Electrical & Computer Engineering
View courses in
-
ENG EC 763: Nonlinear and Ultrafast Optics
Undergraduate Prerequisites: (ENGEC560) - Tensor theory of linear anisotropic optical media. Second- and third-order nonlinear optics. Three-wave mixing and parametric interaction devices, including second-harmonic generation and parametric amplifiers and oscillators. Four-wave mixing and phase conjugation optics. Electro-optics and photo-refractive optics. Generation, compression, and detection of ultra short optical pulses. Femtosecond optics. Pulse propagation in dispersive linear media. Optical solitons. -
ENG EC 765: Biomedical Optics and Biophotonics
This course surveys the applications of optical science and engineering to a variety of biomedical problems, with emphasis on optical and photonics technologies that enable real, minimally-invasive clinical applications. The course teaches only those aspects of biology itself that are necessary to understand the purpose of the application. The first weeks introduce the optical properties of tissue, and following lectures cover a range of topics in three general areas: 1) Optical spectroscopy applied to diagnosis of cancer and other tissue diseases; 2) Photon migration and optical imaging of subsurface structures in tissue; and 3) Laser-tissue interactions and other applications of light for therapeutic purposes. In addition to formal lectures, recent publications from the literature will be selected as illustrative of various topical areas, and for each publication one student will be assigned to prepare an informal presentation (with overhead slides or PowerPoint) reviewing for the class the underlying principles of that paper and outlining the research results. Same as ENGBE765; students may not receive credit for both. -
ENG EC 770: Guided-wave Optoelectronics
Undergraduate Prerequisites: (ENGEC560 OR ENGEC568) - Discussion of physics and engineering aspects of integrated optics and optoelectronic devices. Semiconductor waveguides, lasers, and photodetectors. Layered semiconductor structures, quantum wells, and superlattices. QW detectors, emitters, and modulators. OEICs. Photonic switching. -
ENG EC 771: Physics of Compound Semiconductor Devices
Undergraduate Prerequisites: (ENGEC574 OR ENGEC575 OR CASPY543) - Physics of present-day compound devices, and emerging devices based on quantum mechanical phenomena. MESFETs, Transferred Electron Devices, avalanche diodes, photodetectors, and light emitters. Quantum mechanical devices based on low dimensionality confinement through the formation of heterojunctions, quantum wells, and superlattices. High electron mobility transistors, resonant tunneling diodes, quantum detectors, and lasers. Materials growth and characterization are integral to the course. -
ENG EC 772: VLSI Graduate Design Project
Undergraduate Prerequisites: (ENGEC571) consent of instructor - EC772 is a project-oriented course that demonstrates the use of high-level design techniques. There are lectures, milestone presentations, and a final presentation. The lectures, interleaved with tutorials showing the utilization of Verilog, the Cadence RTL compiler, and Silicon Encounter, define the general design flow. Additional design issues are also elaborated in the form of classroom lectures, which take up a fraction of the course class time. Student groups of 2-5 define their own projects, which are scrutinized by the entire class as to difficulty and possibility of success. Milestones entail both oral (presented in class times) and written components. Typically, by the time of the final presentation, the milestone documents can be simply, with test results (not necessarily simple), are combined to demonstrate the veracity of the final chip design. Pay special attention to prerequisites. Verilog is at the heart of almost everything. EC311 and EC413 or equivalent courses can provide the minimal Verilog proficiency for LEAP students. These courses do not qualify for grad student credit, so EC551 (Verilog: may be co-req) or equivalent Verilog skill is necessary. EC571 VLSI Design or strong equivalent proficiency in digital circuits at the transistor level is also essential. -
ENG EC 773: Advanced Optical Microscopy and Biological Imaging
Graduate Prerequisites: (ENGEC401 OR ENGBE401) Preferably a background in optics of photonics (ENG EC560 or equivalen t or permission by instructor. - This course will present a rigorous and detailed overview of the theory of optical microscopy starting from basic notions in light propagation and covering advanced concepts in imaging theory such as Fourier optics and partial coherence. Topics will include basic geometric optics, photometry, diffraction, optical transfer functions, phase contrast microscopy, 3D imaging theory, basic scattering and fluorescence theory, imaging in turbid media, confocal microscopy, optical coherence tomography (OCT), holographic microscopy, fluorescence correlation spectroscopy (FCS), fluorescence resonant energy transfer (FRET), and nonlinear-optics based techniques such as two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) microscopy. Biological applications such as calcium and membrane-potential imaging will be discussed. A background in optics is preferable. A background in signals and analysis is indispensable. In particular, the student should be comfortable with Fourier transforms, complex analysis, and transfer functions. Same as ENG BE 773. Students may not receive credit for both. -
ENG EC 774: Semiconductor Quantum Structures and Photonic Devices
