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ABSTRACT: Engineering biology relies on the accurate pre-
diction of cell responses. However, making these predictions is
challenging for a variety of reasons, including the stochasticity of
biochemical reactions, variability between cells, and incomplete
information about underlying biological processes. Machine
learning methods, which can model diverse input−output relation-
ships without requiring a priori mechanistic knowledge, are an ideal
tool for this task. For example, such approaches can be used to
predict gene expression dynamics given time-series data of past
expression history. To explore this application, we computationally
simulated single-cell responses, incorporating different sources of
noise and alternative genetic circuit designs. We showed that deep
neural networks trained on these simulated data were able to
correctly infer the underlying dynamics of a cell response even in the presence of measurement noise and stochasticity in the
biochemical reactions. The training set size and the amount of past data provided as inputs both affected prediction quality, with
cascaded genetic circuits that introduce delays requiring more past data. We also tested prediction performance on a bistable auto-
activation circuit, finding that our initial method for predicting a single trajectory was fundamentally ill-suited for multimodal
dynamics. To address this, we updated the network architecture to predict the entire distribution of future states, showing it could
accurately predict bimodal expression distributions. Overall, these methods can be readily applied to the diverse prediction tasks
necessary to predict and control a variety of biological circuits, a key aspect of many synthetic biology applications.
KEYWORDS: time-series prediction, deep learning models, noise, single cell, gene expression dynamics, bistability

■ INTRODUCTION
Mathematical models are crucial tools for predicting the
responses of genetic circuits to signals and perturbations from
the environment and for reliably engineering biological
systems.1,2 For example, models that can predict the effect of a
gene knockout or overexpression, the response of a cell to a drug
or change in carbon source, or the impact of an optogenetic
input sequence can allow the design of more ambitious genetic
circuits.3−13 Thus, the ability to predict biological time-series
data is critical to designing robust genetic circuits and can also
provide novel insight into the behaviors of natural systems.
However, the nature of biological processes makes dynamic

cell responses hard to predict (Figure 1A). The absolute number
of many molecules in a cell is small, leading to stochastic
behavior.14,15 Processes such as gene expression are inherently
bursty,16 generating large fluctuations and keeping the cell far
from steady state. Moreover, the sharing of key resources, such
as ribosomes,17 across many different processes, as well as the
pleiotropic and interconnected effects of many genes,18 makes it
difficult to fully explain the behavior of one system without

accounting for other parts of the cell. Beyond these biological
constraints, many technical challenges make such predictions
difficult due to noisy and incomplete measurements of cell
states.
Despite these challenges, various modeling approaches have

produced informative and useful predictions of cell dynamics
(Figure 1B). Ordinary differential equations (ODEs) represent
the overwhelming method of choice for modeling how cells
change with time. Even the earliest synthetic biology models1,2

showed the power of ODEs for explaining expression dynamics
in terms of gene network architecture, and this continues to be
the case.4 Moreover, ODE models can be modified to explicitly
incorporate the stochasticity of reactions19,20 or sources of
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single-cell variability,21 and can even be expanded to include the
majority of reactions in a cell.22,23 In the absence of complete
information about a process, qualitative approaches, such as
logic or Boolean models, can also be constructed. Such models
can capture the dynamics of gene regulatory networks,
differentiation, and signaling pathways.24−27 Markov models,
which model transitions between specific cell states, can also
provide useful descriptions of time-series data, such as single-cell
epigenetic dynamics.28

While these classical approaches to modeling and predicting
cell dynamics are powerful, they require existing knowledge of
the system, to either select an appropriate model structure or to
identify reasonable reaction rates. However, in many cases, the
parameters describing the system behavior are incompletely
known or are poorly constrained by existing data,29−33 or worse,
the system itself may not be fully identified.34−36 These
challenges can be addressed with ensemble models30,37 or
optimal design of experiments,12,38 but these approaches require
significant effort for each new model.
Machine learning provides an alternative to these bespoke

methods. Machine learning models can flexibly capture a variety
of input−output relationships, as demonstrated by their power
to perform diverse prediction tasks across a wide array of
fields,39−42 including biology.38,43−46 In recent years, machine
learning approaches have been applied to predict biological
time-series data, including p53 oscillations,47 metabolic pathway
dynamics,48 responses to chemotherapy,49 cell signaling,50 and
gut microbiome dynamics.51 While these “black box”
approaches can be difficult to interpret physically or to extend
to perturbations not present in the training data, suchmodels are
still incredibly useful. For example, machine learning can
provide a faster alternative to mechanistic models to accelerate
discovery.52 More importantly, training suchmodels provides an
opportunity to find relationships between features where current
mechanistic knowledge is absent.
In this study, we used a machine learning model to predict

gene expression time-series data in single cells and performed a
series of “stress tests” to understand the limits of prediction
accuracy, ultimately finding our trained models to be highly
capable of predicting future system responses given past data
under experimentally realistic conditions. The general goal of
our approach is to forecast how a cell will respond to a future
series of dynamic inputs based on information about its past
response dynamics (Figure 1C). In this way, the neural network

predicts not just population average responses to dynamic
inputs, but, given a single cell’s history, its specific response to
any future input. As a representative example, we focused on a
deep neural network architecture that we implemented in
previous experimental work to predict optogenetically induced
gene expression in single Escherichia coli cells.53 Optogenetic
systems are ideal test cases for predicting cell responses with
machine learning because generating many examples of single-
cell responses to diverse inputs is experimentally feasible.
Further, using microfluidic devices it is possible to image single
cells for hours to days, generating substantial temporal
information about each single cell.53,54 Nonetheless, the neural
network architecture developed here is expected to generalize to
many other types of cell responses.
To understand how the quality of these predictions varies

