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SUMMARY
Transcription factors (TFs) control gene expression, often acting synergistically. Classical thermodynamic
models offer a biophysical explanation for synergy based on binding cooperativity and regulated recruitment
of RNA polymerase. Because transcription requires polymerase to transition through multiple states, recent
work suggests that ‘‘kinetic synergy’’ can arise through TFs acting on distinct steps of the transcription cycle.
These types of synergy are not mutually exclusive and are difficult to disentangle conceptually and experi-
mentally. Here, we model and build a synthetic circuit in which TFs bind to a single shared site on DNA,
such that TFs cannot synergize by simultaneous binding. We model mRNA production as a function of
both TF binding and regulation of the transcription cycle, revealing a complex landscape dependent on TF
concentration, DNA binding affinity, and regulatory activity. We use synthetic TFs to confirm that the tran-
scription cycle must be integrated with recruitment for a quantitative understanding of gene regulation.
INTRODUCTION

The regulation of transcription is a finely controlled process cen-

tral to biology, biomedicine, and bioengineering applications. At

its core are transcription factors (TFs), proteins that bind specific

sites on the DNA and directly or indirectly modulate the binding

and activity of the RNA polymerase complex. In eukaryotes, mul-

tiple TFs of the same and distinct types collaborate to drive

transcription through binding to gene regulatory regions called

enhancers and promoters.1 Such ‘‘combinatorial control’’ en-

ables binding and response specificity2,3 and expands the

regulatory capabilities of the finite set of TFs encoded by an or-

ganism. A wealth of studies have characterized TF binding sites

and binding profiles in model genes, genomes, and random se-

quences (e.g., Smith et al.,4 Vandel et al.,5 and Inukai et al.6). In

turn, a long-standing goal of biomedicine and synthetic biology

has been to exploit this type of information to anticipate the ef-

fect of mutations on regulation, to develop new andmore refined

pharmacological interventions, and to design next-generation

synthetic circuits with more precise and robust functions. How-
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ever, this is still a difficult task, in part because of the non-inde-

pendent effects of the TFs that control a given gene.7–11

When TFs interact to regulate transcription, the response to a

combination of TFs is often not simply predicted by the re-

sponses to each of the TFs alone. Some models indicate that

in the absence of interactions between TFs or sites, their com-

bined effect should be the addition of the individual outputs,

and synergy has been used to refer to deviation from this additive

expectation.12–14 Under other models, synergy is manifested as

multiplicativity in the response.15 Alternatively, the term ‘‘syn-

ergy’’ has been used to refer to nonlinear response to increasing

TF concentrations,16 binding cooperativity (below), or a special

form of it.17,18 Here, we use this term to refer to an increase in

the expression output under two TFs in comparison with their in-

dividual effects, quantified by a functional measure tailored to

our experimental system (results).

Synergy has commonly been understood through the lens of

recruitment models of transcription in which the role of TFs is

to regulate the binding of the RNA polymerase to the gene.19

Thermodynamic models of gene regulation offer a biophysical
ublished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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grounding for this view.15,20,21 These models assume that TFs

and polymerase bind to the DNA under thermodynamic equilib-

rium conditions. The free energy of each state determines its

steady-state probability according to the Boltzmann distribution,

and the transcription rate is treated as a function of the states of

binding of the system. Synergy then emerges from direct or indi-

rect cooperative binding interactions in which TFs enhance or

reduce each other’s binding and that of the RNA polymerase

to the DNA (e.g., Vashee et al.,22 Ambrosetti et al.,23 Spitz

et al.,24 Frank et al.,25 Goldstein et al.,26 and Estrada et al.27).

Mechanistically, this can result from direct protein-protein

interactions between adjacently bound molecules,28 indirect

interactions through a shared molecule or complex such as

Mediator, 12,29,30 or allosteric mechanisms31 mediated by nucle-

osomes32 or DNA.33

Beyond the recruitment of RNA polymerase to the gene, it is

well known that eukaryotic transcription is a multi-step process

that is regulated at many points. Accordingly, it has been sug-

gested that transcriptional regulation should be understood in

terms of a transcription cycle,34 involving the displacement of

nucleosomes at the start site, post-translational modification of

histones,35–37 assembly of the transcriptional machinery, and

post-translational modifications that regulate its activity and

elongation rate.38,39 In agreement with this view, RNA polymer-

ase has been found to be already bound to many inactive genes,

suggesting that, under certain scenarios, activation does not rely

on regulating polymerase recruitment but rather on modulating a

subsequent step.40 Besides shifting the focus away from the

recruitment of the RNA polymerase, this view also implies non-

equilibrium behavior, given that ATP-dependent nucleosome re-

modeling and post-translational modifications involve energy

dissipation. In this case, the steady-state behavior of the system

is determined by the individual rates of the various transitions.

This is in contrast to the equilibrium situation of thermodynamic

models in which only the ratios between the forward and back-

ward rates matter for determining the steady state of the

system.41

Under this kinetic view, the possibility of ‘‘kinetic synergy’’ was

theoretically proposed. Imagine the simplest case in which tran-

scription is regulated by two steps and two TFs have different

biochemical functions (or, more generally, ‘‘kinetic roles,’’

because the detailed biochemical reactions regulated by a TF

are generally not known42), such that one TF preferentially en-

hances one step and the other TF preferentially enhances the

other. Then, when the two TFs are present together, they can

enhance each other’s effects and thus generate synergy.13,14

Importantly, TFs with complementary kinetic roles would enable

synergy to emerge even in the absence of cooperative binding

between TFs on the DNA; the TFs would not even need to be

simultaneously present at the regulatory site.

Multiple lines of evidence make kinetic synergy very plausible.

First, experimental work has shown that transcriptional activa-

tors can increase gene expression by different mechanisms.

TF activation domains were found to either stimulate transcrip-

tion initiation, elongation, or both.43 More recent studies have

continued to reveal that TFs use diverse mechanisms to regulate

transcription and affect distinct steps of the transcription cycle

(e.g., Harden et al.,42 Fu et al.,44 Rahl et al.,45 Baluapuri

et al.,46 and Bell et al.47). Along the same lines, differences in
RNA polymerase II pausing after treatment with E2 or TNF-alpha

signals have been attributed to the TFs downstream (ERa and

NF-kB) acting on different transitions that regulate their target

genes.48 Moreover, comparisons between regulation driven by

homogeneous or heterogeneous sets of TFs have shown that

heterogeneous sets often drive higher expression levels.4,49,50

In line with this, evidence of synergistic activation between the

viral activator VP16 and selected chromatin regulators in a re-

porter system has been observed.51 Similarly, the activity of

many Drosophila TFs and cofactors has been found to be highly

context-dependent,52 suggesting that activation may require a

particular combination of biochemical mechanisms.

Despite these observations, it is experimentally challenging to

assess kinetic synergy given the difficulty of disentangling it from

cooperative DNA-binding interactions between TFs. On the

theoretical side, there have been few tools to reason about ki-

netic synergy on biophysical grounds. As a first step, a recent

theoretical study by our group showed that, in a similar way to

binding cooperativity, kinetic synergy can implement logical

and analog computations,14 and that it can generate a wide di-

versity of input/output relationships. However, in a similar way

to other modeling work that considers transcription as a multi-

step process (e.g., Hansen et al.,36 Suter et al.,53 and Rybakova

et al.54), that model did not explicitly account for TF binding and

instead represented it indirectly through the effect of the TFs on

the transition rates of the system. To our knowledge, there have

been few attempts to explicitly model the interplay between TF

binding, polymerase recruitment, and progression over the tran-

scription cycle. A model that explicitly incorporated binding and

transitions over the cycle has been proposed,55 but it assumed a

timescale separation between TF binding and the rest of the pro-

cesses, with quasi-equilibrium in TF binding. However, both TF

residence times and the half-life of certain biochemical steps in

the transcription cycle may occur on similar timescales, on the

order of several seconds or a few minutes (STAR Methods, bio-

logically plausible ranges for parameters), calling for more gen-

eral models that bring together the binding-centered view of

recruitment models with the regulation of the transcription cycle.

Here, we exploit the graph-based linear framework (below) to

propose a model of transcriptional control that explicitly ac-

counts for TF binding and the regulation of polymerase recruit-

ment, as well as the progression over the transcription cycle.

In order to disentangle kinetic synergy from binding cooperativ-

ity, we focus on the emergence of synergy between TFs binding

to a single, shared site. This scenario eliminates the possibility of

TFs simultaneously bound to the DNA, thus removing coopera-

tive binding between TFs. Experimentally, we build this system

using engineered TFs in which the activation domains of a set

of functionally diverse mammalian TFs are fused to a computa-

tionally designed zinc-finger (ZF) DNA-binding domain predicted

to bind only to an artificial site upstream of a reporter (Fig-

ure 1A).51,56–58 We propose a measure of synergy in which we

compare the expression output when both TFs are present

with that when only one of them is present. By exploring the syn-

ergistic behavior of the model in parameter space, we find that a

diversity of behaviors can emerge in this scenario, for which we

find experimental evidence. Our model reveals a complex syn-

ergy landscape, shaped by the interplay between the kinetic

role of the TFs and their binding kinetics. This highlights the
Cell Systems 14, 324–339, April 19, 2023 325
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Figure 1. A model for kinetic synergy be-

tween two TFs sharing a single DNA binding

site

(A) Cartoon schematizing the strategy of this work

to examine kinetic synergy: two synthetic TFs

(synTFs) regulate a reporter (not shown) through a

shared binding site (TFBS). As an example, TF A

controls the first step in the transcription cycle,

and TF B controls the second step.

(B) Model used in this work. The structure (vertices

and edges) of the graph of the system (N 3 P)
corresponds to the structure that results from the

graph product between the binding graph N and

the 3-state polymerase cycle graph P. Only a

subset of nodes and edges are labeled, for clarity.

The horizontal edges from the central cycle to the

outer cycles denote binding of each of the TFs,

and the reverse edges denote unbinding. The

three cycles allow us to account for the effect of

the TFs, because the rates can be different de-

pending upon the state of the binding site. As an

example, the darker arrows denote the activator

effect of A and B on the first and second transi-

tions, respectively (k1;A > k1;B, k2;B > k2;B).

(C) Schema of the full graph, as used in Figure 2.
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relevance of considering genomic context, binding, and bio-

chemical function together when characterizing TFs and illumi-

nates how functional interactions between TFs may contribute

to eukaryotic transcriptional control.

RESULTS

Mathematical model
We study how kinetic synergy emerges in a scenario where two

TFs bind to a shared site in a regulatory sequence, such that only

one TF can be specifically bound at any given time. Figure 1A

schematizes this situation for a general 3-state transcription cy-

cle in which TF A promotes the first step (illustrated as the as-

sembly of the RNA polymerase complex) and TF B promotes a

process downstream.

In order to model this system, we exploit the linear framework

formalism, a graph-based approach to Markov processes that

can be used to model a diversity of biological processes in a bio-

physically realistic and mathematically tractable way.59–61 We

havepreviously applied this framework to study howbinding inter-

actions between TFsmodulate gene expression by implicitly aver-

aging over the states of the polymerase cycle.27,62,63 In contrast, in

a previous study of kinetic synergy, we modeled the effect of TFs

on a detailed transcription cycle but effectively combined their

binding with their enzymatic effects.14 Here, we propose a model
326 Cell Systems 14, 324–339, April 19, 2023
that unifies both approaches and does

not make assumptions about the binding

reactions being on a different timescale

than the polymerase cycle reactions,

improving previous approaches in the

literature55 (STARMethods, modelling de-

tails and the linear framework).

