Skip to Main Content
Boston University
  • Bostonia
  • BU Today
  • The Brink
  • University Publications

    • Bostonia
    • BU Today
    • The Brink
  • School & College Publications

    • The Record
Other Publications
The Brink
  • Sections
Pioneering Research from Boston University

Scaling Up Synthetic Biology

Engineering researchers develop powerful new software tools

January 23, 2015
  • Mark Dwortzan
Twitter Facebook
Douglas Densmore, engineering assistant professor, and Swapnil Bhatia, engineering research assistant professor, are collaborating to streamline synthetic biology from concept to design to assembly. Photo by Jackie Ricciardi

Over the past 15 years, synthetic biology researchers have rewired and reprogrammed genetic “circuits” in living cells and organisms to enable them to perform specified tasks, both to improve our understanding of biology and to solve critical problems in health care, energy and the environment, food safety, global security, and other domains. While practitioners dream of engineering each new organism as expeditiously as today’s new mobile phone apps are produced, serious obstacles remain. Genetic parts are hard to find and tune, the final behaviors of engineered organisms are difficult to predict, and few tools exist that can handle the scale and complexity of the enterprise.

In recent years, however, two professors at Boston University’s College of Engineering, Douglas Densmore (electrical and computer engineering, biomedical engineering, bioinformatics) and Swapnil Bhatia (electrical and computer engineering), have joined forces to streamline synthetic biology from concept to design to assembly, encoding solutions in a rich suite of software tools. In a paper published in Nature Biotechnology, they and collaborating researchers at MIT demonstrated how their tools can be used iteratively to help synthetic biologists to specify, analyze, and improve large-scale designs for engineered biological organisms.

“Currently, people write down a sequence of genetic parts, one in each column, for each design,” says Bhatia. “You can do this correctly when you have a few designs, but when you want to do it for 100 designs, you begin to wonder if there’s a more powerful approach. Our algorithms allow researchers to describe whole spaces of designs, including those they might not have thought of because the possibilities are so vast.”

In the paper, Densmore and Bhatia showed the potential of their software tools by describing a network of 16 genes central to engineering nitrogen fixation—a key pathway which, if engineered into plants, could mitigate the need for fertilizer. Using specifications generated by the software, they and their collaborators “rewired” a network of genes extracted from one bacterial species, Klebsiella oxytoca, and transplanted it into another one, E. coli, that’s easier to work with in the desired application.

The researchers, who were funded by a $3.6 million Defense Advanced Research Projects Agency (DARPA) grant, thus demonstrated the first instance in which synthetic biologists ported a large gene cluster from one organism into another. It’s a process Bhatia likens to persistently tinkering with an app that runs on an iPhone to make it work on a Kindle, and he believes it will pave the way for many synthetic biology applications.

“This paper is an excellent example of parallel development of biological and computational tools,” says Densmore. “Recombinant DNA and cloning techniques have improved at a rapid pace, but the state of computational tools for engineering biology has lagged behind. People still use spreadsheets and notebooks for large projects. This has to change.”

Seeking to accelerate that change, Densmore and Bhatia are already focused on developing the next generation of tools for synthetic biology that will automatically learn biological design rules, propose genetic circuit designs, plan DNA assemblies, and automate much of the pipetting labor involved in the assembly of engineered biological systems.

 

  • Share this story

Share

Scaling Up Synthetic Biology

Share

  • Twitter
  • Facebook
  • Reddit
  • LinkedIn
  • Email
  • Mark Dwortzan

    Mark Dwortzan Profile

Latest from The Brink

  • Partisan Politics

    You’ve Heard of Red States and Blue States. But What About Red and Blue Neighborhoods?

  • Conservation

    River Herring in Martha’s Vineyard Are Disappearing. A BU Marine Biologist Is Trying to Help Save Them

  • Marine Biology

    Protecting Maine’s Coastal Heritage—and Her Own

  • Politics

    BU Historian’s New Book Traces the Rise of Today’s Far Right Movement

  • Encryption

    Our Online World Relies on Encryption. What Happens If It Fails?

  • Art History

    From Wedding Attire to Living Room Curtains: A BU Scholar Is Unraveling the History of Brocade Weaving in Morocco

  • Vaccines

    What to Make of the Recent COVID Vaccine Guidance Changes—and Will You Be Eligible for a Shot This Fall?

  • NEIDL

    Renowned Virologist Robert A. Davey to Lead NEIDL, BU’s Infectious Diseases Research Hub

  • AI and Stolen Art

    Using AI to Identify Plundered Antiquities

  • Campus Climate Lab

    BU Students Win Janetos Climate Action Prize for Uncovering Air Quality Gaps Between Old and New Campus Buildings

  • Low Back Pain

    Finding Non-Opioid Solutions for Low Back Pain

  • Carbon Credits

    Do Forest Carbon Credits Work and Actually Help the Environment?

  • Infectious Diseases

    What’s It Like to Be an Infectious Diseases Outbreak Responder?

  • Autism

    What Causes Autism? And Is There an Autism Epidemic, as Robert F. Kennedy Jr. Says?

  • CTE

    NIH Awards $15M to BU-Led Effort to Diagnose CTE During Life

  • Research News

    Brink Bites: Tracking Endangered Frogs, Why Concentration Wanders, Studying Kids’ Beliefs

  • Economy

    Massachusetts Could See Drastic, Cascading Economic Downturn from New Policies, BU Study Finds

  • Innovator of the Year

    Pulmonologist Darrell Kotton Is BU’s Innovator of the Year

  • Expert Take

    “Everyday Discrimination” Linked to Increased Anxiety and Depression Across All Groups of Americans

  • Climate Misinformation

    Native Ads Are Shaping Climate Opinions. BU Researchers Say There’s a Way to Resist

Section navigation

  • Sections
  • Notable
  • Videos
  • About Us
  • Topics
  • Archive
Subscribe to Newsletter

Explore Our Publications

Bostonia

Boston University’s Alumni Magazine

BU Today

News, Opinion, Community

The Brink

Pioneering Research from Boston University

  • Twitter
  • Facebook
  • YouTube
  • LinkedIn
  • Instagram
  • Weibo
  • Medium
© Boston University. All rights reserved. www.bu.edu
© 2025 Trustees of Boston UniversityPrivacy StatementAccessibility
Boston University
Notice of Non-Discrimination: Boston University prohibits discrimination and harassment on the basis of race, color, natural or protective hairstyle, religion, sex or gender, age, national origin, ethnicity, shared ancestry and ethnic characteristics, physical or mental disability, sexual orientation, gender identity and/or expression, genetic information, pregnancy or pregnancy-related condition, military service, marital, parental, veteran status, or any other legally protected status in any and all educational programs or activities operated by Boston University. Retaliation is also prohibited. Please refer questions or concerns about Title IX, discrimination based on any other status protected by law or BU policy, or retaliation to Boston University’s Executive Director of Equal Opportunity/Title IX Coordinator, at titleix@bu.edu or (617) 358-1796. Read Boston University’s full Notice of Nondiscrimination.
Search
Boston University Masterplate
Scaling Up Synthetic Biology
0
share this
loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.