with noise, we simulated gene expression traces with measure-
ment noise and various sources of stochasticity, and evaluated
how well the trained predictor performed. Measurement noise
produced a constant prediction error, whereas the stochasticity
of the biochemical reactions added a small error that increased
with time, reflecting increasing uncertainty about the cell’s
distant future. Surprisingly, adding a variable for extrinsic cell
responsiveness, whose dynamics affected the cell response but
were not light-dependent, did not increase the median error.
This is an encouraging finding, as cells exhibit fluctuating levels
of responsiveness in realistic experimental conditions. We also
found that while accurately predicting the future required a
minimum amount of information about the cell’s past, training
models to predict even further into the future did not change
their near-term prediction quality. We also tested alternative
genetic circuit structures. The addition of a hidden intermediate
in a genetic circuit cascade did not significantly increase the
prediction error relative to a simple activation case, but the
delays introduced by the cascade increased the requirement for
past information. Finally, we tested the ability of this neural
network architecture to predict multimodal responses by
training on examples of an auto-activation circuit. However,
this approach minimized prediction error by predicting the
average of the two possible bimodal outcomes, as in many cases
both futures were equally likely. To address this, we
implemented an alternative neural network architecture to
predict the full distribution of possible future cell states and
found that it could correctly predict the bimodal outcomes of the
auto-activation circuit. Together, these results show the power

Figure 1.Machine learning models are well suited to performing single-cell time-series prediction. (A) The relationship between a time-varying input
(U) and a cell’s dynamic response (F) is mediated by many phenomena. Stochasticity in gene expression can create fluctuations in concentration;
globally shared resources also vary, creating extrinsic noise (E). The relationship between U and F may also be subject to complex regulation, and
aspects of the cell’s state may be hidden, for example, due to intermediate steps (I). (B)Mathematical models can be used to relate dynamic inputs and
outputs. Mechanistic models explicitly account for many of the phenomena relating these inputs and outputs, while machine learning models can
approximate these relationships with neural networks and do not require knowledge of the mechanism. (C) The ability of machine learning models to
learn generic input−output relationships makes them well suited to time-series prediction, where the future response of a cell to a particular input is
predicted, using information about its past history of responsiveness.
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of deep neural networks for inferring complex, single-cell
responses in the midst of various types of noise across genetic
circuit structures. Overall, the flexibility of this approach allows it
to be extended to more challenging prediction tasks, such as
predicting the full set of a cell’s possible futures. Such methods
can enable many important goals in synthetic biology that rely
on predictions, such as exploration of genetic circuit designs and
precise control of gene expression.

■ RESULTS
Machine Learning Models Can Infer Response

Dynamics with Different Types of Noise. Various sources
of noise make it challenging to predict future cell responses
(Figure 1A). Some of these, such as partially observed states or
interactions between components, produce complex input−
output relationships that can be inferred by analyzing past
responses. Others, such as measurement noise or the
stochasticity of biochemical reactions themselves, may make

Figure 2. The deep neural network architecture can infer single-cell response dynamics in the presence of multiple types of noise. (A) Simulations
focus on a simple optogenetic activation circuit as a representative example. In the CcaSR system, green light activates CcaS, which activates CcaR to
catalyze the formation of CcaR dimers that drive the expression of a reporter. Red light leads to reporter dilution by deactivating CcaS. (B) We
simulated a simplified version of the CcaSR system, where light (U) activates a constitutively expressed dimer (H) that drives expression of a
fluorescent reporter (F). In some simulations, we included another dynamic variable E that captures light-independent changes in cell responsiveness.
(C) Simulated responses to the same light input sequence with different types of noise show variability in dynamics between the four simulated
datasets. (D) To train the model, simulated single-cell responses are arbitrarily partitioned into the past and the future. The model takes as inputs the
past light sequence and associated cell response, as well as the future light sequence. A long short-term memory network (LSTM) encodes a latent
representation of the cell’s past, which is concatenated with the future light sequence and passed to a decoder. Amultilayer perceptron (MLP) decoder
then predicts the cell’s response. The model is trained by reducing the error between the predicted future and the “ground truth” future, here taken
from the simulations. (E) Predicted cell responses for each of the four noise models are shown with a corresponding example from the test set. Colored
lines show the “ground truth” simulation, with one possible realization of the cell’s future. Black lines show themodel’s predicted future for that cell and
that light sequence. These are median examples of prediction quality from the test set. (F) Full distribution of error in the test set for each of the four
noise conditions. As described in themain text, we compute the normalized rootmean square error (normalized RMSE) for each example in the test set
by computing the squared error between the predicted future and the 1000 possible realizations for a cell’s future, normalized to the simulated
realization, and then averaging across the entire prediction horizon. (G) Normalized RMSE of each of the 1000 cells in the test set computed at each
timepoint. Dots show median normalized RMSE, while the shaded region spans the 25th to 75th percentile. The colors correspond to the same four
models shown throughout the figure.
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identifying the patterns of the input−output relationship more
difficult, in addition to adding fundamentally unpredictable
randomness. We therefore sought to quantify the impact of
different sources of noise on how well a deep neural network can
learn input−output relationships.
We focused on the behavior of the CcaSR optogenetic system

