Dean’s Catalyst Awards Fund Promising, Early-Stage Projects – Congratulations to J. Konrad

By Mark Dwortzan

Picture of a hoarder’s room. With Dean’s Catalyst Award funding, Professor Janusz Konrad (ECE) and Associate Professor Jordana Muroff (SSW) plan to develop an objective, automatic, image-based, real-time hoarding assessment algorithm running on a smartphone or tablet.
Picture of a hoarder’s room. With Dean’s Catalyst Award funding, Professor Janusz Konrad (ECE) and Associate Professor Jordana Muroff (SSW) plan to develop an objective, automatic, image-based, real-time hoarding assessment algorithm running on a smartphone or tablet.

The College of Engineering has funded four new projects through the Dean’s Catalyst Award (DCA) grant program, each focused on technologies that promise to make a significant impact on society. ENG and collaborating faculty will receive $40,000 per project to develop novel techniques to advance these technologies.

Early result of automatic detection of clutter in the same room (red stars denote clutter; blue circles denote non-clutter). The severity of hoarding disorder is judged based on clutter.

Established by Dean Kenneth R. Lutchen in 2007 and organized by a faculty committee, the annual DCA program encourages early-stage, innovative, interdisciplinary projects that could spark new advances in a variety of engineering fields. By providing each project with seed funding, the awards give full-time faculty the opportunity to develop collaborations and generate initial proof-of-concept results that could help secure external funding.

This year’s DCA-winning projects could yield new applications in healthcare and energy.

Professor Janusz Konrad (ECE) and Associate Professor Jordana Muroff (SSW) will explore ways to automate the assessment of hoarding, a complex psychiatric disorder and public health problem characterized by persistent difficulty and distress associated with discarding of possessions. Current assessment methods of hoarding are subjective and time-consuming, as they require patients and/or clinicians to complete questionnaires or select images. To overcome these drawbacks, Konrad and Muroff plan to develop an objective, automatic, image-based, real-time hoarding assessment algorithm running on a smartphone or tablet. Such technology could enable cost-effective, precisely-targeted mental healthcare for hoarding disorder patients.

Early result of automatic detection of clutter in the same room (red stars denote clutter; blue circles denote non-clutter). The severity of hoarding disorder is judged based on clutter.
Early result of automatic detection of clutter in the same room (red stars denote clutter; blue circles denote non-clutter). The severity of hoarding disorder is judged based on clutter.

Professors Elise Morgan (ME, BME, MSE), Katya Ravid (MED) and Louis Gerstenfeld (MED) will test whether blocking a metabolic receptor associated with the growth of new blood vessels (angiogenesis) can help mitigate the destructive progression of rheumatoid arthritis (RA), a debilitating disease characterized by joint pain and stiffness. In patients with RA, angiogenesis occurs in the membrane surrounding the joint in an uncontrolled way, thus advancing the destruction of joint tissues. If blocking this receptor proves successful, this research could lead to the development of a new class of pharmacological therapies for RA patients that, unlike current treatments, do not lose their effectiveness over time.

Associate Professor Srikanth Gopalan and Assistant Professor Emily Ryan (both ME, MSE) observe that power generation and energy storage devices such as fuel cells and lithium ion batteries have not found more widespread applications because the micro-structured electrodes they typically use do not provide sufficient energy capacity and power density to make these devices commercially attractive in a broader class of applications. To overcome this shortcoming, the researchers plan to develop a novel molten salt-based fabrication technique for nanostructured electrodes, which have the potential for unprecedented improvements in both energy capacity and power densities.

Professor Joyce Wong (BME, MSE) and Associate Professor Glynn Holt (ME) aim to perform a definitive proof-of-concept experiment to establish the potential for the use of microbubbles and ultrasound to noninvasively break blood clots. Clots are a major problem in the medical device industry because they can form on device surfaces, which can then lead to pulmonary embolisms if the clots end up in the lung or a stroke in the brain. Building on past studies by Wong, the researchers will conduct experiments aimed at developing a commercial “clot-busting” microbubble that binds to clots and breaks them in the presence of focused ultrasound.