A unifying feature of living systems is the ability to store, process, and transmit information. We are fundamentally interested in molecular mechanisms and networks that control the flow of biological information, underlying how cells make decisions, develop, and evolve. We employ multidisciplinary approaches to identify and characterize these complex biological systems. A unique aspect of our research is the development of technologies and synthetic biology approaches to unlock new ways of probing biological systems, and frameworks for engineering them to reprogram cellular behavior for therapeutic and other benefit.

more >

Using Targeted Chromatin Regulators to Engineer Combinatorial and Spatial Transcriptional Regulation
Albert J. Keung, Caleb J. Bashor, Szilvia Kiriakov, James J. Collins and Ahmad S. Khalil
Cell, 158: 110-120 (2014)
journal cover!
press!

Antibiotics Induce Redox-Related Physiological Alterations as Part of Their Lethality
Daniel J. Dwyer, Peter A. Belenky, Jason H. Yang, I. Cody MacDonald, Jeffrey D. Martell, Noriko Takahashi, Clement T. Y. Chan, Michael A. Lobritz, Dana Braff, Eric G. Schwarz, Jonathan D. Ye, Mekhala Pati, Maarten Vercruysse, Paul S. Ralifo, Kyle R. Allison, Ahmad S. Khalil, Alice Y. Ting, Graham C. Walker and James J. Collins
Proc. Natl. Acad. Sci. USA, 111: E2100-E2109 (2014)

Iterative Plug-and-Play Methodology for Constructing and Modifying Synthetic Gene Networks
Kevin D. Litcofsky, Raffi B. Afeyan, Russell J. Krom, Ahmad S. Khalil* and James J. Collins* (*Co-corresponding)
Nature Methods, 9: 1077-80 (2012)
press!

more >