The system is represented by a linear

framework graph, whose construction is
described in Figure 1B. The vertices of such graphs are the bio-

logical states of interest, and the edges are the transitions be-

tween them, assumed to follow Markovian dynamics. The

edge labels are the infinitesimal transition rates, with dimensions

of (time)�1. The graphN3P in Figure 1B is the graph product of a

binding graph,N , and a polymerase cycle graph, P. The binding

graph, N , consists of a binding site that can either be empty,

bound by TF A, or bound by TF B. For the polymerase cycle

graph, P, we consider the simplest cycle, with 3 vertices (in-

dexed 1, 2, and 3). These vertices could be interpreted in terms

of the empty transcription start site (TSS), assembled RNA poly-

merase, and C-terminal phosphorylated or elongating polymer-

ase, although mapping onto specific states of the cycle is not

required to interpret the results. The first transition is assumed

to be reversible and the other two irreversible in agreement

with the macroscopic irreversibility of mRNA synthesis. mRNA

is assumed to be produced when the system transitions from

state 3 to state 1. The graph product, GA 3 GB, of any two

graphs, GA and GB, is constructed as follows—the vertices of

GA3GB are ordered pairs, ði; jÞ of vertices, where i is a vertex in

GA and j is a vertex in GB. If i/k is an edge in GA, then there is

an edge ði; jÞ/ðk; jÞ in GA3GB for all vertices j in GB. Similarly,

if j/h is an edge in GB, there is an edge ði; jÞ/ði; hÞ in GA3GB

for all vertices i in GA. These are all the edges in GA 3 GB. Fig-

ure 1B depicts the graph product N 3 P, but it is important to
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note that the product construction only defines the structure of

N 3 P, as given by its vertices and edges, and does not specify

its edge labels. This allows us to introduce assumptions about

the interplay between the TFs and the polymerase cycle by

choosing appropriate edge labels inN 3 P, as explained further

below.

TF binding on-rates (kb;X ;X ˛ fA;Bg, horizontal from the central

cycle to the right and left) have dimensions of (concentration 3

time)�1, and binding off rates (ku;X ;X ˛ fA;Bg) have dimensions of

(time)�1. The genomic context is modeled by the values of the

basal rates over the polymerase cycle in the absence of TFs

(central cycle). To incorporate the effect of a TF on a given tran-

sition, we assume that the TF only has effect while it is bound.

The effect is then incorporated into the edge label for that transi-

tion, making it different for the cycle in which the TF is bound than

for the basal cycle. As an example, the darker arrows on the left

and right cycles in Figure 1B,N 3 P, represent the activating ef-

fect of A and B on the first and second transitions, respectively.

In this case, k1;A > k1;B, and k2;B > k2;B. Similarly, repression could

be included aswell by a smaller value for a transition rate than the

corresponding basal rate. For simplicity, here we examine

synergy between ‘‘pure’’ activators only, defined by not

decreasing the clockwise rates (k1;X R k1;B, k2;X R k2;B, k3;X R

k3;B, X ˛ fA; Bg) and not increasing the counterclockwise rate

(k4;A % k4;B, k4;B % k4;B).

We interpret the system in probabilistic terms and assume

each vertex of the graph holds the probability of the system be-

ing in that state. The transition rates then determine the time-

evolution of the probabilities according to the master equation,

which eventually reach a steady state (STAR Methods, model-

ling details and the linear framework). Moreover, we assume

first-order mRNA degradation. By taking the mRNA degrada-

tion rate as a constant that normalizes the transition rates,

the steady-state mRNA at a given concentration of A and B

(mðA;BÞ�) is given by:

mðA;BÞ� = k3;BP
�
3;BðA;BÞ+ k3;AP

�
3;AðA;BÞ+ k3;BP

�
3;BðA;BÞ
Equation (1)

where P�
3;BðA; BÞ, P�

3;AðA; BÞ, P�
3;BðA;BÞ are the steady-state

probabilities of state 3B, 3A, 3B at concentrations A and B of

the TFs, and the rates are normalized by the mRNA degrada-

tion rate (STAR Methods, modelling details and the linear

framework). Given that we only consider the steady-state

behavior of the system, we use the same symbols to refer to

the original rates and the normalized rates in order to avoid

excessive notation. In the remainder of the paper, the rates

will always be normalized.

The focus of our analysis is to compare this quantity when both

TFs are present to that when only one is present and the other is

at concentration 0 (synergy, below). Note that when only one or

none of the TFs is present,m� can be computed in the sameway.

In that case, the steady-state probabilities for those states corre-

sponding to the absent TF being bound will be 0, and the rest will

be redistributed according to the parameter values. The value of

m� in the absence of TFs (m�ð0;0Þ) corresponds to basal expres-

sion. For simplicity, the absence of a TF from the mathematical

expressions below means it is at concentration 0.
A measure of synergy
Our interest is to understand how synergy emerges in this sys-

tem. If two TFs act on more than one step in the cycle, the overall

effect may not be greater than additive even if they interact kinet-

ically.14 This exemplifies that considering addition as a null

expectation against which to define synergy, as has often been

done in the literature, is model specific. Here, we propose a syn-

ergy measure that is particularly suited to our single binding site

scenario and corresponding synthetic experimental approach in

which TFs share the same DNA binding domain (below). We as-

sume that the DNA binding domain determines the binding ki-

netics of the TFs to the DNA, so that both TFs bind and unbind

to the DNA with the same kinetics and only differ in their kinetic

roles. In this case, overall TF binding to the DNA binding site

should remain unchanged when either one or two TFs are pre-

sent at a fixed total TF concentration. Therefore, we can quantify

synergy by comparing the steady-state expression when both

TFs are present (m�ðA; BÞ) with the steady-state expression

when either of them is alone but at twice as much concentration

(m�ð2AÞ, m�ð2BÞ) (same total TF). Enhanced expression in com-

bination with respect to the strongest TF (the TF with a higher

level of expression on its own), or reduced with respect to the

weakest, must arise as a result of functional interactions among

the TFs over the cycle and corresponds to kinetic synergy.

Positive synergy corresponds to higher expression in combi-

nation as compared with individually and can be regarded as

‘‘canonical’’ synergy in the sense of enhanced expression in

combination: expression is greater than that of the strongest

TF even if half themolecules are substituted by those of a weaker

TF. We note, however, that the output does not have to be

greater than additive to be considered positive synergy. Nega-

tive synergy corresponds to lower expression in combination,

with expression lower than that of the weakest TF alone. Asym-

metric synergy results when expression is increased only with

respect to theweakest TF. In this case, it may be unclear whether

there are any synergistic interactions. Potentially, these can still

be detected depending on the extent to which the expression is

reduced or increased with respect to the strongest or weakest

TF, respectively. Thus, we propose to quantify synergy as a point

in 2D, by comparing the effects of adding one TF to the other.

This is quantified by SA;B (effect of B on A) and SB;A (the effect

of A on B) as follows:

SA;B = log2

�
m�ðA;BÞ
m�ð2AÞ

�
(Equation 2)

SB;A = log2

�
m�ðA;BÞ
m�ð2BÞ

�
(Equation 3)

If A is taken to be the strongest TF, positive (green), asym-

metric (blue), and negative (red) synergy map to 3 quadrants of

a two-dimensional synergy space, as depicted in Figure 2A-left.

In principle, we could also define synergy at various other ra-

tios of TFs, keeping the total concentration fixed, and we could

do this for various total TF concentrations. This would define,

for each pair of TFs with their own kinetic roles and shared

DNA binding kinetics, a two-dimensional map (Figure 2A-right),

where each axis corresponds to a given total TF concentration.

The black dot in Figure 2A-right denotes the 0.5:0.5 ratio of our
Cell Systems 14, 324–339, April 19, 2023 327
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Figure 2. Positive, negative, or asymmetric

synergy emerge in the model depending

upon parameter values

(A) Left: synergy space. See text for details. Right:

2-dimensional space of TF concentrations where

synergy could be defined. The axes represent the

total concentrations of each individual TF. Synergy

could be defined at any point in the diagonal that

links the same two values for the totals, by

comparing expression at the ratio given by that point,

to expression at each of the individual totals on the

diagonal extremes. The black dot indicates the

0.5:0.5: ratio at a total of two arbitrary units used in

the work. The 0.75:0.25 and 0.25:0.75 ratios are also

indicated by the broken lines.

(B) Regions of the synergy space spanned by 3

regulatory strategies (see also Figure S1A). (i) A and

B act on the first step exclusively. (ii and iii) A on the

first step (accelerates k1 (ii) or reduces k4 (iii)), B on a

subsequent step. (iv) A and B act on any step (to

various degrees). Constraints for the boundary

search (STAR Methods, biologically plausible

ranges for parameters): in all cases, binding and

unbinding rates and TF-bound rates between 1 and

104. Basal cycle parameters: black: between 1 and

104, gray: between 1 and 100 for the clockwise

rates, between 100–10,000 for k4;B. TF effect on

basal rates: black: at most 1,000 times larger than

the basal rates for the clockwise or 0.001 times

smaller for k4 (1,0003/0.0013). Solid gray: 1003/

0.013. Dotted gray: 53/0.23. Fold change in m� for
each TF individually (at concentration 2) with

respect to the basal condition with no TF: black:

between 1 and 10; gray: between 1 and 5. The

dotted gray line conditions are not plotted for k1-k1,

because that region is already very small.

(C) Distribution of TF activity distances per synergy

quadrant for a random sample of parameter sets

under the same constraints as in (Biv) (correspond-

ing synergies are plotted as a scatterplot in Fig-

ure S1Ci).

(D) The two most prevalent dominant flux paths

for the points used in the analysis in (C). The

arrow diagrams represent the model states

and transitions, as schematized in Figure 1C;

arrow grayscale intensity denotes the average

probability net flux for that transition over all the

parameter sets that share the dominant path

highlighted in magenta. Note that reversible edges

may appear in both directions if some parameter

sets have net flux in one direction and others in the other. The distributions underneath show contours for the two-dimensional histogram of synergy

values corresponding to those parameter sets that share the same dominant path. See also Figure S2.
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measure at a total of 2 arbitrary units. Our analyses suggest that

this ratio should maximize the possibility of detecting synergy.

Yet, some of our results (Figure S6B) also suggest that a thor-

ough exploration of these maps can potentially reveal further

limits and mechanisms, and future systematic explorations

may be useful.

Positive, negative, or asymmetric synergy can
theoretically emerge from two activators
We begin by exploring the theoretically possible synergistic be-

haviors between two activators (k1;X R k1;B, k2;X R k2;B, k3;X R

k3;B, k4;X % k4;B, X ˛ fA;Bg) that have the same binding kinetics
328 Cell Systems 14, 324–339, April 19, 2023
(given by a binding rate kb and an unbinding rate ku) but different

kinetic roles (given by the ki;X , i˛ f1;2;3;4g, X ˛ fA;Bg). We as-

sume that the concentration unit is incorporated in the binding

on-rates, such that both A and B are present at a concentration

of 1 arbitrary unit each when they are both present together, and

at concentration 2 when they are alone. In order to define the

boundaries of the synergy space region that can be covered

by the model under biologically plausible parameter values and

constraints (STARMethods, biologically plausible ranges for pa-

rameters), we numerically sampled the parameter space using a

biased sampling algorithm (STAR Methods, synergy boundary

for a regulatory strategy). We explored the synergy space
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when TFs act on the same step, exclusively complementary

steps, or to different extents on all steps (Figures 2B and S1A).

As a control, we first explored the case where both TFs

enhance a single step. Figure 2Bi shows that as expected, only

asymmetric synergy appears when both TFs accelerate k1. The

same result is obtained if both TFs accelerate k2, k3, or reduce

k4 (Figure S1A, second row). Intuitively, if TF A drives stronger

expression than TF B but both act on the same step, then mixing

A with B can only reduce expression with respect to the stron-

gest one and increase it with respect to the weakest.