activating a fluorescent reporter gene3,55 (Figure 2A). This
optogenetic circuit is attractive because it features few steps
between the input stimulus and the cell’s response, providing a
simple initial test case. In this circuit, the addition of green or red
light respectively promotes or stops the assembly of transcrip-
tional machinery, thus increasing or decreasing the amount of
reporter. Also, empirical responses of this circuit were already fit
to an ODE model,56 providing equations and parameters for
generating synthetic data (Supplementary Methods). We used
this as a basis to develop deterministic and stochastic models of
this circuit where green light, after a brief 12 min delay to
approximate dynamics of phosphorylation and dimerization,
linearly activates a constitutively expressed dimer, which then
activates a downstream reporter with a Hill function response.
The disassembly of the dimer (H in Figure 2B) by red light has
the same delay, to capture dynamics of dephosphorylation and
unbinding.
Simulating cell responses allowed us to directly add or remove

sources of noise and quantify their effects. We generated four
sets of synthetic training data, adding new sources of noise to
each dataset (Figure 2C). First, we considered data generated by
deterministic ODEs. Even in the absence of noise, learning to
predict these responses requires inferring a nontrivial response
function, including the delay in activation and the accumulation
of an unobserved dimer that nonlinearly activates output.
Second, we added multiplicative Gaussian measurement noise,
which represents variation introduced as part of the measure-
ment process, such as sCMOS camera noise or image
segmentation errors. Measurement noise can complicate the
inference and prediction of genetic circuit dynamics by
obscuring the true state of the cell. Third, rather than
deterministically evaluating the ODEs, we used the Gillespie
stochastic simulation algorithm19 to evaluate the equations
describing the cell response, and continued to add measurement
noise. Lastly, we added a new variable and set of reactions to
capture light-independent extrinsic fluctuations in cell respon-
siveness, reminiscent of cell aging54 or fluctuations in
components for transcription and translation15 that can alter
the dynamics of a circuit. These extrinsic fluctuations are
simulated stochastically alongside the light activation dynamics,
with the additional measurement noise. Besides increasing
responsible variability, this new hidden variable (E in Figure 2B)
adds a complexity to the cell response that can potentially also be
inferred by the trained model, analogous to the inference of the
process dynamics itself.
To demonstrate the effects of these sources of noise on cell

responses, we simulated responses to the same light stimulus for
each of the four cases (Figure 2C). While the deterministic
responses are smooth in time, measurement noise creates
variation around those responses. Stochasticity produces even
more varied responses, which are further exacerbated by changes
in the extrinsic cell responsiveness. For our synthetic training
sets, we generated 10,000 examples of cells’ responses to
different random light inputs for each of the four noise scenarios.
This provides examples of not only how each system responds to
light, but also how those responses vary across light durations
and different historical contexts.

For each synthetic training set, we fit a deep neural network to
predict cell responses (Figure 2D). At a high level of abstraction,
this architecture takes as inputs the past light stimulus, past cell
response, and a proposed future light stimulus, and predicts the
most likely future response. To do this, the model first uses an
encoder to identify key patterns in a cell’s past response and then
combines this with the proposed future stimulus to predict that
particular cell’s future response. To begin, we used the same
implementation as in our previous experimental work,53 using a
long short-term memory network (LSTM) for the encoder,
which can flexibly take any length of past responses as inputs,
and a multilayer perceptron (MLP) as the decoder, due to its
speed and ability to be parallelized for applications that optimize
future responses (Methods section). Note that this network
architecture could be trained in a generative framework, where it
would learn to generate a single possible stochastic realization of
the future response. However, this would likely require
hundreds of model runs to obtain a sufficient statistical
understanding of a future response; thus, we elected to use a
straightforward supervised learning framework to directly
output the most likely fluorescence level. We trained each
predictive model with synthetic data, which provides many
examples of past and future responses. We used 90% of the data
for training and 10% for validation, keeping the model with the
lowest error in the validation set. Note that throughout the
manuscript, the word “model” refers to a neural network
architecture trained on a particular dataset; thus, our analysis
generated many “models,” all of which use this same
architecture, unless otherwise noted.
To evaluate the quality of the prediction, we used our trained

models to predict cell responses in a held-out test dataset. These
test sets contained 1000 additional samples of light stimuli and
simulated cell responses, none of which the trained models had
seen before. We note that because we generated the randomized
light inputs and simulated gene circuit dynamics in the same way
for both the training and test sets, the range of fluorescence
values in the training and test sets were largely overlapping
(Methods, Figure S1A). As expected, the trained models’
predictions of the future approximated the “ground truth”
simulated future with varying degrees of accuracy (Figure 2E).
However, since many possible future responses are consistent
with a cell’s past, a better measure of prediction quality would be
a comparison of the predicted future to an ensemble of the
possible cell responses (Figure S1B). We therefore generated
1000 possible future realizations for each cell in each test set. To
quantify the prediction error relative to this ensemble, we
calculated the normalized root mean square error (RMSE), i.e.
the squared error between the predicted and simulated future,
normalized by the size of the response, averaged across all
possible futures. In this way, the values of normalized RMSE can
be interpreted similarly to percent error, with a value of 0.1
indicating a prediction error that is 10% of the actual value.
Specifically, for each of the 1000 cells in the held-out test set, we
compute the following

