PhD in Computing & Data Sciences

The PhD program in Computing & Data Sciences (CDS) at Boston University prepares its graduates to make significant contributions to the art, science, and engineering of computational and data-driven processes that are woven into all aspects of society, economy, and public discourse, leading to solutions of problems and synthesis of knowledge related to the methodical, generalizable, and scalable extraction of insights from data as well as the design of new information systems and products that enable actionable use of those insights to advance scholarly as well as practical pursuits in a wide range of application domains.

Applicants to the PhD program in CDS are expected to have earned a bachelor’s or master’s degree in one of the methodological or applied disciplines relating to the computational and data-driven areas of scholarship in CDS. They are expected to possess basic mathematical and computational competencies, and demonstrable propensity for cross-disciplinary work. To accommodate a diversity of student backgrounds and preparations, a holistic admission review is utilized. As such, GRE tests and scores are not required, but could be optionally provided and considered as part of the applicant’s portfolio, which may also include evidence of prior, relevant preparation, including creative works, software code repositories, etc. Special attention will be paid to applicants from underrepresented backgrounds in computing and data science disciplines.

Completion of the PhD degree in CDS requires coursework covering breadth and depth topics spanning the foundational, applied, and sociotechnical dimensions of computing and data science; completion of research rotations that expose students to ongoing projects; completion of a cohort-based training on ethical and responsible computing; and successful proposal and defense of a doctoral thesis.

For their thesis work, and in preparation for careers in academia, industry, and government, CDS PhD students are expected to pursue theoretical, applied, or empirical studies leading to solution of new problems and synthesis of new knowledge in a topic area determined in consultation with their mentors and collaborators, which may include external researchers and practitioners in industrial and academic research laboratories.

Upon completion of the program, students will be prepared to pursue careers in which they lead independent cutting-edge research and development agendas, whether in academia (by teaching, mentoring, and supervising teams of students engaged in scholarly pursuits) or in industry (by collaborating, directing, and effectively managing diverse teams of practitioners working at the forefront of industrial R&D).

Learning Outcomes

The following learning outcomes explain what you will be able to do at the end of your time as a CDS PhD candidate, as a result of earning your degree.

  • Exhibit a strong grasp of the principles governing the design and implementation of the methodological approaches for computational and data-driven inquiry.
  • Identify the literature and demonstrate mastery of the compendium of works relevant to a well-defined area of research inquiry in computing and data sciences.
  • Show capacity to engage meaningfully in and materially contribute to multidisciplinary research and development endeavors.
  • Evidence a strong sense of social and professional responsibility for decisions related to the development and deployment of computational and data-driven technologies.
  • Assess and argue the merits, limitations, and possibilities of new research work in a specialized area at the level commensurate with standards of scholarly venues in that area.
  • Formulate and pursue a research agenda leading to solution of new problems and to synthesis of new knowledge shared through peer-reviewed publications.

Course Requirements

Sixteen term courses (64 units) are required for post-BA/BS students and 12 term courses (48 units) are required for post-MA/MS students. Students with prior graduate work (including master’s degrees) may be able to transfer up to two courses (8 units) as long as these units were not used to fulfill matriculation requirements, upon the recommendation of the student’s academic advisor, and subject to approval by the Associate Provost for CDS.

Of the 16 courses, up to 3 undergraduate courses (12 units) may be counted as background courses, selected in consultation with the student’s academic advisor and subject to approval by the Associate Provost for CDS. Other than these remedial courses, all other courses must be graduate-level courses or directed studies offered by CDS or by other BU departments in order to satisfy the following degree requirements.

The methodology core requirement ensures that students possess foundational knowledge and competencies in a subset of the following eight methodological areas of CDS:

  • Mathematical Foundations of Data Science
  • Statistical Modeling and Inference
  • Efficient and Scalable Algorithms
  • Predictive Analytics and Machine Learning
  • Combinatorial Optimization and Algorithms
  • Computational Complexity
  • Programming and Software Design
  • Large-scale Data Management

A list of courses that can be used to satisfy these competencies will be maintained on the website for CDS. Students who start their PhD program in CDS are expected to satisfy at least six of these competencies. Students who complete the course requirement for the PhD program in a cognate discipline are expected to satisfy at least four of these competencies.

The subject core requirement ensures that students establish depth in one area of inquiry that is aligned with either the methodological or applied dimensions of CDS. Subject areas are defined by groups of CDS faculty members working in related disciplinary and/or interdisciplinary areas of research who expect their prospective students to have enough depth in the subset of topics to enable them to tackle doctoral-level research in these topics. The set of subject areas as well as a list of preapproved graduate-level courses offered in CDS or elsewhere at BU that can be used to satisfy each subject area will be maintained on the website for CDS.

During the first two years in the program, all PhD candidates in CDS must complete three cohort-based requirements; namely, a two-term training course (4 units) covering various aspects of the responsible and ethical conduct of computational and data-driven research, a two-term doctoral seminar (4 units) that introduces them to the research portfolios of CDS faculty members as well as to the skills and capacities needed for success as scholars, and at least two research or lab rotations (8 units) that expose them to real-world computational and data-driven applications that must be tackled through effective multidisciplinary teamwork.

A cumulative GPA not less than 3.3 must be maintained for all non-Pass/Fail courses taken to satisfy the methodology core requirement and the subject core requirement of the degree, excluding any background courses and excluding any transferred units. Students who receive grades of B– or lower in any three courses taken at BU will be withdrawn from the program.

Language Requirement

There is no foreign language requirement for the PhD degree in CDS.

Qualifying Examinations

No later than the end of the sixth term (third year), all PhD candidates in CDS must pass a public oral examination administered by a committee of three faculty members, chaired by the student’s research (and presumptive thesis) advisor or coadvisors. The oral area exam is meant to establish the student mastery of a well-defined area of scholarship and preparedness to pursue original research in that area. The oral area examination may require completion of a survey paper or completion of a pilot project ahead of the examination. The scope as well as any additional requirements needed for the examination should be developed in consultation with and approval of the research advisor(s), at least one term prior to the exam.

Dissertation and Final Oral Examination

Candidates shall demonstrate their abilities for independent study in a dissertation representing original research or creative scholarship. A prospectus for the dissertation must be successfully defended no later than the end of the eighth term (fourth year) of study.

Candidates must undergo a final oral examination no later than the end of the 10th term (fifth year) of study in which they defend their dissertation as a valuable contribution to knowledge in their field and demonstrate a mastery of their field of specialization in relation to their dissertation.

Both the prospectus and final dissertation must be administered by a dissertation committee of at least three readers (including the dissertation advisor or coadvisors) and chaired by a CDS faculty member who is not one of the readers.