Next, we explored the case in which TFs have completely

complementary kinetic roles and each of them acts on a different

transition. Figures 2Bii–2Biii show the results when one TF acts

on the first transition and the other acts on a subsequent transi-

tion. The plots show that this control strategy mostly results in

positive synergy but also covers a region of the asymmetric syn-

ergy quadrant (notice that the result is restricted to the upper di-

agonal region of the positive quadrant because of the definition

of TF A as the strongest of the pair). The appearance of asym-

metric synergy in this case shows that even if TFs have comple-

mentary activities, it may not be enough to enhance expression

beyond that of the strongest TF when half of its concentration is

substituted by the weaker TF. A very similar result, with positive

and asymmetric synergy, is obtained for any other pair of com-

plementary rates except when one TF reduces k4 and the other

enhances k2 in which case only asymmetric synergy emerges

(Figure S1A).We provide an intuitive explanation for this behavior

below.

In the two scenarios considered above, a given TF is consid-

ered to act only on one transition. However, this does not need

to be the case. For example, if the first cycle transition is inter-

preted as the assembly of the pre-initiation complex (PIC) on

DNA, the same activator TF can modulate PIC assembly by sta-

bilizing its bound state, which would correspond to a reduction in

k4 but also by increasing the apparent binding on rate of various

PIC components, which would correspond to an increase in

k1.
64,65 In addition, the 3-step cycle may also be interpreted

more coarsely, with this first step accounting for chromatin mod-

ifications, which may also be mediated by TFs. Moreover, TFs

are often found to interact with a wide range of cofactors and

regulators,66–68 contributing to the likelihood that they modulate

multiple processes albeit with different strengths. Hence, we

next considered a more general scenario where each TF can

accelerate any of the clockwise transitions or reduce the back-

ward transition to different extents (Figure 2Biv). In this case, a

slightly higher region of the positive and asymmetric synergy

quadrants is occupied, and slightly negative synergy can also

emerge. We interpret this as an indication that under some

parameter values, TFs can interfere with each other’s action

and reduce the expression as compared with when only one of

them is present.

The black line in the plots of Figure 2B shows the results for the

model exploration under biologically plausible parameter values

that overall define very large parameter ranges. This allows us to

define what kinds of behaviors are in theory possible out of a

given regulatory strategy. However, it is well known that the ef-

fects of mammalian TFs are weak. Though accurate biochemical

measurements are scarce, measurements in the literature sug-

gest that a TF may change the rate of a given biochemical pro-
cess by a 2–4-fold range65,69 instead of the 1,000-fold range al-

lowed in the analysis. The expression fold changes that we

observed in our data (below) were in the 2–4-fold range as well

instead of the 10-fold allowed in the exploration. When we

constrain the model such that the basal transitions (in the

absence of TF) cannot occur at the maximum rate, the TFs

change a given basal rate up to a 100-fold or 5-fold (instead of

a 1,000-fold), and the mRNA response fold change is also up

to 5-fold (instead of 10-fold) the synergy space region that can

be spanned by the model becomes much smaller (Figure 2B,

gray lines). This suggests that for weak TFs operating through

a single binding site, the accessible synergy region will be quite

small.

The activity of the TFs over the cycle is not the only
determinant of synergy
The original proposition of kinetic synergy stemmed from the

assumption that synergy would emerge from TFs acting on

different rate-limiting steps in transcription.13 In the case of

TFs with potentially overlapping effects, to what extent is posi-

tive synergy linked to TFs working exclusively, or nearly exclu-

sively, on separate steps, so that they complement each other

to enhance the cycle? In order to address this question, we

looked at the correspondence between parameter values and

synergy. For this, we generated a random sample of points

that span a wide region of the synergy space (plotted in Fig-

ure S1Ci; STAR Methods, random sample of points in synergy

space). In order to quantify the degree of complementarity be-

tween the pair of TFs in a given parameter set, we use the

following measure, which we call TF activity distance: the sum,

over all the polymerase cycle transitions, of the absolute differ-

ences between the logarithms of the transition rates associated

to each TF (Figure 2C). Similar TF parameter values result in a

small distance value, whereas TFs with big differences in their

rates, and therefore more divergent in their functions, result in

a larger distance. As shown in Figure 2C, positive synergy tends

to emerge at higher distances than asymmetric and negative

synergies, suggesting more divergent functions is indeed linked

to higher complementarity and thus higher positive synergy.

However, the distances that lead to asymmetric synergy and

those that lead to positive synergy overlap, suggesting that the

different functions of the TFs are not the only determinants of

synergy output. When binning the distributions by the basal

expression (steady state m� in the absence of TFs) and binding

and unbinding rates, these factors appear to be important as

well: higher basal expression and higher binding and unbinding

rates correlate with less distant TFs producing positive synergy

(Figure S1D). In addition, the basal expression and binding rates

also modulate the correlation between the distance of two TFs

and the extent of positive synergy that they exhibit (Figure S1E).

Intuitively, for positive synergy to emerge, we would expect

that each of the TFs binds and unbinds appropriately as to be

able to exert its effect and not interfere with the binding and

the effect of the other TF. In order to test the extent to which

this is indeed linked to synergy, we looked at the steady-state

probability fluxes in the graph. Given the irreversible nature of

the transitions of the polymerase cycle, a net probability flux re-

mains even when the system is at steady state. The flux of prob-

ability of the system is intimately linked to the production of
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mRNA, because mRNA is produced as the system transitions

through the polymerase cycle. Formally, the flux from node i to

node j, Ji;j is given by Ji;j = ki;j Pi, with ki;j the transition rate be-

tween i and j, and Pi the probability of node i. In the case of irre-

versible edges, this equals the net flux. In the case of reversible

edges, the net flux Ji;j can be defined as Ji;j = Ji;j � Jj;i,

with Ji;j > Jj;i.

For the same sample of points (parameter sets) as in Figure 2C,

we computed the net fluxes in the presence of A and B. Then, for

each point, by starting at the polymerase-empty state with no TF

bound (state 1;B in Figure 1B,N 3 P) we followed the transition

with a higher net flux, and repeated the same iteratively until

reaching state 1;B again or any other node already encountered.

This generates what we call the dominant path of net fluxes over

the graph. After computing the dominant path for each of the

parameter sets, we quantified how many parameter sets share

the same dominant path. For this analysis, we pulled together

those pairs of paths that aremirror images of each other because

they are equivalent.

Out of all the parameter sets sampled, the majority correspond

to one of two paths, represented in Figure 2D. The most predom-

inant involves the binding of one TF, transition over the first step

(binding of polymerase), unbinding of the TF, and reversion to

the empty state. The two-dimensional density plot below the flux

diagram shows that the majority of the points with this dominant

path of fluxes correspond to asymmetric synergy. In contrast,

the second most frequent dominant path involves cycling over

the whole graph, with the first two transitions occurring under

oneTF, and the last occurring under the other. In this case, thema-

jority of the points are associatedwith positive synergy. The rest of

the dominant paths thatmake up to 90%of all the dominant paths

in the sample of points are shown in Figure S2. The density plots

showthatdominantpathsarenotuniquelyassociated to individual

synergy classes, but there are clear biases, with positive synergy

beingmostlyassociated todominantpaths that traverse thewhole

graph, and asymmetric synergy linked to dominant paths that

show nonproductive cycling. This agrees with the expectation

that positive synergy should emerge when TFs act productively

to enhanceprogressionover thepolymerasecycle, but it also sug-

gests that an intricate balance between all the transitions in the

system is required for positive synergy to emerge.

This analysis also clarifies why no positive synergy emerges in

the situation where one TF acts exclusively to reduce k4 and the

other acts exclusively to accelerate k2 (Figure S1A, k4 � k2). In

this case, both TFs need to be bound to state 2 of the cycle to

exert their effect. However, as the TF that acts to slow down k4
unbinds, the system transitions back to state 1 before the other

TF can bind or act. This can be seen in the analysis of the steady-

state fluxes shown in Figure S3A, for a random sample of points

for this condition (Figure S1Cii). In contrast, full cycling is recov-

ered when one TF slows down k4 and the other accelerates k3
(Figures S1Ciii and S3B).

It is important to note that because of the irreversibility of the

cycle, cycling can also be enhanced when TFs have the same ki-

netic roles but different binding kinetics. As a result, if our original

assumption that TFs have the same binding kinetics does not

hold, positive synergy could emerge even if TFs do not interact

functionally but bind differently, especially if TFs would bind to

each cycle state with different kinetics (Figure S1B).
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Overall, these modeling results show that this single binding

site scenario and our synergy measure can reveal kinetic syn-

ergy. When two TFs bind to a shared site with the same kinetics,

the observation of positive synergy indicates that TFs have at

least partially complementary kinetic roles, which can enhance

each other’s effect.

Experimental evidence of kinetic synergy using a
synthetic platform
In order to test whether functional interactions between TFs and

corresponding kinetic synergy can be detected experimentally,

we developed a reporter system in which synthetic TF fusions

(synTFs) are recruited to a single DNA binding site integrated

into a mammalian HEK293 cell line (STAR Methods, construct

design and cloning and genomic integration of reporter con-

structs).56–58 We engineered synTFs composed of an activation

domain from a mammalian TF, fused to a synthetic zinc finger

(ZF) DNA binding domain. This array of synthetic ZFs is designed

to target a 20-bp binding site that does not natively exist in the

mammalian genome sequence (Figures 1A and 3A).56–58 This al-

lows us to specifically recruit the activation domains to a reporter

to assess their effects on transcription, while minimizing con-

founding effects from native TFs acting on the reporter. More-

over, because all TFs share the same binding domain, TFs

should bind and unbind with very similar kinetics. Therefore, if

positive synergy is observed, this should reflect functional inter-

actions among the TFs.

We selected five activation domains of mammalian TFs with a

described diversity of functions in the literature. SP1 is a ubiqui-

tous mammalian TF whose mechanism of action has classically

been linked to the recruitment of the transcriptional machinery.70

cMyc is also a ubiquitous regulator. It interacts with a diverse

range of proteins, but its mechanism of action has been predom-

inantly linked to processes downstream of the recruitment of the

transcriptional machinery, including pause-release45 and elon-

gation via interaction with the elongation factor Spt5.46 BRD4

has also been described to have elongating activity, through

the interaction with positive transcription elongation factor b

(pTEF-b).71,72 In addition, it has been involved in phase-separa-

tion at super-enhancers,73 suggesting that BRD4may also regu-

late other steps in the transcription cycle. Finally, we chose the

activation domain of HSF1, which has been described to have

both initiating and pause-release stimulating activity, and a

mutant version of it, which we call HSF1-m. This mutant was

described to be elongation-deficient.74 Accordingly, these TFs

can be broadly classified into either initiating (if they influence

the recruitment of RNA polymerase) or elongating factors (if

they influence a process downstream), as depicted in Figure 3A.

We then stably integrated into HEK293 cells a reporter,

composed of a single target binding site upstream of a minimal

CMV (minCMV) promoter driving the expression of a destabilized

EGFP (d2EGFP) (STARMethods, genomic integration of reporter

constructs). Given its rapid turnover,75 destabilized EGFP serves

as a convenient genomic reporter of the mRNA expression

level.76 The expression of the synTFs was induced by transient

transfection of the synTFs, whose expression level can be

controlled by the amount of the plasmids transfected (Fig-

ure S4A). We chose to transfect synTFs at either 10 or 20 ng to

ensure that the concentration (i.e., expression level) of synTF is
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Figure 3. Experimental observation of kinetic

synergy between 2 transcriptional activators

on a synthetic platform

(A) Schema of the synthetic TFs.

(B) Expression upon transfection with either 10 (13)

or 20 (23) ng of one TF, or the ZF binding domain

alone (gray). Error bars denote the 95% confidence

interval for the mean GFP fold change, obtained from

bootstrapping the mean GFP fold-change values

across all the measurements for each condition. At

least 3 biological replicates per condition, with 2–4

technical replicates each. Each scatter point repre-

sents an individual measurement.

