PhD in Neuroscience (Program in Neuroscience)

The Graduate School of Arts & Sciences (GRS) no longer admits students to the PhD offered by the Program in Neuroscience (PIN). Students are now admitted into the Graduate Program for Neuroscience (GPN), a University-wide effort administered by the Division of Graduate Medical Sciences (GMS). The following is provided as reference only for continuing GRS Neuroscience PhD students in PIN.

The goal for the majority of students will be to complete the requirements for elective study and the prescribed milestones for moving toward submission of the written thesis and the oral defense. This includes successful completion of the qualifying exam and biannual meetings of the dissertation advisory committee (DAC). Oversight of PIN students is now being conducted by the Graduate Education Committee of GPN. Please contact the GPN office for further information or guidelines.

For the post–bachelor’s PhD degree, a total of 64 course units is required. Of these, at least 32 of the units must come from lecture, methods, or seminar courses.

For the post–master’s PhD, 32 units of coursework are required. The required courses are the same as for the post–bachelor’s PhD. However, depending on the student’s background, one or more of the required courses may be waived via petition to the BU Graduate Program for Neuroscience Graduate Education Committee (GEC).

Core Courses

An essential feature of the program is a set of core courses: these are taken by all students in GPN during their first year and are aimed at developing a community of thinkers who move through the training program together, building relationships that cross departmental and campus barriers, and foster cross-disciplinary collaborations.

Students complete 10 units of core neuroscience coursework that provides a strong foundation in this diverse field of graduate study. There are two team-taught lecture/discussion courses that are given sequentially over the first year. Each course has two directors, each from a different campus. Courses are cross-listed to represent the cosponsorship of departments from both campuses (Charles River Campus and Medical Campus). GPN students register in the following:

  • CAS BI 755 Cellular and Systems Neuroscience or GMS AN 810 Systems Neurobiology (4 units)
  • CAS BI 756/PS 738 Systems and Behavioral Neuroscience or GMS AN 811 Cognitive Neuroscience (4 units)

Additional core neuroscience requirements (2 units) include: a 7-week intensive introductory course in data analysis and mathematical models for students who do not have a strong background in computation. This introductory course combines lectures and hands-on computer time to treat real laboratory data like case studies and motivates students to use the mathematical approach as a means to better understand their own research via statistical data analysis and modeling.

  • CAS MA 665 Introduction to Mathematical Models and Data Analysis in Neuroscience (2 units)

Students pursuing the PhD in Computational Neuroscience (or who have taken an undergraduate course in the area) can substitute a more advanced elective for this requirement. Likewise, students who have taken the required course and would like more exposure to the area can continue on in the class to take the next module that is offered sequentially (4 units instead of 2 units).

Additional Required Curriculum

In addition to the core curriculum, students take the following seminar coursework during their first year and enroll in laboratory rotations:

  • CAS NE 500/501 Frontiers of Neuroscience (2 units per term)

All students attend a unique class on Friday afternoons that is managed by the Director or Associate Director of GPN. During the first term, students are assigned key papers from a particular BU faculty member’s laboratory and supporting manuscripts in the field. During the session, student presenters review and critique experimental findings and approaches, building their skills in critical thinking and developing the basic tools for successful oral presentations. They also get to share their scientific ideas and interests with the leaders of neuroscience at Boston University, an activity that enriches the neuroscience community by building new relationships between faculty and students. Research from monthly GPN distinguished lecturers from across the world are integrated into the training experience to provide a balanced exposure for students to all areas of neuroscience and to give them firsthand interactions with exceptional individuals who are defining the field of the future. During the second term, students focus on the development of professional skills, such as advanced techniques in oral presentations and the beginnings of scientific writing.

Laboratory Rotations

Providing an enriching set of laboratory research experiences directed by GPN faculty for students during their first year is a central feature of the graduate training program at Boston University. The multitude of highly talented mentors who have funded research projects provides the student with a large number of potential laboratories from which to choose their thesis research mentor that will complement their current interests, and through laboratory rotations, expand their horizons into different areas of investigation that they may grow toward in the future.

The majority of students pursuing the PhD in Neuroscience take three to four rotations, with at least one rotation in an area outside of their initial research interests; students pursuing the PhD in Computational Neuroscience take a minimum of two rotations, with at least one in an experimental laboratory. Students can also engage in additional rotations should they not find a mentor, or if they would like more exposure to other methodologies used in neuroscience. Units for rotations is contingent upon receipt of a short (5-page) laboratory report for each experience that is reviewed by the rotation mentor.

Directed Study/Thesis

Additional program units come from directed study during thesis research to make up the 64-unit PhD requirement. Students are also encouraged to take an additional course in probability and statistics that is appropriate to their area of thesis research and take required workshops in neuroscience ethics and responsible conduct of research. Students also attend the required bimonthly student seminar series, a graduate student forum where they can work on improving their oral communication skills throughout their graduate career in GPN. Finally, to be in good standing in the program, they must attend all GPN distinguished lectures and program events, workshops in professional development, and participate in at least one teaching or outreach activity. Optional paid teaching fellowships are available to students who want greater experience in the educational mission.

Students can also substitute additional coursework for directed study to make up the unit requirement for the degree, especially as needed based upon their choice of thesis research or to supplement a lack of certain background during undergraduate study.

Hands-On Laboratory Experience

During the summer before their first year of study, incoming students participate in the Tools of the Trade laboratory experience that is run by GPN faculty to provide students with the essential hands-on experience necessary to make their laboratory rotations in the fall meaningful for their graduate-level training. In Tools of the Trade, students learn some of the basic techniques necessary for conducting laboratory research in the field of neuroscience, independent of their current research interests.