i
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where i ∈ [1, I] indicates each simulated future (here I = 1000
for each cell in the test set). Fp(t) is the predicted response at
future timepoint t, whereas Fi(t) is the ith simulated future
response for the cell. Because this error metric is defined at each
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point in time of the future prediction horizon, we compute
average prediction quality by taking the mean across timepoints

i
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= =

T
t

T I
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1

Normalized RMSE( )
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1

1 1
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2

where t ∈ [1, T] indexes future timepoints.
The distribution of normalized RMSE across the test set for

the different models showed that increasing noise corresponded
to lower prediction fidelity (Figure 2F). Models trained on
deterministic examples predicted deterministic responses with
very low error, showing that the network architecture could
correctly infer the response dynamics. By contrast, the addition
of measurement noise introduced a minimum prediction error
of approximately 5%, which is very close to the standard
deviation of the sampled Gaussian noise. However, this error is
not the result of incorrectly inferring response dynamics from
the noisy examples; the model trained on examples with
measurement noise predicted the average future response (i.e.,
the underlying deterministic dynamics) nearly as well as the
model trained on deterministic data (Figure S1C). Rather, the
smooth prediction cannot imitate the jagged jumps in the data
produced by the fundamentally unpredictable measurement
noise, creating a systematic and time-invariant error (Figure
2G).
The models trained on stochastic responses predicted the

average response of each cell nearly as well as models trained on

deterministic responses (Figure S1C). This suggests that the
deep neural network can not only infer the underlying dynamics
of the system from noisy examples but is also able to perform
state estimation for stochastically varying components. While
the median and spread of normalized RMSE (cf. Figures 2F and
S1C) were larger, this is consistent with the impossibility of
predicting all aspects of the stochastic dynamics, where an
increasingly large set of futures are equally possible (Figure
S1B). Thus, even though the normalized RMSE increases with
time as the spread of possible futures grows (Figure 2G), the
model trained on stochastic responses (without changes in cell
responsiveness) predicts the average dynamics consistently well
across time (Figure S1D). Though the addition of changing cell
responsiveness produced the hardest-to-predict dynamics, the
prediction error for all models at early timepoints was not much
larger than the case where only measurement noise was present
(Figure 2G).
To benchmark this result against a method without a neural

network, we also used an ODEmodel with a Kalman filter-based
approach to predict the results of our stochastic simulations with
time-varying cell responsiveness (Figure S2). Surprisingly, even
though this ODE-based model has perfect knowledge of the
system’s dynamics and parameters, our deep neural network is
more accurate. Only if we directly provide information about the
system’s state to the Kalman filter can it predict as well as the
LSTM-MLP deep learning architecture. This is likely because
Kalman filters are suboptimal if system or measurement noise is
not Gaussian, which is typically the case in single-cell gene
expression data and in our simulations in particular (Supple-
mentary Methods).

Figure 3. Larger training set sizes and more information about the past increase prediction quality. (A) In the simple activation circuit, the overall level
of cell responsiveness (E) tunes the maximal activation rate of F. Twenty sample responses of cells to the same light input are shown. At the initial
timepoint, all species are absent, except for E which is randomly sampled. E (green) varies in time, but F (blue) varies both in response to light and
changes in E. (B) LSTM-MLP network architecture was trained using different training set sizes (neglecting validation data) to produce five different
predictive models. All models used 3 h of past information to predict a 2 h horizon. The normalized RMSE is computed using the same 1000 example
test set for all models. Median error increases as the training set size is reduced. (C) Three models were trained to predict responses that extended 1, 2,
or 4 h into the future, using 3 h of the past and the full 10,000 example training set. Normalized RMSE(t) increases with time in the same way for all
models, regardless of how far in the future they were trained to predict. (D) Five models were trained to predict the future using different amounts of
past data, a model hyperparameter that determines the input size. The original training set size of 10,000 cells and future horizon of 2 h were used. The
median and spread of normalized RMSE in the test set increased considerably when fewer than 30 min were used to predict the future.
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Overall, this suggests that our LSTM-MLP architecture can
infer deterministic dynamics very well, even if presented with
noisy examples. For variable dynamics that are fundamentally
stochastic, trained models can also predict average dynamics
accurately, with only a small increase in percentage error. In
general, predictions were best at short timescales, before the
inherent randomness of the response accumulates into very large
differences between equally likely futures.

Prediction Quality Depends on Training Set Size. For
deep neural networks to correctly infer response dynamics, they
require access to a sufficient number of examples. However,
generating many long-duration examples of single-cell responses
can be experimentally challenging for certain cell stimuli and
responses of interest. Therefore, a critical question for the broad
applicability of this approach is what amount of data is sufficient
to allow the predictive model to generalize. To explore this, we
focused on models trained on the stochastic circuit that also
included changes in cell responsiveness and measurement noise,
as we considered this the most biologically relevant (Figure 3A,
green in Figure 2).
We first trained models on different numbers of single-cell

responses, ranging from 9000 to 1. Each example response was
36 h of randomized light stimuli and the simulated reporter
response, sampled every 5 min. During every training epoch, the
training data were sampled in batches, which included slicing out
a particular 5 h instance of the past and future from the longer 36
h response. We first ignored the validation set and focused only
on models that minimized error in the training set. When
evaluated on the same 1000 example test set, models trained on
either 9000 or 900 examples produced similar prediction errors
(Figure 3B), suggesting that even a smaller dataset than we had
initially used would have been sufficient. Only a 100-fold
decrease to a training set with 90 examples increased prediction
error.
We hypothesized that the poor generalization to the test set