(C) Experimental synergy between two activators,

defined as in equations 2 and 3 (log2 of the ratio of

average fold-change expression when 10 ng of each

TF is transfected, over the average fold-change

expression when 20 ng of one is transfected). TF A is

the strongest of the pair in the single TF expression,

as shown in the 23 conditions of panel B. Error bars

denote ranges from at least three biological repli-

cates, with 2–4 technical replicates each. Individual

synergy points for each biological replicate, as well

as bar plots corresponding to the fold changes, are

shown in Figures S4C andS4E. The synergy between

each TF and the empty ZF is shown in Figure S4D.
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the limiting factor. Reporter expression outcome was assessed

by quantifying GFP fluorescence using flow cytometry 48 h later

(STAR Methods, transient transfection and flow cytometry and

data analysis).

Figure 3B shows reporter activation by each of the synTFs.We

observed similar activation strengths varying from about 1.5-fold

change in GFP fluorescence to 4-fold change, with slight in-

creases upon doubling the amount of TF transfected for most

TFs. Such fold change up-regulation is in the range of physiolog-

ical induction in mammalian signaling pathways (e.g., Strasen

et al.,77 Wong et al.,78 and Friedrich et al.79). A similar dose-

dependent increase in reporter signal is also observed at the

mRNA level (Figure S4B), supporting the use of GFP fluores-

cence as a readout.

In order to assess the extent of synergy between pairs of

TFs, we compared the fold change in GFP fluorescence

when TFs were transfected in pairs at 10 ng each with that

when only one is transfected at 20 ng. We used quantitative

immunofluorescence targeting the HA-tag of the synTFs to

verify that transient transfection of 20 ng of coding plasmids

for a single synTF results in a similar synTF abundance distribu-

tion as when transfecting two TFs in combination at 10 ng

each, despite some variability inherent to the transfection pro-

cedure (Figure S5A) (STAR Methods, immunofluorescence to

assess synergy for cMyc-SP1). Under these conditions, Fig-

ure 3C shows that both positive and asymmetric synergy ap-

pears. The error bars in the figure denote the ranges of the

data, which is the synergy measures obtained from each of

at least three independent biological replicates (See Figures

S4C and S4E for details). We acknowledge that there is vari-

ability among experiments, because of the combination of

small effects of the TFs and the variability associated with

transfection and flow cytometry measurements. Yet, some

pairs are consistent, in particular the positive synergy observed

between cMyc and SP1 across all biological replicates.
Given the variability of transfection, and the small effects we

observe experimentally, we performed immunofluorescence to

simultaneously quantify total input synTF levels (HA-tag) and

output GFP at the single-cell level. With these data, we can

ensure that we are comparing GFP levels between cells in which

the cells transfected with the two synTFs together do not have

higher input levels than cells transfected with either synTF alone.

With this experimental assay, we also found that the distribution

of GFP fluorescence levels is shifted toward higher values when

cells have been transfected with the combination of the two

synTFs, thus confirming the positive synergy detected by flow

cytometry (Figures S5C–S5E; STAR Methods, immunofluores-

cence to assess synergy for cMyc-SP1).

Consistent with the correlation in the model between TF ac-

tivity distance and synergy class, the pairs exhibiting positive

synergy (Figure 3C, green quadrant) correspond to those where

each TF predominantly has been described to have either initi-

ating or elongating factor activities. No TF was capable of

increasing the expression from that driven by HSF1, which is

the strongest synTF in the set and is described to have both

initiating and elongating activities.74 However, different TFs

reduced its expression to different extents, suggesting some

functional interactions are occurring (e.g., compare the SA;B

coordinate for SP1-HSF1 and cMyc-HSF1 in Figure 3C). For

the pairs of TFs described to predominantly act upon the

same step, almost no synergy was detected (SP1-HSF1m,

cMyc-BRD4).

Figure 3B shows a very modest activation effect from the ZF

alone (no TF activation domain) case. However, the combination

with a full synTF only leads to asymmetric synergy (Figure S4D),

with the response to all TFs except HSF1 being reduced by the

same extent, and that of HSF1 being reduced even further.

This suggests that although the ZF may have a small effect,

perhaps by increasing the ability of the basal transcriptional ma-

chinery to bind, the positive synergy observed between pairs of
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TFs is most likely because of their activation domains, because

the ZF only reduces expression when mixed with any of the TFs.

Overall, these results show that this single binding site sce-

nario can be used to experimentally reveal kinetic synergy

between TFs. As a result of using a single binding site and

mammalian TFs, the individual activation effects are in the 2–4-

fold range, and the synergistic effects are also small. This aligns

with the modeling results when TFs are assumed to be weak

(Figure 2B, gray lines). Moreover, the distributions of Figures

S1D and S1E and the analysis of the dominant flux paths in Fig-

ure 2 point to binding and unbinding kinetics as important con-

tributors to synergy as well. We now focus on this point.
Kinetic synergy depends upon the binding and
unbinding kinetics
We explored how the synergy exhibited by a pair of TFs changes

in the model as a function of either the unbinding or the binding

rate. We began by examining the effect of the unbinding rate. To

this end, we randomly sampled parameter sets for the basal

rates over the polymerase cycle (k1;B, k2;B, k3;B, k4;B) and binding

and unbinding (kb, ku). For each of these basal sets, we sampled

parameter values for pairs of TFs (k1;A, k2;A, k3;A, k4;A, k1;B, k2;B,

k3;B, k4;B). For each pair, we varied the unbinding rate ku over a

2 order magnitude range, 10-fold up and down the basal value,

and tracked the corresponding behavior over the synergy space.

Given that the unbinding rate changes expression from each TF

alone, we only considered those parameter sets where the stron-

gest TF is the same across the unbinding rates considered, so

that synergy is consistently defined throughout. Further details

of this procedure are given in STAR Methods, effect of binding/

unbinding rate on synergy.

To classify the behavior over the synergy space systemati-

cally, we considered that the binding and unbinding rate are

related to affinity by Ka = kb½TF�=ku, and we used the relation-

ship between changes in synergy and affinity so that the same

criteria can be used to analyze the results when perturbing either

the binding or the unbinding rate.We focused on the positive and

asymmetric synergy behaviors and used a 4-bit string that cap-

tures the behavior at the affinity extremes: the first position de-

notes if SA;B is positive (p) or negative (n) at highest affinity,

and the second position denotes the sign at the lowest affinity.

The third and fourth positions denote whether SA;B and SB;A in-

crease (i) or decrease (d), respectively, as affinity decreases.

We disregard those situations where there is no change. As a

result, there are theoretically 12 possible behaviors. We found

that for some basal sets of parameters, changing the unbinding

rate could result in all 12 possible behaviors, depending on the

pair of TF parameter values. One such example is shown in Fig-

ure S6A, and selected examples are shown in Figure 4A. Similar

results were found when modulating the binding on-rate kb (Fig-

ure S6B), which can be interpreted as modulating the baseline

concentration of the TFs at 13 concentration. This would be

equivalent to moving along the 45� diagonal of the space illus-

trated in Figure 2A-right.

As expected from typical occupancy-based hypotheses, we

found instances in which increasing affinity led to an increase

in synergy (Figure 4A, more affinity-more synergy), changing

from asymmetric to positive. In contrast, we also found exam-
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ples in which even if the expression from the individual and com-

bined TFs decreases with less affinity, synergy increases and

can change from asymmetric to positive as affinity is reduced

(Figure 4A, less affinity-more synergy). As seen in Figure S6

and depicted at the bottom of Figure 4A, we found many in-

stances of non-monotonic behavior in which synergy was

maximal at intermediate affinities.

To examine the relationship between the change in synergy

class and the cycling over the system promoted by the TFs,

we determined the dominant paths of net fluxes at steady state

for parameter sets where synergy changes between asymmetric

and positive or vice-versa as a function of the unbinding rate. We

calculated the dominant path for the lowest and highest SA;B in

the presence of both TFs. For each dominant path, we assessed

whether it spanned nodes in each of the three binding configura-

tions of the system (full path) or not (restricted path), as depicted

for the corresponding examples of Figure 4A. Then, for each

parameter set, we assessed whether the path type changed be-

tween the smallest and largest SA;B value and plotted the quan-

tification in Figure 4B. As expected, and in line with the examples

in Figure 4A, the barplot shows that in the majority of the cases,

the change from smallest to highest SA;B value correlates with a

transition from a restricted to a full dominant path. For the case

where increasing the unbinding rate causes synergy to increase

onlywith respect to TFA (npid), we foundmany instanceswith no

change of path class and a small set where the relationship was

reversed. This result aligns well with those of the previous sec-

tions, which show that the synergy of a pair of TFs ultimately de-

pends on the overall system behavior and the intricate balance

between all the transitions. However, a major contributor to the

synergistic behavior of the TFs is the productive cycling over

the system, with each TF binding and unbinding appropriately

to allow the other to exert its effect.

Binding affinity variants of the synTFs can be generated by

mutation to the DNA binding domain. A series of arginine resi-

dues in the ZF framework mediate nonspecific interactions with

the DNA phosphate backbone.80,81 Mutating these arginine res-

idues to alanine reduces binding affinity in a dose-dependent

manner.30,56 To examine how changing binding affinity might

affect the synergy betweenpairs of synTFs,we generated two af-

finity mutants for each synTF, with 5 or 7 mutations in the ZF

domain (Figure S7). We refer to these constructs as 53 and 73

affinity mutants, or intermediate and lowest affinity, respectively.

We quantified synergy for each of the synTF pairs at each of the

two reduced affinities and combined the results with those from

the WT affinity. The results for all pairs are shown in Figure S7.

In the majority of the cases, we found very small effects, with

distinguishable average synergy values but overlapping ranges

across conditions. However, in two pairs the data ranges were

also distinguishable in the SA;B coordinate (* in Figure 4C, SP1-

HSF1, HSF1m-HSF1), and there was an associated change in

synergy class. We have also highlighted in Figure 4C other two

pairs where there is a trend associated with a change in synergy

class and an example with no effect. For some pairs, including

those in which both TFs are thought to act on the same step,

no distinguishable effects of affinity were observed (Figure 4C-

no effect, Figure S7). Given the small effects and variability

observed, we remain circumspect in our interpretation of this

data. At a minimum, it suggests that the effects of affinity on
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Figure 4. Synergy between a pair of TFs depends upon the binding and unbinding kinetics

(A) Model examples for 5 sets of parameter values demonstrating the diversity in how synergy changes as a function of the unbinding rate. For each example, the

top-left plot shows the fold change in expression as comparedwith no TF present, for each of the TFs at concentration 2 (black, gray), or both TFs at concentration

1 (maroon), as a function of the unbinding rate. The top-right plot shows the corresponding behavior in synergy space. The circles on the bottom of the top-left plot

and those on the top-right plot correspond to the same values of synergy. Marker size is related to binding affinity (smallest marker: smallest affinity, highest

(legend continued on next page)
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synergy predicted by the model are experimentally tractable,

and worth higher resolution and more in-depth interrogation in

future studies.

DISCUSSION

In eukaryotic transcription, combinatorial control occurs at multi-

ple scales, with many TFs binding to a given enhancer, andmany

enhancers controlling the activity of a gene.24 Here, we have

focused on the first scale, and have investigated how synergy be-

tween TFs can emerge as a result of the kinetics of the system.