Undergraduate Prerequisites: (ENGEC574) or equivalent - Optical properties of semiconductors: interband optical transitions; excitons. Low-dimensional structures: quantum wells, superlattices, quantum wires, quantum dots, and their optical properties; intersubband transitions. Lasers: double-heterojunction, quantum-well, quantum-dot, and quantum-cascade lasers; high-speed laser dynamics. Electro-optical properties of bulk and low-dimensional semiconductors; electroabsorption modulators. Detectors: photoconductors and photodiodes; quantum-well infrared photodetectors. Same as ENG MS 774. Students may not receive credit for both. -
ENG EC 777: Nanostructure Optics
Undergraduate Prerequisites: (ENGEC471 OR ENGEC562 OR ENGEC565 OR ENGEC574) - Discussion of the fundamental physical aspects and device applications of optical fields confined and generated in nanoscale environments. Review of classical electrodynamics and angular spectrum representation of optical fields, classical and quantum models for light-matter interaction, light emission from semiconductor quantum dots and wires, surface-plasmon polaritons and sub- wavelength light transport/localization in metal nanostructures, slot waveguide structures, surface-enhanced Raman scattering (SERS) and SERS-based sensors, light scattering in complex photonic structures such as: metal-dielectric photonic crystals, fractal structrures, random lasers. -
ENG EC 782: RF/Analog IC Design - Advanced Applications
Undergraduate Prerequisites: (ENGEC580 & ENGEC582) or permission of the instructor. - Selected topics in advanced RF/Analog integrated circuit design based on high frequency BiCMOS technology. Topics to be covered include oversampling (Sigma Delta) A/D converters, RF phase-locked loops, low voltage RF frequency synthesizers, printed circuit board design for RF applications, antennas and signal propagation, PCB filters, and other mixed-signal topics. The course will utilize selected readings from the technical literature, as well as a number of RF measurement and RF design lab assignments. -
ENG EC 801: Teaching Practicum I
PhD Requirement. Assist faculty by performing teaching or teaching-related duties, such as preparing and teaching labs and discussion sections, developing teaching materials, assisting with homework preparation and grading, proctoring exams, grading exams or papers. -
ENG EC 802: Teaching Practicum II
PhD requirement. Assist faculty by performing teaching or teaching-related duties, such as preparing and teaching labs and discussion sections, developing teaching materials, assisting with homework preparation and grading, proctoring exams, grading exams or papers. -
ENG EC 810: PhD Internship in Electrical and Computer Engineering
Graduate Prerequisites: Permission of advisor and an approved internship offer; at least two c omplete semesters in the EC PhD program. - This course is intended for students who want to do an internship in the US as part of their graduate program and would like to have internship credit listed on their transcript. International Students need to use their CPT for this course. Prerequisites: 2 full semesters in ECE -
ENG EC 890: PhD Seminar 1
ECE PhD First year requirement students will participate in seminars and skill development workshops on current topics in electrical and computer engineering. Students are expected to participate in discussions and read assigned material. -
ENG EC 891: PhD Seminar 2
ECE PhD First year requirement students will participate in seminars and skill development workshops on current topics in electrical and computer engineering. Students are expected to participate in discussions and read assigned material. -
ENG EC 892: Seminar: Electro-Physics
A weekly two-hour seminar on recent research topics in the area of electro-physics, including solid state materials and devices, photonics, electromagnetics, computers in physics, and other related areas. Speakers include faculty and graduate students in the area. -
ENG EC 900: PhD Research
Undergraduate Prerequisites: Graduate standing. - Graduate Prerequisites: Restricted to pre-prospectus PhD students. - Participation in a research project under the direction of a faculty advisor leading to the preparation and defense of a PhD prospectus. -
ENG EC 951: Independent Study
By petition only. Under faculty supervision, graduate students may study subjects not covered in a regularly scheduled course. A final report and/or written examination is required. Variable cr. -
ENG EC 952: Directed Group Project
A semester long engineering project with significant graduate-level design and implementation elements is carried out by a team of 1 to 4 graduate students under the supervision of an ECE faculty member. Required deliverables include a written proposal, an end-of-semester project report, and an end-of-semester oral/poster presentation. The project proposal must be approved by the faculty supervisor before project team members may register for this course. -
ENG EC 953: MS Project
Undergraduate Prerequisites: Graduate Standing. - Graduate Prerequisites: Restricted to MS students by petition only. - MS research project under the supervision of an ECE faculty member. Student must participate in end-of-semester ECE Research Symposium. Final report required. Student must submit proposal for ECE Graduate committee approval prior to the semester in which the MS research project is to be carried out. -
ENG EC 954: MS Thesis
Undergraduate Prerequisites: Graduate standing. - Graduate Prerequisites: Restricted to MS students by petition only. - Participation in a research project under the direction of a faculty advisor leading to the preparation of an original MS thesis. For students pursuing an MS thesis to satisfy the practicum requirement for the MS degree.