for smaller training set sizes was due to overfitting. In such cases,
holding out some of the training data as a validation set can
identify at which point the training began to overfit the data.
Indeed, in cases with only 9 or 90 training examples, the error in
the held-out validation set initially decreased as the training
improved the weights, but then increased (Figure S3A). Keeping
the model that performed best on the validation set improved
predictions overall; considering 10 validation examples when
training on 90 examples improved error in the test set to match
models trained on 9000 examples alone (Figure S3B). This
suggests that holding out validation sets may improve prediction
performance when training on very few examples.
The fact that models trained using 100 examples total can

predict future responses as well as those trained on 9000
examples is somewhat surprising. However, this is likely due to
the fact that a 36 h recording of a single cell’s response actually
contains many examples of 2 h futures that follow 3 h of the past.
This suggests that for shorter recordings of cell responses, more
total responses may be required to train the model. We therefore
trained models where each “example” response was half as long
(18 h) or was precisely as long as the past and future horizon
used for the prediction (5 h). Without a validation set, these
shorter-duration responses required even more examples to
match the best performance for 36 h examples (Figure S3B).
However, with a validation set and sufficient examples, even the
shortest-duration examples could be used to match the best
performance when training on longer-duration responses.
Altogether, this suggests that longer-duration example responses

can partially compensate for a small number of single-cell
responses, though validation sets can also compensate for
shorter recordings. However, this apparent trade-off between
number of cells and length of response may be particular to our
synthetic data, in which the differences between early and late
responses and between individual cells are largely quantitative
differences in cell state. In real datasets, circuit performance may
qualitatively differ between cells, either due to aging or
spontaneous mutations. Moreover, for circuits that produce
more diverse input−output relationships, the absolute training
set size is likely different.

Prediction Quality Depends on the Amount of Past
Information, but Not Length of Horizon. Because the
LSTM-MLP deep learning architecture can flexibly accom-
modate different amounts of past and future data when making
predictions, we were curious how tuning these values affected
overall prediction quality. First, we considered the future
horizon. The evolution of error with time (Figure 2G) suggests
that longer-term futures are harder to predict. We wondered if
models trained to predict longer future horizons might sacrifice
short-term prediction quality to predict longer-term responses.
We returned to the full 10,000 example training set, with 90%
reserved for training and 10% for validation, and trained three
models to predict either 1, 2, or 4 h into the future given the cell’s
most recent 3 h of past responses. Across all prediction horizons,
the normalized RMSE was the same at short timescales, and the
median and spread of prediction error increased in the same way
along the horizon (Figure 3C). This suggests there is not
necessarily a trade-off in the prediction of short- and long-term
futures, even though processes with different dynamics (e.g., fast
activation of the dimer H relative to slower fluctuations in E)
occur at the same time. Indeed, changes to the dynamics of E
produced no change in prediction error when predicting over
either a short (1 h) or long (4 h) horizon (Figure S4A,B).
We next considered the effect of changing how much of the

cell’s past is provided as an input to the model. The LSTM-MLP
architecture uses the entire cell’s past light stimulus (U) and
responses (F) to build an encoded representation of the cell’s
history, presumably summarizing features such as the unob-
served concentration of dimer (H), as well as the degree and
instantaneous rate of change in the cell’s responsiveness (E). In
practice, long time series of past behavior are not always
available, but using very short amounts of the past response runs
the risk of undersampling these noisy dynamics. To assess how
the amount of data about the cell’s past impacts prediction
accuracy, we trained models to predict the same 2 h future with
access to different amounts of past information.
The number of past timepoints could be reduced from 36 (3

h) to 12 (1 h) without any change in normalized RMSE (Figure
3D). However, prediction quality decreased when only 6
timepoints (30 min) were used and deteriorated dramatically
when only 3 timepoints (15 min) were used. We hypothesize
that this cutoff reflects the number of observations or the
absolute amount of elapsed time necessary to perform state
estimation, either on the amount of dimer (H) or the light-
independent changes in cell responsiveness (E). Considering
that our model includes a 12 min delay between when the light is
changed and when it starts to have an effect, any architecture will
likely struggle to accurately infer the cell’s responsiveness with
only 15 min of past behavior. In fact, it may become easier to
predict longer-term futures, where there is more information
about the historical light context. This would reverse what we
have previously observed, where prediction error is initially low
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and grows over time. We indeed found that in the limit of a few
past timepoints, the prediction of the initial response was no
better than the prediction of the response endpoint, a trend that
held across different dynamics for E (Figure S4C).
Together, these results suggest that a minimum amount of the

past is required to make good predictions of the future and that,
for the circuit studied here, this requirement is not set by the
extrinsic noise, but rather depends on the dynamics of the
response to light, measurement noise, and stochasticity. Overall,
with sufficient information about the past, models can be trained
to predict arbitrarily far into the future, though the inherent
unpredictability of the process produces a growing error that can
eventually render those predictions moot.

