective expertise as users depart the community. We find that average answer quality has declined significantly, primarily due to user exit. We discuss implications for the management of online knowledge communities.
Figure 5 AnswerBot