Data Link 5

The table below has additional primary references for Table 1 in Wang & Gilmore, 2002., Biochimica et Biophysica Acta – Molecular Cell Research

Table 1  Interaction partners of zyxin/paxillin family proteins

Protein Cytoskeletal and/or
Plasma Membrane
Signaling
Molecules
Transcription Factors/
Nuclear Proteins
Others
Zyxin a-actinin [34-36] Vav [41] HPV E6 protein [22]
Mena/VASP [37,38] CasL [31] SON DNA-binding
protein [31]
CRP [39] p130Cas [31]
H-warts/LATS1[40]
Trip6 OpaP [42] Grb2 [79] Thyroid hormone
receptor [15]
RIL [44]
Tropomyosin 4 [31] PTP-BL/1E [44,45] Retinoid X receptor [15] Novel protein [31]
CasL [31] v-Rel [17]
p130Cas [31] SON DNA-binding
protein [31]
gp210 [31] Atrophin-1 related
protein [31]
Synaptic GTPase
Activating Protein [31]
LPP Mena/VASP [8]
Ajuba Grb2 [45] TTF1 [19]
GLT1 [46]
Paxillin b1, b3, a4, and a6
subunits [47-50]
FAK [54,56,58] BPV E6 protein [32,33] Poly(a)-binding
protein 1 [66]
syndesmos [51] CAKb/Pyk2 [58,59]
tubulin [52] ILK [60]
vinculin [53-56] Src [61]
actopaxin [57] PKL [62]
schwannomin [77] PAK [62,64]
Csk [65]
Crk [66]
PTP-PEST [67]
Hic-5 vinculin [69] FAK [69-71] Androgen
receptor [18]
syndesmos [51] CAKb/Pyk2 [72,73] Glucocorticoid
receptor [5]
actopaxin [57] PKL [63]
dopamine
transporter [78]
Csk [73]
PTP-PEST [74]
GLT1 [75]
Leupaxin CAKb/Pyk2 [76]

Complete References for Interacting Proteins in Table 1 of Wang & Gilmore, Biochimica et Biophysica Acta – Molecular Cell Research

5   Yang, L. et al. (2000) Interaction of the t2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, Hic-5, which localizes to both focal adhesions and the nuclear matrix. Mol Biol Cell 11, 2007-2018

8 Petit, M. M. et al. (2000) LPP, an actin cytoskeleton protein related to zyxin, harbors a nuclear export signal and transcriptional activation capacity. Mol Biol Cell 11, 117-129

15  Lee, J. W. et al. (1995) Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol Endocrinol 9, 243-254

17 Koedood Zhao, M. et al. (1999) LIM domain-containing protein Trip6 can act as a coactivator for the v-Rel transcription factor. Gene Expr 8, 207-217

18 Fujimoto, N. et al. (1999) Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J Biol Chem 274, 8316-8321

19 Missero, C. et al. (2001) The DNA glycosylase T:G mismatch-specific thymine DNA glycosylase represses thyroid transcription factor-1-activated transcription. J Biol Chem 276, 33569-33575

22 Degenhardt, Y. Y. and Silverstein, S. (2001) Interaction of zyxin, a focal adhesion protein, with the E6 protein from human papillomavirus type 6 results in its nuclear translocation. J Virol 75, 11791-11802

31  Yi J. et al. (2002) Members of the zyxin family of LIM proteins interact with members of the p130Cas family of signal transducers. J Biol Chem 277, 9580-9589

32 Tong, X. and Howley, P. M. (1997) The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc Natl Acad Sci USA 94, 4412-4417

33 Vande Pol, S. B. et al. (1998) Association of bovine papillomavirus type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif. Oncogene 16, 43-52

34 Crawford, A. W. et al. (1992) An interaction between zyxin and alpha-actinin. J Cell Biol 116, 1381-1393

35 Drees, B. E. et al. (1999) Molecular dissection of zyxin function reveals its involvement in cell motility. J Cell Biol 147, 1549-1560

36 Reinhard, M. et al. (1999) An a-actinin binding site of zyxin is essential for subcellular zyxin localization and alpha-actinin recruitment. J Biol Chem 274, 13410-13418