Although kinetic synergy was theoretically proposed almost 30

years ago,13 its experimental demonstration has been chal-

lenging, largely because of the confound of cooperative binding

interactions. To circumvent this limitation, we have focused on a

scenariowhere only oneTFcanbe specifically bound at anygiven

time.By forcing theTFs toact separately in timewhilebindingwith

the same kinetics, their functional interactions can be revealed. In

order to reason about this scenario, we have proposed a minimal

biophysical model that explicitly accounts for the kinetics of the

binding, as well as the functional effects of the transcription fac-

tors over the transcription cycle. The model reveals that synergy

between a pair of TFs is not an intrinsic feature of the pair but de-

pendsupon thebalancebetween their bindingand their functional

effects. This work gives yet another example of the power of syn-

thetic biology to answer fundamental biological questions.30,63,82

A model that explicitly accounts for the interplay
between TF binding and polymerase activity
In order to reason about the single binding site experiment, we

have developed a model with details of both the binding of the

TFs and the progression over the polymerase cycle. This model

brings together the two main modeling frameworks of transcrip-

tion in the literature in which either the binding is taken implicitly

(e.g., Scholes et al.14), or the polymerase cycle is not detailed

(e.g., Estrada et al.27). In contrast to other attempts in the litera-

ture,55 we do not make assumptions about the timescales of the

binding and unbinding of the TFs with respect to those of the

biochemical transitions over the polymerase cycle. This provides

greater generality. In addition, the model can easily be extended

to include more polymerase states and more binding sites for

other TFs or coregulators, if such details become relevant in

future studies. One of the simplifying assumptions of the model

is that TFs only exert their effect while they are bound. We note

that this does not necessarily have to be the case, because
unbinding rate). Shown below are the diagrams depicting the net fluxes (gray co

examples share the same basal parameter values: k1;B = 4:288, k2;B = 11:023, k

as follows: pndd : k1;A = 120:985, k2;A = 154:358, k3;A = 4:561, k4;A = 2:854, k

k2;A = 517:659, k3;A = 1433:877, k4;A = 1:095, k1;B = 11:275, k2;B = 326:127

151:500, k4;A = 7:354, k1;B = 4:504, k2;B = 17:664, k3;B = 2601:429, k4;B = 3:

4:821, k2;B = 11:997, k3;B = 909:506, k4;B = 8:354; ppii : k1;A = 937:265, k2;A
2047:513, k4;B = 8:447; See also Figure S6.

(B) Quantification of the change in dominant path in the presence of both TFs, fro

rejection-based sampling algorithm, as explained in STARMethods, effect of bind

class are as follows: npii: 13,103 parameter sets, corresponding to 214 basal pa

2,833, corresponding to 87 basal parameter sets. pndi: 2,215, corresponding to

(C) Experimental results showing the effects of changing synTF affinity on synergy

the biological repeats. Dotted line: line that links the means for the WT, 53 (mark

means in SA;B values differ by at least 0.1 between the highest and lowest affinit
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they may act through other cofactors that can remain bound

even if the TF unbinds. This could be easily incorporated at the

expense of more states and parameters. However, we think it

would not fundamentally change our conclusions, because there

would also be an interplay between the binding kinetics of these

other components and the kinetic effects on the cycle.

We have explored the behavior of the model in parameter

space under the assumption that the system is at steady state.

This is a widely used assumption and reasonable for our exper-

imental setup, given the time between transfection and mea-

surement of mRNA levels. However, one of the contexts in which

combinatorial control is most relevant is development, andmany

developmental processes may be too fast to allow for a steady

state to be reached. In this case, it may become important to

explicitly incorporate the time delay that emerges from polymer-

ase traveling along the gene body, which we have not accounted

for. Although at steady state this is likely to be effectively in-

corporated by the parameter of the last transition rate in the po-

lymerase cycle, it could have important implications when

considering how synergy emerges in transient regimes, and it

will be a relevant point to consider in future studies.

Measuring synergy theoretically and experimentally
In order to quantify synergy, it has been common to measure the

deviation from additivity, under the assumption that if TFs do not

interact, then their combined effect should be the sum of the ef-

fects obtained when each TF is present alone.16 Multiplicativity

has also been taken as a measure of synergy.15 However, we

showed that when TFs interact functionally on a 2-step cycle,

additivity or multiplicativity is only expected under very restricted

circumstances.14 As a result, synergy must be defined carefully

under each model and experimental system, as recently pointed

out for interactions between signaling pathway ligands.83 Ex-

ploiting our single binding site synthetic system, here we

compare expression when both TFs are present together with

expression when only one of them is present, under the same to-

tal TF concentration. If TFs bind with the same kinetics and are at

the same total concentration, changes in the response when

there are two TFs as compared with only one must be because

of their functional interactions. Ourmodeling analysis of Figures 2

and S1 show that, indeed, positive synergy only arises when TFs

are allowed to act on partially or completely complementary

transitions. In line with the original hypothesis for kinetic synergy,

our analysis of the steady state fluxes shows that this is because

of TFs productively enhancing the polymerase cycle when acting
lormap) and dominant flux path (magenta) for the two extreme ku values. All

3;B = 3:414, k4;B = 10:362. kb = 180:19. TF associated parameter values are

1;B = 5:007, k2;B = 25:685, k3;B = 15:086, k4;B = 2:083; pndi : k1;A = 6:317,

, k3;B = 15:328, k4;B = 10:223; npii : k1;A = 4:844, k2;A = 6345:641, k3;A =

088; npid : k1;A = 6:784, k2;A = 740:850, k3;A = 56:436, k4;A = 2:010, k1;B =

= 8084:904, k3;A = 5:392, k4;A = 1:982, k1;B = 9:945, k2;B = 18:372, k3;B =

m the smallest to the largest SA;B. The parameter values were obtained from a

ing/unbinding rate on synergy. The number of parameter sets analyzed for each

rameter sets. npid: 4,461, corresponding to 264 basal parameter sets. pndd:

132 basal parameter sets.

for selected synTF pairs. White markers: mean (WT, 73). Error bars: ranges of

er and errors not shown), and 73 affinity pairs. (*) denotes the pairs where the

ies, and the biological replicates are non-overlapping. See also Figure S7.



ll
OPEN ACCESSReport
in combination, by binding and unbinding appropriately to allow

each TF to exert its effect.

In addition to positive synergy, we define asymmetric and

negative synergy. This enables the quantitative characterization

of the synergy between a pair of TFs as a function of a variable of

the system, by looking at the corresponding trajectory in synergy

space. Moreover, we could evaluate synergy as a function of TF

ratio, which might reveal further insight about TF function.

Our previous analyses had suggested that assessing synergy

might be a way to elucidate the mechanism of action of TFs.14

However, the current analysis shows that this is confounded

by the effect of the binding kinetics. Moreover, parameter con-

straints that generate positive synergy in the model also

generate asymmetric synergy. In this case, even if TFs may

have complementary activities, their binding patterns may be

imbalanced and may not allow productive interaction. In the

case where either of the TFs works exclusively on one of two

complementary steps, this contrasts with the finding of exclu-

sively greater-than-additive behavior by,14 highlighting the

importance of accounting for the binding kinetics. Conversely,

if TFs have the same kinetic role but do not bind with the exact

same kinetics, the model shows that positive synergy could

also arise just as a result of the different binding (Figure S1B).

In our experimental system, in principle, we expect that TFs

that share the same binding domain bind with very similar ki-

netics. However, we are aware of examples in the literature

where the activation domain also affects binding,84 and this

could be further investigated in the future.

Kinetic synergy can experimentally emerge when two
TFs time-share a binding site
The model shows that positive synergy is theoretically possible

when TFs share a binding site, and synergy between a pair of

TFs is strongly influenced by their binding kinetics. Theoretically,

both the binding on-rate and off-rate can modulate the synergy

exhibited by a pair of TFs, and lower affinity can either decrease

or increase their synergy. In some cases, the compromise is evi-

denced as a non-monotonic effect of affinity upon synergy.

Our experimental data are consistent with these findings: in

line with the concept that kinetic synergy arises from comple-

mentarity in the function of TFs, positive synergy is only detected

for pairs where TFs are described to act predominantly on

different steps in transcription (Figure 3C). Also, in line with the

model, we find that synergy changes with affinity in both

increased and decreased directions (Figure 4). We acknowledge

that our experimental effects are small. On the one hand, this is

consistent with the known small effects ofmammalian TFs acting

from a single site and the reduced synergy space in the model

under the assumption that TFs are weak (Figure 2B). In addition,

we are aware that there are some technical limitations to our

approach that may obscure some of the effects. In the experi-

ments, the TF concentration is controlled by transfection, which

is intrinsically noisy, and the output is measured by flow cytom-

etry, which is a coarse read-out. Combined with the small effects

of the TFs and the affinity mutations, the biological effects might

be masked or confounded in some cases. Given these limita-

tions, we exploited the medium throughput of the assay to

scan multiple TF pairs and focused on the consistency across

biological replicates to support the modeling results.
In addition, we confirmed the positive synergy observed for

the most consistent pair using immunofluorescence, which en-

ables quantifying input-output in individual cells, which controls

for variability in the transfection and flow cytometry assay. In the

future, the experimental data can be further refined by carefully

modulating the input concentration with an inducible system,

and single-cell quantification of the output expression. Ideally,

live-cell imaging should also help illuminate the kinetic aspects

of kinetic synergy.

Implications for gene regulation in natural scenarios
Though the effects of synergy that we measure are small, they

may nonetheless be significant for gene regulation. Small-effect

risk variants can underlie disease (e.g., Manolio et al.85), and

small-effect variations are proposed to underlie evolution (e.g.,

Gerhart et al.86).We propose that the functional complementarity

between TFs, even if the effects are small, is likely to also be a

significant factor to consider when reasoning about gene regula-

tion by combinations of TFs.

In endogenous enhancers, some TFs do have overlapping

binding sites as in our setup.87–89 However, most typically,

each TF has its own binding site. Even in this case, binding ki-

netics may still be important. The residence time of the TF on

theDNAmust be long enough for it to be able to exert its function.

However, it is plausible that there could be interference either

directly or through recruited cofactors, such that output may

be maximized at intermediate affinities. This could be another

reason behind the widespread presence of relatively low-affinity

binding sites in eukaryotes90–93 and the observation of fast TF

binding kinetics.94–96 Moreover, tuning binding site affinity might

be an effective way to modulate expression beyond fully adding

or removing a binding site, which could have evolutionary impli-

cations.97 Along the same lines, kinetic synergy relaxes the need

for strict arrangements between binding sites, another typical

feature of eukaryotic transcriptional control.4,98,99

TF activity has often been considered to be modular. In this

view, the activity of the activation domain is independent of

that of the binding domain, which is assumed to be important

only to target the TF to specific sites on the genome.100 Evidence

against this model includes allosteric interactions between the

DNA binding domain and the activation domain,101 and the

observation that the activation domain may be involved in DNA

recognition.84 Adding to this, our work highlights the importance

of considering TFs as a unit, where the binding and activation

domains together dictate the effect of the TF. Our study empha-

sizes the value of considering an integrated view of transcrip-

tional control, where the effect of a TF has to be understood in

terms of the other components of the system.
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Frequency modulation of transcriptional bursting enables sensitive and

rapid gene regulation. Cell Syst. 6, 409–423.e11.

56. Khalil, A.S., Lu, T.K., Bashor, C.J., Ramirez, C.L., Pyenson, N.C., Joung,

J.K., and Collins, J.J. (2012). A synthetic biology framework for program-

ming eukaryotic transcription functions. Cell 150, 647–658.

57. Park, M., Patel, N., Keung, A.J., and Khalil, A.S. (2019b). Engineering

epigenetic regulation using synthetic read-write modules. Cell 176.

227.e20–238.e20.

58. Israni, D.V., Li, H.-S., Gagnon, K.A., Sander, J.D., Roybal, K.T., Joung,

J.K., Wong, W.W., and Khalil, A.S. (2021). Clinically-driven design of syn-

thetic gene regulatory programs in human cells. Preprint at bioRxiv.

https://doi.org/10.1101/2021.02.22.432371.

59. Gunawardena, J. (2012). A linear framework for time-scale separation in

nonlinear biochemical systems. PLoS One 7, e36321.