Cascade-Associated Delays Increase the Need for Past
Data. An advantage of machine learning models over
mechanistic ones is their ability to predict input−output
relationships without explicit knowledge of intermediate
processes. Therefore, to explore whether our LSTM-MLP
architecture could model more complex circuits, we simulated a
cascade, a common motif in gene regulatory networks, by
inserting an intermediate component downstream of the light-
activated transcription factor and upstream of the reporter
(Figure 4A). Because of this additional intermediate, the
reporter input has a more complex dependence on the light as
well as additional delays; the additional unobserved component
may also make state estimation more complicated.
We explored two regimes for this circuit by tuning the amount

of intermediate required for half-maximal activation of the
reporter. When very little intermediate is needed to activate the
reporter, the reporter accumulates quickly after the addition of
green light, but has a slower response to red light, as the
intermediate must be diluted before the reporter can decay
(Figure 4B). In the second regime, much more intermediate is
required to activate the reporter, producing a delay in activation
under green light, but a faster response after red light is added.
We tuned the maximum activation rate of the reporter such that
both systems had the same steady-state behavior (Methods
section).
To assess prediction quality on this more complex circuit, we

followed a similar procedure as before, training the LSTM-MLP
on a simulated training set and evaluating error in a simulated
test set. Models trained to predict responses for the cascade
circuits had very similar normalized RMSE relative to models
trained on the “simple activation” case (Figures 4C and S5),
suggesting that this more “complex” circuit could also be
predicted by the LSTM-MLP architecture. We also asked if the
delayed dynamics of both cascades impacted the quality of
future predictions. We trained models to predict 1, 2, and 4 h
into the future. To avoid the confounding effect of different
magnitude responses of the different circuits, we used the RMSE
to quantify absolute prediction error. On short timescales (≤1
h), the absolute prediction errors were similar (Figure S6A),
though slightly larger for circuits with higher responses (e.g.,
“delay off” cascade). By contrast, at longer timescales (≥2 h),
this relationship inverted and the “delay on” cascade had the
largest absolute errors as well as the widest variance. This faster
accumulation of error for the “delay on” circuit was the most
notable difference in prediction quality we observed between the
three circuits. We hypothesize that this is because the “delay on”
cascade may produce a more diverse set of response dynamics
than the “delay off” circuit (Figure 4B), making its responses
harder to predict.

We then considered the amount of past information required
to predict the future, as the delay between a light stimulus and
the resulting change in gene expression means the future
response depends on stimuli that occurred further in the past.
Indeed, both circuits required more past information than the
simple activation circuit (Figure 4D), with the “delay on” circuit

Figure 4.Delays in activation affect prediction quality more than delays
in degradation. (A) In the cascade circuit, light (U) activates the
constitutively expressed dimer (H), which activates an intermediate (I)
that then activates a fluorescent reporter (F). The time-varying cell
responsiveness affects both the expression of the intermediate and the
reporter. By varying the amount of I required to half-maximally activate
F, we simulated two versions of the cascade with different delays. (B)
Fifty sample responses of I (purple) and F (blue) are plotted in
response to a simple light input sequence to show their on and off
dynamics. Though F approaches the same steady-state value for both
circuits, the “delay on” circuit takes longer to reach it. (C) Two models
were trained on 10,000 examples of either of the two cascade versions
shown in (B). Normalized RMSE was computed across the 1000
examples in the test set. Normalized RMSE for the simple activation
circuit is reproduced from Figure 2F for comparison. (D) Additional
models were trained to predict cascade dynamics using different
amounts of the past, ranging from 30 min to 3 h. Because the different
distribution of fluorescence values for the two cascades produces
systematic differences in normalized RMSE, we show here the non-
normalized RMSE. The dots correspond to the median error, while the
lines span the 25th to 75th percentiles. The simple activation case
(black) is reproduced from Figure 3D. The dotted gray line indicates
the error for the simple activation case with 36 past steps, as a reference
for the best prediction with the most information about the past.
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requiring evenmore past information than the “delay off” circuit.
For models trained on the least amount of past information (i.e.,
30 min, or 6 timepoints), absolute errors were similar but
appeared at different points in the future horizon (Figure S6B).

The model trained to predict the “delay off” cascade more
accurately predicted the short-term future, while the model
trained to predict the “delay on” cascade more accurately
predicted the distant future (Figure S6B,C). Thus, the delay in

Figure 5. Convolutional decoder can predict cell response probability landscapes. (A) Schematic of the auto-activation circuit. Light U activates the
dimerization of H, which in turn activates the reporter protein F. In addition, F also activates its own expression. (B) Schematic representation of the
MLP decoder architecture. The final layer is trained against a vector representation of the future fluorescence response. (C) Test sample with unimodal
response. The red and green light sequence is shown at the bottom of the plot. The past 3 h of the cell’s response are shown as a solid black line. The
vertical dashed line represents the separation between past timepoints, and the future response to predict. Thin gray lines represent the 1000 ground
truth realizations of this simulated cell’s future response. The solid blue line represents the predicted single-trajectory response from the original neural
network with anMLP decoder. (D) Test sample with bimodal response. In this sample, the prediction from theMLP decoder is unlikely but minimizes
prediction error. (E) Schematic representation of the convolutional decoder architecture. The final layer is trained against an image representation of
the future fluorescence response (Figure S8). (F) Prediction from the convolutional decoder for the unimodal sample. The prediction from the
decoder approximates the actual probability landscape compiled from all 1000 future realizations from (C). The distributions at the last timepoint for
each are shown to the right. (G) Prediction from the convolutional decoder for the unimodal sample. Even in the bimodal case, the network minimizes
loss by producing a prediction similar to the bimodal landscape from panel (D). (H) Jensen−Shannon distance over an 8 h horizon for the two network
architectures. The green region represents the distance over the test set for the MLP decoder, while the orange region represents the convolutional
decoder. Shaded regions represent the 25th−75th percentiles across the test set, and the solid lines show the median. The sharp increase in distance
over the last few timepoints for the convolutional decoder may be due to edge effects in expanding convolutional networks. (I) Jensen−Shannon
distance averaged over the first and last hours of the prediction horizon for unimodal (black) and bimodal (red) test sample cases.
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activation dynamics increased the amount of past information
required to predict the future, which suggests that this limit is
not necessarily set by the LSTM-MLP architecture but by the
dynamics of the process itself.
Together, these results show that circuits with additional