37 Reinhard, M. et al. (1995) Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator-stimulated phosphoprotein). Proc Natl Acad Sci USA 92, 7956-7960

38 Drees, B. et al. (2000) Characterization of the interaction between zyxin and members of the Ena/vasodilator-stimulated phosphoprotein family of proteins. J Biol Chem 275, 22503-22511

39 Sadler, I. et al. (1992) Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton. J Cell Biol 119, 1573-1587

40 Hirota, T. et al. (2000) Zyxin, a regulator of actin filament assembly, targets the mitotic apparatus by interacting with h-warts/LATS1 tumor suppressor. J Cell Biol 149, 1073-1086

41 Hobert, O. et al. (1996) SH3 domain-dependent interaction of the proto-oncogene product Vav with the focal contact protein zyxin. Oncogene 12, 1577-1581

42 Williams, J. M. et al. (1998) Using the yeast two-hybrid system to identify human epithelial cell proteins that bind gonococcal Opa proteins: intracellular gonococci bind pyruvate kinase via their Opa proteins and require host pyruvate for growth. Mol Microbiol 27, 171-186

43 Murthy, K. K. et al. (1999) ZRP-1, a zyxin-related protein, interacts with the second PDZ domain of the cytosolic protein tyrosine phosphatase hPTP1E. J Biol Chem 274, 20679-20687

44 Cuppen, E. et al. (2000) The zyxin-related protein TRIP6 interacts with PDZ motifs in the adaptor protein RIL and the protein tyrosine phosphatase PTP-BL. Eur J Cell Biol 79, 283-293

45 Goyal, R. K. et al. (1999) Ajuba, a novel LIM protein, interacts with Grb2, augments mitogen-activated protein kinase activity in fibroblasts, and promotes meiotic maturation of Xenopus oocytes in a Grb2- and Ras-dependent manner. Mol Cell Biol 19, 4379-4389

46 Marie, H. et al. (2002) The amino terminus of the glial glutamate transporter GLT-1 interacts with the LIM protein Ajuba. Mol Cell Neurosci 19, 152-164

47 Schaller, M. D. et al. (1995) Focal adhesion kinase and paxillin bind to peptides mimicking b integrin cytoplasmic domains. J Cell Biol 130, 1181-1187

48 Liu, S. et al. (1999) Binding of paxillin to a4 integrins modifies integrin-dependent biological responses. Nature 402, 676-681

49 Chen, L. M. et al. (2000) Association of b1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells. J Neurosci 20, 3776-3784

50 Wine, R. N. et al. (2002) Identification of components of protein complexes using a fluorescent photo-cross-linker and mass spectrometry. Anal. Chem. 74, 1939-1945

51 Denhez, F. et al. (2002) Syndesmos, a syndecan-4 cytoplasmic domain interactor, binds to the focal adhesion adaptor proteins paxillin and hic-5. J Biol Chem 277, 12270-12274

52 Brown, M. C. and Turner, C. E. (2002) Roles for the tubulin- and PTP-PEST-binding paxillin LIM domains in cell adhesion and motility. Int. J. Biochem. Cell Biol. 34, 855-863

53 Turner, C. E. et al. (1990) Paxillin: a new vinculin-binding protein present in focal adhesions. J Cell Biol 111, 1059-1068

54 Turner, C. E. and Miller, J. T. (1994) Primary sequence of paxillin contains putative SH2 and SH3 domain binding motifs and multiple LIM domains: identification of a vinculin and pp125Fak-binding region. J Cell Sci 107, 1583-1591

55 Wood, C. K. et al. (1994) Characterization of the paxillin-binding site and the C-terminal focal adhesion targeting sequence in vinculin. J Cell Sci 107, 709-717

56 Brown, M. C. et al. (1996) Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol 135, 1109-1123

57 Nikolopoulos, S. N. and Turner, C. E. (2000) Actopaxin, a new focal adhesion protein that binds paxillin LD motifs and actin and regulates cell adhesion. J Cell Biol 151, 1435-1448