60. Ahsendorf, T., Wong, F., Eils, R., and Gunawardena, J. (2014). A frame-

work for modelling gene regulation which accommodates non-equilib-

rium mechanisms. BMC Biol. 12, 102.

61. Nam, K.-M., Martinez-Corral, R., and Gunawardena, J. (2022). The linear

framework: using graph theory to reveal the algebra and thermody-

namics of biomolecular systems. Interface Focus 12, 20220013.
Cell Systems 14, 324–339, April 19, 2023 337

http://refhub.elsevier.com/S2405-4712(23)00055-8/sref22
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref22
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref23
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref23
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref23
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref23
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref23
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref24
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref24
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref25
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref25
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref25
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref25
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref26
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref26
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref26
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref26
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref27
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref27
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref27
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref28
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref28
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref29
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref29
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref29
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref30
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref30
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref30
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref31
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref31
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref31
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref32
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref32
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref33
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref33
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref33
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref33
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref33
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref34
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref34
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref35
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref35
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref35
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref36
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref36
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref36
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref37
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref37
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref37
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref38
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref38
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref39
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref39
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref40
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref40
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref40
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref40
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref40
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref40
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref41
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref41
https://doi.org/10.1101/2021.02.25.432925
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref43
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref43
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref43
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref44
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref44
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref44
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref45
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref45
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref45
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref46
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref46
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref46
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref46
https://doi.org/10.1101/2022.10.25.513774
https://doi.org/10.1101/2022.10.25.513774
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref48
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref48
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref48
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref48
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref49
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref49
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref49
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref49
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref50
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref50
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref50
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref50
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref51
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref51
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref51
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref52
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref52
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref52
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref53
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref53
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref53
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref54
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref54
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref54
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref54
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref55
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref55
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref55
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref56
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref56
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref56
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref57
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref57
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref57
https://doi.org/10.1101/2021.02.22.432371
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref59
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref59
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref60
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref60
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref60
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref61
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref61
http://refhub.elsevier.com/S2405-4712(23)00055-8/sref61


ll
OPEN ACCESS Report
62. Biddle, J.W., Nguyen, M., and Gunawardena, J. (2019). Negative reci-

procity, not ordered assembly, underlies the interaction of Sox2 and

Oct4 on DNA. eLife 8, 1–45.

63. Park, J., Estrada, J., Johnson, G., Vincent, B.J., Ricci-Tam, C., Bragdon,

M.D., Shulgina, Y., Cha, A., Wunderlich, Z., Gunawardena, J., et al.

(2019a). Dissecting the sharp response of a canonical developmental

enhancer reveals multiple sources of cooperativity. eLife 8, e41266.

64. Baek, I., Friedman, L.J., Gelles, J., and Buratowski, S. (2021). Single-

molecule studies reveal branched pathways for activator-dependent as-

sembly of RNA polymerase II pre-initiation complexes. Mol. Cell 81.

3576.e6–3588.e6.

65. Coleman, R.A., Qiao, Z., Singh, S.K., Peng, C.S., Cianfrocco, M., Zhang,

Z., Piasecka, A., Aldeborgh, H., Basishvili, G., and Liu, W.L. (2017). p53

dynamically directs TFIID assembly on target gene promoters. Mol.

Cell. Biol. 37, e00085-17.

66. Dingar, D., Kalkat, M., Chan, P.K., Srikumar, T., Bailey, S.D., Tu, W.B.,

Coyaud, E., Ponzielli, R., Kolyar, M., Jurisica, I., et al. (2015). BioID iden-

tifies novel c-MYC interacting partners in cultured cells and xenograft tu-

mors. J. Proteomics 118, 95–111.

67. Kim, B.R., Coyaud, E., Laurent, E.M.N., St-Germain, J., Van De Laar, E.,

Tsao, M.S., Raught, B., and Moghal, N. (2017). Identification of the SOX2

interactome by BioID reveals EP300 as a mediator of SOX2-dependent

squamous differentiation and lung squamous cell carcinoma growth.

Mol. Cell. Proteomics 16, 1864–1888.

68. Carnesecchi, J., Sigismondo, G., Domsch, K., Baader, C.E.P., Rafiee,

M.R., Krijgsveld, J., and Lohmann, I. (2020). Multi-level and lineage-spe-

cific interactomes of the Hox transcription factor Ubx contribute to its

functional specificity. Nat. Commun. 11, 1388.

69. Liu, J., Hansen, D., Eck, E., Kim, Y.J., Turner, M., Alamos, S., and Garcia,

H.G. (2021). Real-time single-cell characterization of the eukaryotic tran-

scription cycle reveals correlations between RNA initiation, elongation,

and cleavage. PLoS Comput. Biol. 17, e1008999.

70. O’Connor, L., Gilmour, J., and Bonifer, C. (2016). The role of the ubiqui-

tously expressed transcription factor Sp1 in tissue-specific transcrip-

tional regulation and in disease. Yale J. Biol. Med. 89, 513–525.

71. Yang, Z., Yik, J.H.N., Chen, R., He, N., Jang, M.K., Ozato, K., and Zhou,

Q. (2005). Recruitment of P-TEFb for stimulation of transcriptional elon-

gation by the bromodomain protein Brd4. Mol. Cell 19, 535–545.

72. Jang,M.K., Mochizuki, K., Zhou,M., Jeong, H.S., Brady, J.N., andOzato,

K. (2005). The bromodomain protein Brd4 is a positive regulatory com-

ponent of P-TEFb and stimulates RNA polymerase II-dependent

transcription. Mol. Cell 19, 523–534.

73. Vasile, E., Hnisz, D., Klein, I.A., Young, R.A., Manteiga, J.C., Malik, S.,

Lee, T.I., Abraham, B.J., Schuijers, J., Cisse, I.I., et al. (2018).

Coactivator condensation at super-enhancers links phase separation

and gene control. Science 361, eaar3958.

74. Brown, S.A., Weirich, C.S., Newton, E.M., and Kingston, R.E. (1998).

Transcriptional activation domains stimulate initiation and elongation at

different times and via different residues. EMBO J. 17, 3146–3154.

75. Li, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., Huang, C.C., and

Kain, S.R. (1998). Generation of destabilized green fluorescent protein as

a transcription reporter. J. Biol. Chem. 273, 34970–34975.

76. Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., and Tyagi, S. (2006).

Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4,

1707–1719.

77. Strasen, J., Sarma, U., Jentsch, M., Bohn, S., Sheng, C., Horbelt, D.,

Knaus, P., Legewie, S., and Loewer, A. (2018). Cell-specific responses

to the cytokine TGF b are determined by variability in protein levels.

Mol. Syst. Biol. 14, 1–17.

78. Wong, V.C., Mathew, S., Ramji, R., Gaudet, S., and Miller-Jensen, K.

(2019). Fold-change detection of NF-kB at target genes with different

transcript outputs. Biophys. J. 116, 709–724.

79. Friedrich, D., Friedel, L., Finzel, A., Herrmann, A., Preibisch, S., and

Loewer, A. (2019). Stochastic transcription in the p53-mediated response
338 Cell Systems 14, 324–339, April 19, 2023
to DNA damage is modulated by burst frequency. Mol. Syst. Biol.

15, 1–20.

80. Pavletich, N.P., and Pabo, C.O. (1991). Zinc finger-DNA recognition:

crystal structure of a Zif268-DNA complex at 2.1 A. Science 252,

809–817.

81. Elrod-Erickson, M., Rould, M.A., Nekludova, L., and Pabo, C.O. (1996).

Zif268 protein-DNA complex refined at 1.6 Å: a model system for under-
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Hoechst 33342 Thermo Fisher Scientific Cat #62249
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anti-GFP D5.1 mAb (rabbit) Cell Signaling Cat# 2956; RRID:AB_1196615
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Polyethylenimine (PEI) Polysciences Cat# 23966-1

20% Paraformaldehyde Fisher Scientific Cat# 50-980-492

iTaqTMUniversal SYBR Green reagent BioRad Cat# 1725121

Protoscript II reverse transcriptase New England Biolabs M0368

oligo-dT primers New England Biolabs S1316

Puromycin Dihydrochloride Gibco Cat# A1113803

Critical commercial assays

RNeasy Plus Mini Kit Qiagen Cat# 74134

QIAprep Spin Miniprep Kit Qiagen Cat# 27106

Deposited data

Processed data used for the figures. This study https://github.com/rosamc/

kinsyn-2021. https://doi.org/

10.5281/zenodo.7015032

Experimental models: Cell lines

HEK293FT Thermo Fisher Scientific Cat# R70007

Experimental models: Organisms/strains

Human: 1X UAS 1X127 ZF BS

minCMV eGFPd2 monoclonal #2

This study MP796

Oligonucleotides

Actin_fwd: GGCACCCAGCACAATGAAGATCAA Finzel et al.102 N/A

Actin_rev: TAGAAGCATTTGCGGTGGACGATG Finzel et al.102 N/A

eGFP_fwd: AAGTTCATCTGCACCACCG This study N/A

eGFP_rev: TCCCTTGAAGAAGATGGTGCG This study N/A

zf_fwd: TTTTCGAGAAGACACGGCCT This study N/A

zf_rev: GCTGCTGTGGTCGGAGAAAT This study N/A

Recombinant DNA

1X UAS 1X127 ZF BS minCMV eGFPd2 This study pKC75

pUBC ZF127(WT)-BRD4 This study pKC9

pUBC ZF127(WT)-cMyc This study pKC10

pUBC ZF127(WT)-HSF1 This study pKC11

pUBC ZF127(WT)-HSF1mut1 This study pKC12

pUBC ZF127(WT)-SP1 This study pKC14

gRNA_AAVS1-T2 plasmid Addgene 41820

VP12 humanSpCas9-Hf1 plasmid Addgene 72247

Software and algorithms

Python 3 (3.6, 3.8) Python Software Foundation https://www.python.org/

FlowJo 10.6.2 FlowJo LLC https://www.flowjo.com

(Continued on next page)

e1 Cell Systems 14, 324–339.e1–e7, April 19, 2023

https://github.com/rosamc/kinsyn-2021
https://github.com/rosamc/kinsyn-2021
https://doi.org/10.5281/zenodo.7015032
https://doi.org/10.5281/zenodo.7015032
https://www.python.org/
https://www.flowjo.com


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
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Scripts for running simulations

and analyzing results

This paper https://github.com/rosamc/

kinsyn-2021. https://doi.org/

10.5281/zenodo.7015032

Code and scripts to write the c++ code

to calculate the steady-state of the

model, and run the exploration of the

boundaries of a regulatory strategy.

This paper https://github.com/rosamc/

GeneRegulatoryFunctions

https://doi.org/10.5281/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Angela

DePace (Angela_DePace@hms.harvard.edu).

Materials availability
All DNA constructs and cell lines are available from A.S.K. and A.H.D.

Data and code availability
d Processed data is available at https://github.com/rosamc/kinsyn-2021 (the DOI is listed in the key resources table). The raw

image data and all other data reported in this paper will be shared by the lead contact upon request.

d The boundary search code is available at https://github.com/rosamc/GeneRegulatoryFunctions. The rest of the code to repro-

duce the calculations and figures in the paper is available at https://github.com/rosamc/kinsyn-2021 and accessory code is

available at https://github.com/rosamc/scriptssyn. The corresponding DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
HEK293FT cells (Thermo Fisher Scientific) were used as a background cell line in this study. Cells were cultured in DMEM with

L-glutamine, 4.5g/L Glucose and Sodium Pyruvate (Thermo Fisher Scientific) supplemented with 10% FBS (Clontech), GlutaMAX

supplement (Thermo Fisher Scientific), MEM Non-Essential Amino Acids solution (Thermo Fisher Scientific) and 1% penicillin-strep-

tomycin (Thermo Fisher Scientific). Cells were maintained at 37�C with 5% CO2 in a humidified incubator, with splitting every

2-3 days.