hidden components are not necessarily harder for the LSTM-
MLP architecture to predict. Rather, the underlying dynamics of
the process, which can depend on parameter choice as well as
circuit structure, are also important. Changing a single
parameter in our cascade circuit altered where the delay
occurred (i.e., in response to red or green light) as well as the
overall speed and magnitude of the response. Delays in the
response and how quickly the circuit approaches steady state
likely affect prediction quality in distinct ways. For example, a
cascade with more components can have a many-hour delay
between the input and the response, requiring past information
frommany hours prior to identify the stimulus that produced an
upcoming response. Alternatively, even a circuit that responds
immediately to light may approach steady-state slowly (relative
to the timescale of the light stimulus) or with diverse dynamics
(e.g., determined by a hidden variable), which decreases long-
term prediction quality or a model’s ability to generalize across
new examples.

Convolutional Decoder Can Predict the Entire Dis-
tribution of Future Cell Responses. We next asked how our
prediction approach performed when applied to circuits that
produce a more complex dynamic response, such as bistability.
Specifically, we evaluated our approach on a positive feedback
loop, where the downstream gene F is activated by light via the
dimer and also by itself (Figure 5A). This system displays a
hysteretic cycle where, at intermediate levels of light stimulation,
two stable equilibrium points can exist (Figure S7).We began by
using our initial network architecture that uses an MLP decoder
(Figure 5B) to predict cell response. In cases where the cell
behavior is unimodal, this network is able to predict a trajectory
that matches the response of most future realizations in our test
set well (Figure 5C). However, when the possible future
responses are bimodal, the network predicts a trajectory that
splits the difference between the two modes to minimize the
potential prediction error (Figure 5D). This is a poor prediction
because an intermediate trajectory is unlikely to occur since the
system will migrate toward only one of the two equilibrium
points, but which of these two will depend on the stochastic
response. This represents an important limitation of the single-
trajectory prediction method we have used so far. Moreover,
even in the unimodal case, the prediction does not convey any
information about the variability of the response to a particular
light sequence, in some sense also making this a poor prediction
of the true cell response.
To address this issue, we introduced a novel network

architecture that uses an expanding convolutional decoder to
predict cell responses as probability landscapes across time and
fluorescence levels (Figure 5E). The convolutional decoder
replaced theMLP decoder we implemented in all earlier designs
(Figures 2D, 5B), but the architecture otherwise remained
intact. When training this new network, we used exactly the
same training data as with the previous network, using past time
series of fluorescence and optogenetic events processed into a
latent vector of fixed size, that is then concatenated with the
future optogenetic sequence. The only difference is that the
future single-cell trajectory used as training ground truth was
formatted into an “image” representation, with the horizontal

and vertical coordinates corresponding to the time and
fluorescence levels, respectively (Figure S8).
As with our previous prediction network, the decoder cannot

learn to predict exactly how a single, stochastic cell will respond
to future light events. However, by allowing it to represent the
cell’s future as an “image,” with multiple fluorescence levels
possible at a given point in time, the network minimizes the loss
by predicting cell responses that closely match the full
probability landscape of the potential cell responses. This is
true not only for unimodal landscapes (Figure 5F) but also when
the cell response is bimodal (Figure 5G). This is somewhat
surprising given that the model is only trained on single
realizations of a cell’s future, yet the model infers that these
dynamics allow multiple possible futures. Thus, this new
approach not only provides information about the variability
in cell responses, it also provides an elegant approach to
multimodal time-series forecasting.
To evaluate how similar the model predictions are to the

actual probability landscapes in our test set, we computed the
Jensen−Shannon distance57 between the distributions at every
future predicted timepoint for both the convolutional decoder
and the MLP decoder (Figure 5H). As expected, the prediction
from the convolutional decoder is much closer to the actual
probability landscape than the single-trajectory prediction from
the MLP decoder. Interestingly, the distance for the convolu-
tional decoder prediction decreases in the first 30 min and then
remains constant across the prediction horizon. This may occur
because at early timepoints the network faces a state estimation
problem, where the response distribution depends strongly on
the state of the cell right before the prediction. Between the
stochasticity of the cell and measurement noise, a certain degree
of uncertainty is inevitable, and this makes it challenging to
predict how the cell distribution will look in the near future.
However over the long term, the responses tend to depend less
on the initial state of the cell and more on the illumination
sequence, making the long-term distribution of cell responses
easier to predict.
One way to explore the impact of state estimation errors on