58 Hildebrand, J. D. et al. (1995) Paxillin, a tyrosine phosphorylated focal adhesion-associated protein binds to the carboxyl terminal domain of focal adhesion kinase. Mol Biol Cell 6, 637-647

59 Salgia, R. et al. (1996) The related adhesion focal tyrosine kinase forms a complex with paxillin in hematopoietic cells. J Biol Chem 271, 31222-31226

60 Nikolopoulos, S. N. and Turner, C. E. (2001) Integrin-linked kinase (ILK) binding to paxillin LD1 motif regulates ILK localization to focal adhesions. J Biol Chem 276, 23499-23505

61 Weng, Z. et al. (1993) Detection of Src homology 3-binding proteins, including paxillin, in normal and v-Src-transformed Balb/c 3T3 cells. J Biol Chem 268, 14956-14963

62 Turner, C. E. et al. (1999) Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J Cell Biol 145, 851-863

63 West, K. A. et al. (2001) The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). J Cell Biol 154, 161-176

64 Hashimoto, S. et al. (2001) Interaction of paxillin with p21-activated Kinase (PAK). Association of paxillin alpha with the kinase-inactive and the Cdc42-activated forms of PAK3. J Biol Chem 276, 6037-6045

65 Sabe, H. et al. (1994) Analysis of the binding of the Src homology 2 domain of Csk to tyrosine-phosphorylated proteins in the suppression and mitotic activation of c-Src. Proc Natl Acad Sci USA 91, 3984-3988

66 Schaller, M. D. and Parsons, J. T. (1995) pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 15, 2635-2645

67 Cote, J. F. et al. (1999) Intact LIM 3 and LIM 4 domains of paxillin are required for the association to a novel polyproline region (Pro 2) of protein-tyrosine phosphatase-PEST. J Biol Chem 274, 20550-20560

68 Woods, A. J. et al. (2002) Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells. J Biol Chem 277, 6428-6437

69 Thomas, S. M. et al. (1999) Characterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin. J Cell Sci 112, 181-190

70 Fujita, H. et al. (1998) Interaction of Hic-5, a senescence-related protein, with focal kinase. J Biol Chem 273, 26516-26521

71  Ishino, K. et al. (2000) Specific decrease in the level of Hic-5, a focal adhesion protein, during immortalization of mouse embryonic fibroblasts, and its association with focal adhesion kinase. J Cell Biochem 76, 411-419

72 Matsuya, M. et al. (1998) Cell adhesion kinase b forms a complex with a new member, Hic-5, of proteins localized at focal adhesions. J Biol Chem 273, 1003-1014

73 Ishino, M. et al. (2000) Phosphorylation of Hic-5 at tyrosine 60 by CAKb and Fyn. FEBS Lett 474, 179-183

74 Nishiya, N. et al. (1999) Hic-5, a paxillin homologue, binds to the protein-tyrosine phosphatase PEST (PTP-PEST) through its LIM 3 domain. J Biol Chem 274, 9847-9853

75 Nishiya, N., Shirai, T., Suzuki, W., Nose, K. (2002) Hic-5 Interacts with GIT1 with a different binding mode from paxillin. J Biochem (Tokyo) 132, 279-289

76 Lipsky, B. P. et al. (1998) Leupaxin is a novel LIM domain protein that forms a   complex with PYK2. J Biol Chem 273, 11709-11713

77  Fernandez-Valle, C., Tang, Y., Ricard, J., Rodenas-Ruano, A., Taylor, A., Hackler, E., Biggerstaff, J., Iacovelli, J. (2002) Paxillin binds schwannomin and regulates its density- dependent localization and effect on cell morphology. Nat Genet 31, 354-362

78 Carneiro, A. M., Ingram, S. L., Beaulieu, J. M., Sweeney, A., Amara, S. G., Thomas, S. M., Caron, M. G., Torres, G. E. (2002) The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter. J Neurosci 22, 7045-7054

79 Wang, Y. (2002) A molecular and cellular characterization of Trip6 (thyroid hormone receptor interacting protein 6), a LIM domain protein that moves between focal adhesion plaques and the nucleus. PhD thesis, Boston University