METHOD DETAILS

Modelling details and the linear framework
In this work we have used the linear framework formalism to model the interplay between the binding of TFs and their effects on the

transcription cycle. This framework was introduced in Gunawardena et al.,59 and we have previously exploited it to study other prob-

lems in gene regulation.27,31,60–62 can be consulted for details. We outline the main features here.

A biological system is represented by a finite, directed, labelled graph G with labelled edges and no self-loops. The graph repre-

sents a coarse-grained version of the system of interest, with the nodes being the states of interest, and the edges the transitions

between them. The edge labels are the infinitesimal transition rates for the underlying Markov process, with dimensions of (time)�1,

and they include terms that specify the interactions between the graph and the surrounding environment. For example, the transitions

that represent the binding of a TF have edge labels that include the TF concentration, which is assumed to remain constant over time

(i.e., TF is sufficiently in excess that, to a good approximation, binding does not reduce the concentration of free TF available for

binding).
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The graph defines the time-evolution of the probability for each state of the system (vertex) as follows. Assume that each edge is a

chemical reaction that follows mass-action kinetics with the edge label as the rate. Since each edge has only one source vertex, the

resulting dynamics is linear and is described by a matrix equation,

dP
!
dt

= LðGÞP!: (Equation 4)

Here, P
!

is the column vector of state probabilities at time t, with dimension n, and LðGÞ is the Laplacian matrix of the graph. Equa-

tion 4 is the master equation, or Kolmogorov forward equation, of the underlying Markov process.

For a strongly connected graph, the system has a unique steady state, where dP
!
=dt = 0. The steady-state probability values for

each state are computed by summing over the products of the rate labels for each of the spanning trees rooted at that state, and

normalising appropriately (see Estrada et al.,27 for details).

The mRNA concentration m is assumed to evolve according to:

dm

dt
= k3;BP3;B + k3;AP3;A + k3;BP3;B � dm m (Equation 5)

where theP3;X are the probabilities of states 3B, 3A, 3B at a given time (Figure 1B). By assuming steady state, setting dm= dt = 0, and

dividing by dm, we obtain the expression for the steady-state mRNA (� denotes steady state):

m� =
k3;B
dm

P�
3;B +

k3;A
dm

P�
3;A +

k3;B
dm

P�
3;B (Equation 6)
m� = k3;BP
�
3;B + k3;AP

�
3;A + k3;BP

�
3;B (Equation 7)

This gives Equation 1 of themain text, where the overbars are dropped for simplicity. In the parameter exploration, we directly sam-

ple the normalised rates.

Biologically plausible ranges for parameters
We considered a biologically plausible range for the normalised parameter values to be between 1 and 104, according to the following

reasoning:

The events from the binding of the polymerase complex until the production of an mRNA molecule involve many biochemical re-

actions, including the binding interactions associated with the assembly of the pre-initiation complex, the phosphorylation of the

C-terminal domain of RNA polymerase and other post-translational modifications,104 as well as the biochemistry associated to elon-

gation. Our 3-state cycle is therefore a coarse-grained representation of all these processes. In order to determine biologically plau-

sible parameter ranges, we searched for measurements of reaction rates for these processes, and normalised those to typical rates

of mRNA degradation, taken to have typical half-lives between 10 min (0.00116 s� 1) and 5 h (3:85310� 5 s� 1).105,106

For a reaction at a rate of 0.7 s�1 (�1 s half-life), normalizing by themRNA degradation rates would result into a normalised range of

600–18000.

For a rate of 0.07 s� 1 (�10 s half-life), the normalised range would be 60-1800.

For a rate of 0.016 s� 1 (�1 min half-life), the normalised range would be 10-300.

And for a rate of 0.00116 s� 1 (�10 min half-life) the normalised range would be 1-30.

These values are consistent with measurements of various transcription-associated biochemical reactions: the in vitro rate of pre-

initiation complex assembly was found to vary over ranges on the order 10� 3 s�1107 to 0.1 s� 1,108 and the rate of promoter opening/

escape was reported to be 0.002 s� 1.108 Pause stability is estimated to be from 3 s to 20 min.109 And the TF residence time can be

from just a few seconds to a few minutes.94,110

Therefore, we took a range of 1-104 for our parameter values. We note that for smaller ranges representing slower rates for the

basal polymerase cycle and constraining the fold-change by which a given TF can modify a rate, the results are qualitatively the

same, but the synergy space region is reduced (Figure 2B, gray).

Synergy boundary for a regulatory strategy
In order to determine the region of the synergy space that can be spanned by a given regulatory strategy, we used a biased random

sampling algorithm, modified from that in Estrada et al.27 Briefly, this algorithm iteratively samples parameter sets with the goal to fill

as much of the synergy space region as possible. Parameters were chosen from a given range of normalised rate values, and TFs

were assumed to at most modify the basal rates by a certain factor (see figure captions for the values corresponding to each figure).

A maximum fold change for expression in the presence of one TF alone (at 23 concentration) was also pre-specified, such that

parameter sets that generate expression outside this range were discarded. The steps of the algorithm are the following:

1. The algorithm is initialised with the corresponding hyperparameters (below) and the constraints that will need to be kept among

parameter values during sampling (e.g. fold change by which a given TF can modify a given basal rate). The synergy space
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region is divided into a grid, so that each grid cell corresponds to a small region of the synergy space, which we consider

a point.

2. A few parameter sets are sampled until 10 grid cells are occupied. Each parameter set is sampled in two steps. First, the pa-

rameters for the basal transitions in the cycle and the TF binding and unbinding are sampled uniformly on a logarithmic scale

from their specified range (e.g. if the parameter range is ½10a;10b�, we choose a number v uniformly from the interval ½a;bÞ and
then take 10v as the parameter value). Then the constraint parameters are sampled similarly, but with their ranges adjusted

according to the chosen value for the reference parameter. The current working boundary is defined as those grid cells

with only empty cells above or below in the same column, or to the right and left on the same row.

3. Iteratively until convergence: each boundary cell provides a parameter set that is slightly modified in different ways to search its

neighborhood, as explained below. New parameter sets that generate points outside the current working boundary are always

kept for the subsequent iteration, and those that generate points at the current working boundary are kept with some proba-

bility (prob_replace). The current working boundary is recomputed after visiting all parameter sets in the previous working

boundary. Convergence is determined by 3000 iterations without changes in the working boundary.

In order to search the surrounding parameter space of a given parameter set (point in synergy space), we followed 3 strategies. At

each iteration, each strategy was applied to all points before moving to the next one, provided there were sufficient points for stra-

tegies 2 (10) and 3 (100):

1. Randomly select a few parameter values and modify them (‘‘mutate’’ them).

2. ‘‘Pull’’ towards a target point in the direction determined by the centroid and the point beingmodified, away from the boundary:

for at most 500 trials, slightly modify the parameter set, and keep the new one if it generates a point in synergy space closer to

the target. Stop when the distance to the target is smaller than a tolerance.

3. ‘‘Pull’’ in the direction (approximately) perpendicular to the tangent between the point being modified and its neighbor, as in 2.

The two pulling strategies help to intensely explore the parameter space around a given parameter set and allow the boundary to

escape from local minima regions.

The algorithm depends on various hyperparameters: probability of selecting a parameter value for mutation (we used 0.2 and 0.5),

probability of replacing an already-existing boundary parameter set if a new one generates a synergy value that falls in the same grid

cell (we used 0.2 and 0.6), width of the interval around a parameter value to sample for new parameter values (we used, in base 10

logarithmic scale: [-2,2],[-1.5,1.5],[-1,1]). Searches were run for all 12 combinations of hyperparameters, and results were merged

together.

Random sample of points in synergy space
In order to randomly sample parameter values in the synergy space (Figure S1C) we followed a rejection sampling approach. Param-

eters were sampled logarithmically from their predefined range (1-104) (i.e. for each parameter value w, we obtained a parameter

value v uniformly from the interval [0,4), and set w = 10v.) The constraints on the maximum fold change effect on the polymerase

cycle rates by the TFs were checked, as well as the constraint on the expression fold change by each of the TFs at 23. Only param-

eter sets that satisfied all constraints were kept. Then, in order to have a more uniform distribution of points over the synergy space,

we binned the synergy space into a grid with bins every 0.025SA;B andSB;A units, and kept one parameter set per bin. For Figure S1Ci,

we collected 1 million parameter sets that satisfied the constraints, kept one parameter set per bin (the first one encountered that

would correspond to a given bin), and repeated the procedure 10 times. For Figures S1Cii and S1Ciii, we just evaluated 10 million

parameter sets and kept one per bin.

Effect of binding/unbinding rate on synergy
In order to explore how synergy depends on the binding and unbinding rates of the TFs (Figures 4 and S6), we generated sets of

basal parameters by randomly sampling on a logarithmic scale the basal rates between 1 and 104, and the binding and unbinding

rates between 101:5 and 103. For each of these basal parameter sets, we generated 1000 parameter sets corresponding to the TF-

associated parameters that satisfy some constraints regarding the strength of the TFs. For this, we obtained parameter values for

the TF-associated parameters by random sampling on a logarithmic scale, also between 1 and 104, and then checked whether or

not the following constraints were satisfied: i) TF-associated parameter values at most a thousand-fold higher than the respective

basal ones (or a thousand-fold lower for counterclockwise rate k4); ii) fold change in expression by each TF individually at 2X con-

centration between 1 and 5; iii) TF A is consistently the strongest of the pair when the binding or unbinding rate is changed by a

factor f, where f spans 10 logarithmically spaced values over two orders of magnitude, between 0.1 and 10 (f= 10� 1+0:22i, i =

0;1;2/9). For each basal parameter set, we kept 1000 TF-associated parameter sets that satisfy these constraints, correspond-

ing to 1000 complete parameter sets. For each of these parameter sets, we determined the class of behaviour in synergy space as

a function of the change in the binding or unbinding rate over the above-described two-order magnitude range as described in the

main text, and saved for downstream analysis those parameter sets where the absolute value of the change in both SA;B and SB;A

was at least 0.05.
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Construct design and cloning
The reporter construct consists of a single synthetic zinc finger binding site (CGGCGTAGCCGATGTCGCGC) upstream of a minimal

CMV promoter (taggcgtgtacggtgggaggcctatataagcagagctcgtttagtgaaccgtcagatcgcctgga) driving d2EGFP (EGFP destabilized with

signal peptide for fast degradation (fusion with aa 422-461 of mouse ornithine decarboxylase)).

synTF fusion proteins containing an activation domain of interest fused to an N-terminal zinc-finger binding domain with a GGGGS

flexible linker were driven under control of a ubiquitin promoter and contain a 5’ sv40 nuclear localization sequence, C-terminal HA

and rabbit globin polyA 3’ UTR. Genome-orthogonal zinc fingers were previously developed to target 20-bp sequences that minimize

identity with the reference human genome.57,58 To tune the affinity of the zinc finger, 5, or 7 arginine residues in the zinc finger array

were mutated to alanine as denoted in Figure S7. The following protein domains were selected and conjugated as respective acti-

vation domains according to previous studies:

SP1 (Residues 263 – 499) [PMID: 8278363]

NITLLPVNSVSAATLTPSSQAVTISSSGSQESGSQPVTSGTTISSASLVSSQASSSSFFTNANSY

STTTTTSNMGIMNFTTSGSSGTNSQGQTPQRVSGLQGSDALNIQQNQTSGGSLQAGQQKE

GEQNQQTQQQQILIQPQLVQGGQALQALQAAPLSGQTFTTQAISQETLQNLQLQAVPNSGP

IIIRTPTVGPNGQVSWQTLQLQNLQVQNPQAQTITLAPMQGVSLGQTSSSN

cMyc (Residues 1-70) [PMID: 12177005]