Group activities might be organized around detection of an important neuronal RNA via real-time PCR, the identification of a single nucleotide polymorphism in a DNA sample from a patient with a neurodegenerative disease, identification of protein in brain slices using immunohistochemistry and fluorescence microscopy, electrophysiological measurements or calcium imaging of living neurons, interaction of transcription factors with DNA regulatory elements that control expression of neural-specific genes, neuroimaging of the brain to detect the activation of particular brain structures, and running of a behavioral task with animals to address questions of addiction or learning and memory. Projects vary with the expertise and interests of the participating GPN faculty. Tools of the Trade is coordinated with the university-wide Neuroscience Retreat.

Elective Study

The rest of the formal units toward the PhD in Neuroscience come from a minimum of 12 units of elective study that includes at least one course with clinical relevancy. For example, students with a background in molecular neuroscience (or equivalent biochemical/biological study) can take the following electives:

  • GMS MS 783 Molecular Basis of Neurological Disease (2 units)
  • GMS PM 701 Molecular Neurobiology and Pharmacology (2 units)

These advanced courses provide the focus for an understanding of how endogenous substances act in the brain, the challenges faced in the development of effective therapies that target the nervous system, and what molecules can tell us about disease etiology and the potential for future treatment.

Taking advantage of the translational research and history of clinical training at the Medical Campus, all students are required to participate in clinical rounds that are offered through the Boston VA hospital as well as the Alzheimer’s Disease Center. Options for clinically relevant courses specific to students with interests outside of molecular neuroscience cover topics ranging from neuropsychology to human imaging and neural engineering, as well as the rehabilitative sciences offered at BU’s Sargent College of Health & Rehabilitation Sciences.

Please see specific details for the PhD in Computational Neuroscience on the website as there is additional required coursework for this degree specialization.

Suggestions for elective study are provided by faculty curriculum committees in subdisciplines of neuroscience as a means to help guide students toward reaching their scholastic goals.


As a member of GPN, students will acquire their more advanced training from coursework offered in departments around the University in order to fulfill the unit requirements for the PhD degree. The following is a list of potential electives organized by topic area as a guide to help students choose their curriculum and to give them flexibility in the design of coursework that spans more than one area of interest. Suggestions on foundation coursework specific to a research area are updated by faculty curriculum committees and can be obtained by emailing

Qualifying Examination

Students must take their Qualifying Examination at the end of their second year of study to remain in good standing in the program. The Qualifying Examination tests the ability of the student to think experimentally by generating testable hypotheses based on a foundation of knowledge that can be communicated in a written document and defended orally in front of a committee of GPN members. It is recommended that at least one faculty member of the Qualifying Examination Committee be from the GPN faculty of a different campus than where the student is conducting their dissertation research. For instance, a student working in a laboratory at the Charles River Campus would also have a GPN faculty member on the examining committee from the Medical Campus. A minimum of three faculty members will be on the examining committee, with membership approved by the GEC (see above).

The exam will be structured around a written proposal that is in the form of an individual NIH training fellowship application within the student’s proposed area of thesis research as well as a written abstract and Specific Aims in an additional area to test the student’s ability to address topics outside of their comfort zone. Students will be given a small workshop run by faculty so that they first learn the basic structure of an NRSA-style fellowship application before beginning their writing exercise for the exam. During the oral exam, the examining committee evaluates the student’s core knowledge base in these two areas as well as basic neuroscience. Students must be able to propose and defend experimental and/or computational hypotheses with realistic approaches to answer key questions relevant to their Specific Aims. A successful completion of both the written and oral parts of the exam is necessary before advancing to doctoral candidacy and registering for the third year in the program.


Dissertation Advisory Committee (DAC)

At the end of the second year, after successful completion of the Qualifying Exam, each student and the research mentor will put together a dissertation advisory committee (DAC) of five members that contains at least two faculty members from GPN and at least one member from outside of BU to serve as an outside reader. Composition of the DAC must be approved by the Program Director/Associate Director after review with the GEC. The thesis research mentor serves as the first reader. All students make a presentation to their DAC once a term to get feedback on their progress, although not all members of the committee need to be present (a quorum of three is acceptable). Distant DAC members may participate by teleconference with the approval of the DAC chair. Evaluation of student progress by the DAC is recorded on a tracking sheet by the DAC chair (a GPN faculty member who is not the mentor) and is placed in the student’s file for future review.

Dissertation Prospectus and Progress Report Seminar

Students generate a written document of no more than 20 pages double-spaced (Dissertation Prospectus) that describes the Aims of their thesis research, its background and significance to the field, experimental design and methods, and a bibliography. They then make a formal oral presentation (Progress Report Seminar) to the neuroscience community that is followed by a meeting of the DAC, and approval to pursue the research direction is sent to the GEC for further administrative processing. This formal progress report occurs at least one year prior to the defense.

Predefense and Defense

A predefense meeting of the DAC occurs at least two to three weeks prior to the defense to make sure that the quality of the dissertation document is close to being acceptable for the degree and to review necessary paperwork. At this time, the committee reviews the abstract and title. The defense cannot be scheduled before the abstract is approved and copies sent to the GMS at least three weeks before the defense. At the time of their defense, students give a 50-minute oral presentation, followed by 10 minutes of questions, that is open to all members of the University. This public forum is followed by a closed session of the DAC, at which the student is asked to respond to questions put forth by the committee to test their ability to defend the work presented in the dissertation document.