MDFFRVVENQQPPATMPLNVSFTNRNYDLDYDSVQPYFY

CDEEENFYQQQQQSELQPPAPSEDIWKKFEL

BRD4 (Residues 1308-1362) [PMID: 24860166]

PQAQSSQPQSMLDQQRELARKREQERRRREAMAATIDMNFQSDLLSIFEENLF

HSF1 (Residues 370-529) [PMID: 9606196]

PEKCLSVACLDKNELSDHLDAMDSNLDNLQTMLSSHGFSVDTSALLDLFSPSVTVPDMSLP

DLDSSLASIQELLSPQEPPRPPEAENSSPDSGKQLVHYTAQPLFLLDPGSVDTGSNDLPVLF

ELGEGSYFSEGDGFAEDPTISLLTGSEPPKAKDPTVS

HSF1 mutant (Residues 370-529, F418A, F492A, F500A) [PMID: 9606196]

PEKCLSVACLDKNELSDHLDAMDSNLDNLQTMLSSHGFSVDTSALLDLASPSVTVPDMS

LPDLDSSLASIQELLSPQEPPRPPEAENSSPDSGKQLVHYTAQPLFLLDPGSVDTGSNDLP

VLAELGEGSYASEGDGFAEDPTISLLTGSEPPKAKDPTVS
Genomic integration of reporter constructs
Reporter lines were generated by site-specific integration of reporter constructs into HEK293FT cells using CRISPR/Cas9 mediated

homologous recombination into the AAVS1 (PPP1R2C) locus as previously described.57 Briefly, 60,000 cells were plated in a 48-well

plate and transfected the following day by PEI with a mixture of the following: 70ng of gRNA_AAVS1-T2 plasmid (Addgene 41820),

70 ng of VP12 humanSpCas9-Hf1 plasmid (Addgene 72247), and 175 ng of donor reporter plasmid. Donor reporter plasmids contain

flanking arms homologous to the AAVS1 locus, a puromycin resistance cassette, and constitutive mCherry expression. After trans-

fection, cells were cultured in 2 mg/mL puromycin selection for at least 2 weeks with splitting 1:10 every 3 days. Monoclonal pop-

ulations for reporter cell lines were isolated by sorting single cells from this population into a 96-well plate and growing cell lines

from each well. A minimum of 6 monoclonal cell lines that express high level of mCherry protein were transiently transfected with

a strong synTF activator (HSF1 or VP16) and a monoclonal cell line to be used going forward was selected based on the fold-change

of GFP expression relative to basal GFP level.

Transient transfection
Stable reporter cell lines were transfected with synTF plasmid constructs using polyethylenimine (PEI, Polysciences) as described in

Park et al.57 60,000-100,000 cells/well were plated in 48-well plates and transfected the following day with a total of 10ng per synTF,

unless otherwise noted, with single stranded filler DNA (Thermo Fisher Scientific) up to 200ng total. 50ng of pCAG-iRFP720 (Addg-

ene, #89687) was used as a transfection control plasmid in flow cytometry experiments. Two days after transfection, cells were

collected and prepared for flow cytometry, unless otherwise noted.

Flow cytometry and data analysis
For each measurement, cells were harvested and run on an Attune NxT (Thermo Fisher Scientific) Flow Cytometer equipped with a

high-throughput auto-sampler. A minimum of 10,000 events were collected for each well and were gated by forward and side scatter

for live cells and single cells, as described in Park et al.57 Cells were then gated by iRFP for transfection-positive populations. The

geometric mean of GFP fluorescence distribution was calculated in FlowJo (Treestar Software). GFP expression fold-change was

determined by normalizing with mean GFP intensity of the reporter only control. Flow cytometer laser/filter configurations used in

this study were: EGFP (488 nm, 510/10), mCherry (561 nm, 615/25), iRFP-720 (638 nm, 720/30). All flow cytometry measurements

were performed in technical replicates. Considering together all replicates from all experiments with the same transfection condition,

we checked for consistency and discarded technical errors. This removed the cMyc 2X condition in one of the experiments since it
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yielded an aberrantly low fold change. Moreover, we removed 4 additional replicates, each from a different condition, that had a fold

change that was above/below two standard deviations from the mean considering all replicates for that condition together.

Western blotting
A reporter cell line was transfected with indicated amounts of ZF-HSF1 (0, 10, 20, 50, 100, 150, 200ng) in a 48-well plate at a cell

density of 1x105 per well. After 2 days, cells were rinsed with PBS and lysed with 200 mL of NuPAGE LDS sample buffer (Thermo

Fisher Scientific), followed by 5 seconds of sonication. Whole cell lysates were mixed with NuPAGE Sample Reducing agent

(10X, Thermo Fisher Scientific) at 95�C for 5 minutes. Samples were then loaded into a 4-12%NuPAGE Bis-Tris Mini Protein precast

gel (Thermo Fisher Scientific) and were run at 200V for 30 minutes in NuPAGE MES SDS Running Buffer. Separated proteins were

transferred to a PVDF membrane using P0 protocol of iBlot2 system (Thermo Fisher Scientific). Membranes were blocked for 1hr at

room temperature in blocking solution (5% w/v nonfat dry milk in 1X PBST) with gentle rocking. The membranes were probed with

anti-HA (1:4000; Abcam ab9110) and anti-GAPDH (1:1000; Abcam ab9485) antibodies at room temperature for 1 hour with gentle

rocking. The membranes were washed in PBST three times for 5 minutes each, and incubated with a goat anti-rabbit IgG-HRP anti-

body (1:2000; Abcam ab6721). The target proteins were visualized by chemiluminescence using SuperSignal West Pico PLUS sub-

strate (Thermo Fisher Scientific) and an iBright Western Blot Imaging Systems (Thermo Fisher Scientific). Quantification of band in-

tensities was carried out using FIJI.111

QUANTITATIVE REAL-TIME PCR

13105 Hek293FT reporter cells were seeded one day prior to transfection in 6cm culture dishes. Transfection was performedwith the

indicated amounts of synTF plasmid as described above for flow cytometry experiments using polyethylenimine (PEI) (polyscience)

or Lipofectamine 3000 (Thermo Fisher Scientific). Two days post transfection, cell pellets were harvested and mRNA was extracted

using the RNeasy Mini Kit (Qiagen). 500 ng extracted total RNA was reverse transcribed into cDNA for each sample. Reverse tran-

scription was performed using Protoscript II reverse transcriptase (New England Biolabs) and oligo-dT primers (New England Bio-

labs). Quantitative real-time PCR was performed in triplicates using iTaq�Universal SYBR�Green reagent (Bio-Rad) on a CFX96

PCR machine (Bio-Rad). Primers were used in a final concentration of 243.2 nM. b-actin expression was used as a reference

gene for relative quantification of RNA levels. Used primer sequences are (5’-3’):

Actin_fwd: GGCACCCAGCACAATGAAGATCAA;

Actin_rev: TAGAAGCATTTGCGGTGGACGATG;

eGFP_fwd: AAGTTCATCTGCACCACCG;

eGFP_rev: TCCCTTGAAGAAGATGGTGCG;
Immunofluorescence to assess synergy for cMyc-SP1
Immunostaining

0:53105 cells were seeded on poly-Lysine coated high-precision glass coverslips (18 mm round, #1.5) in 12-well culture plates one

day prior to transfection. Transfection was performed as described for flow cytometry experiments. A total amount of 200 ng DNA

(20 ng synTFs and 180 ng ssDNA) was used for transfection experiments. PEI was scaled to 12-well plate volume of 100 mL total

transfection mix. 48 h post transfection, cells were washed with 1x PBS, fixed with 2% PFA (Fisher Scientific) and blocked for

30min with 10%Goat serum (VWR) in 1x PBS after washing. Immunodetection was performed using anti-HA-tag (6E2)mousemono-

clonal antibody (Cell Signaling) and anti-GFP (D5.1) rabbit monoclonal antibody (Cell Signaling) 1:200 in 1%BSA/PBS overnight. Cells

were washed with 0.1% Triton X-100 and incubated with anti-mouse IgG Alexa Fluor 488 (#4408, Cell Signaling) and anti-rabbit IgG

Alexa Fluor 647 antibodies 1:1000 in 1%BSA/PBS for 1 h. After washing with 0.1% Triton X-100, nuclei were stained with 2 mg/mL

Hoechst-33342 (Thermo Fisher Scientific) andmounted on glass slides using Prolong Gold Antifade (Thermo Fisher Scientific). Image

acquisition was performed at least 16 h after mounting coverslips on glass slides.

Fluorescence microscopy

Images were acquired as single-plane multipoint positions on a Nikon Ti2 invertedmicroscope upon illumination by a Lumencor Sola

395 Light Engine and a Plan Apo VC 20x objective (NA 0.75). The following filter sets were used. Alexa Fluor 488: excitation FF01-466/

40, emission FF03-525/50, dichroic FF495-Di03 (all Semrock); Hoechst-33342: excitation ET395/25x, emission ET460/50m, dichroic

ET425lp (all Chroma). Detection was performed with a Hamamatsu ORCA Flash 4.0 LT camera. NIS elements software for image

acquisition was used.

Image Processing

Images were extracted from nd2 files, separated as.tif-files per channel and field of view. CellProfiler 4.0103 was used for image seg-

mentation and measuring nuclear fluorescence intensity. A pipeline was customized based on the pipeline for Human cells provided

by the CellProfiler project. Nuclei segmentation was performed based on Hoechst-33342 staining using adaptive Otsu thresholding

and a nuclear diameter range of 30 – 50 pixels. Objects at the border of images and outside this rangewere excluded. Clumped nuclei

were distinguished based on fluorescence intensity and object intensity was calculated for the segmented nuclear area in all chan-

nels. For simplicity, GFP fluorescence in the nuclear area was used as a proxy for overall GFP expression in cells. The percentage of
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properly identified nuclei is different between images due to segmentation challenges from dense and overlaying cell growth

of Hek293T cells that could not be fully resolved by adjusting parameters. From each results table, the integrated intensity of all

three channels was used for further analysis (Intensity_IntegratedIntensity_DNA, Intensity_IntegratedIntensity_GFP, Intensity_

IntegratedIntensity_TF).

Data analysis

We began by removing outliers based on the GFP signal per cell, which can represent segmentation errors or unhealthy cells. For

each transfection condition and the control condition (untransfected), we removed the cells with the 5% lowest and 5% highest

GFP signal. For the control condition, the HA-tag signal fluorescence corresponding to the remainder cell population was used to

define the cutoff for positive transfection. In Figure S5, we show data where we selected the 90th percentile of the control signal

as the cutoff, but very similar results were obtained with a more stringent cutoff corresponding to the 95th percentile.

Given the variability associated with transfection, the different transfection conditions result in similar distributions for the HA-tag

signal which differ in their tails, with the cMyc condition spanning the lowest range in the input levels (Figure S5A). As a result, the input

in the combination is statistically significantly higher than in the cMyc condition at a significance level of 0.005 according to two non-

parameteric tests that are applicable in this situation: the one-sided Kolmogorov-Smirnov test and the one-sided Mann-Whitney U

test (as implemented by the Python Scipy library, version 1.6.2). In order to ensure that we calculate synergy for cells where the input

levels in the combination are not higher than in each of the individual transfected conditions (in particular, the cMyc condition), we

selected the highest input fluorescence level for which significance is lost for both tests (considering a 0.005 significance level). This

cutoff encompasses 91%of the data for the cMyc condition.We then calculate synergy for the subpopulation of cells with input levels

at or below this cutoff (yellow region in Figure S5A).
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