prediction quality is to look at the correlation between
prediction error at early and late timepoints. We hypothesized
that these should be correlated, and perhaps correlated more
strongly in cases where stochasticity generates a bimodal
response. First, we classified the examples in the test set as
either unimodal or bimodal with the statistical dip test58 (Figure
S9). We split our dataset into 108 bimodal and 804 unimodal
cases, with the remainder representing ambiguous cases. We
found that the Jensen−Shannon distance was overall larger for
bimodal samples (Figure 5I).We also found that a large Jensen−
Shannon distance in the first hour of the prediction horizon was
more strongly correlated with a large distance in the last hour for
bimodal samples (Pearson correlation r = 0.53, p < 10−8) than
for unimodal ones (r = 0.39, p < 10−29). These results indicate
that not only are bimodal landscapes more difficult to predict
accurately, but also that early errors in state estimation can lead
to higher prediction error specifically in cases when the future
cell response is more dependent on its past, which is particularly
true for systems exhibiting hysteresis. Interestingly however,
even for the worst prediction of our test set, the model accurately
predicts the position of the distribution modes (Figure S10) and
appears to only fail at predicting their relative frequency because
of an erroneous initial state estimation.
These results show that by changing the decoder architecture,

we can train models to predict the probability landscape of cell
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responses to dynamic inputs, even when the response is
multimodal. Notably, even though the model is trained only
on single realizations of a cell’s possible future, it learns how
these dynamics enable diverse possible futures. This ability to
track the full set of possible outcomes causes prediction error to
decrease with time, the opposite of what we observed with the
MLP decoder architecture, which could only predict one
possible cell future.

■ DISCUSSION
Predicting cell responses is important for the design of new
biological systems, but remains challenging in cases where the
underlying process is stochastic or incompletely identified.
Machine learning methods, which can model input−output
relationships in the presence of noise and without mechanistic
information, present an exciting alternative. Using datasets
simulating the optogenetic control of gene expression in single
cells, we explored the ability of a deep neural network to predict
cell responses in the presence of different sources of noise and
across different classes of genetic circuits. We found that our
models could correctly infer the underlying dynamics of a cell
response even in the presence of measurement noise and
stochasticity in the biochemical reactions, though the latter
resulted in accumulating error as the time series progressed. By
contrast, adding additional components, such as variable cell
responsiveness or an intermediate, did not increase error
considerably. Rather, prediction quality depended strongly on
the training set size and the amount of the cell’s past the model
had access to when predicting future responses. Our stochastic
simulations highlighted a fundamental challenge to predicting
future responses. Requiring the model to predict a single future
by definition increases the prediction error because the breadth
of possible futures also tends to increase with time. We therefore
implemented a novel approach to predict the full distribution of
possible cell responses, which accurately predicted the future
states of even amultistable circuit. Together, our work highlights
the impressive potential of deep neural networks to infer cell
dynamics in the presence of noise, and the flexibility of machine
learning methods to perform diverse prediction tasks.
Extending this approach to a broader set of cell responses

depends onmany other important and interesting questions. For
example, though we did vary the training set size, various other
aspects of the training data, such as the overall structure or
diversity of the light inputs, likely also affect the model’s ability
to infer underlying dynamics. We also suspect that important
quantitative relationships, such as the sampling rate relative to
the speed of cell response, or the magnitude of the cell response
relative to measurement noise, will also affect prediction quality.
Models can also be trained on examples of more complex genetic
circuits or even simulations of arbitrary transfer functions, in
order to systematically probe the prediction capabilities of this
architecture. These could be extended to processes with
nonbinary inputs, reflecting graded light intensity or concen-
trations of inducers. Moreover, possible variants of the
encoder−decoder architecture have not been fully explored.
An LSTM decoder could predict arbitrarily far into the future,
whereas an updated encoder may perform better state
estimation on smaller samples of the cell’s past. Generative
approaches could also be used to rapidly provide possible future
response realizations, to mirror the stochasticity and temporal
statistics of single-cell responses. Lastly, training models on
simulated data of related cell processes could be used to explore
the potential of transfer learning, where models trained on one

dataset can be used to predict processes in another context, with
little or no additional training.
Pursuing these questions can lay the groundwork for exciting

future applications, most importantly predicting the responses
of living cells across diverse inducible systems in natural and
synthetic circuits. Deep learningmethods are likely powerful and
flexible enough to predict responses for many observable
outputs to inducible inputs, giving them broad applications
across processes such as metabolism and cell differentiation even
in the absence of precise mechanistic information. Moreover,
because any feature can be used as an output, thesemodels could
be used to infer relationships between variables that vary across
scales, such as the effect of a signaling protein on cell
morphology or size, which is not possible with most ODE
models.59 When coupled with optimizers that identify the best
possible input sequences to produce a desired output, such
models can enable model-predictive control of an equally broad
set of biological variables.53 The unique abilities of machine
learning models can make other prediction tasks more feasible
than they would be with traditional ODE approaches. For
example, predicting the distribution of future states may enable
the inference of noise propagation and multimodality from
single-cell traces, even without an expert-built model. At the
same time, deep learning methods can complement existing
ODE approaches. Machine learning models can approximate
ODE models, enabling fast and broad parameter exploration
before validating results with the slower mechanistic models.52

Architectures such as the LSTM-CNN can also be used to
approximate solutions to the chemical master equation, useful
for not only estimating average behavior, but higher-order
moments.60,61 Future work may also overcome the “black box”
nature of these models by reformulating them to have greater
interpretability,62,63 revealing what features are necessary to
predict future responses, or using other methods to infer
symbolic relationships, guiding the formulation of a more
mechanistic model.64 Overall, the power and flexibility of
machine learningmethodsmake themwell suited to a diverse set
of prediction tasks that will enable future synthetic biology
designs.

■ METHODS
Code for Simulations and Deep Learning Models. All

code necessary to simulate cell responses, generate training and
test sets, implement and train the neural networks, and generate
the figures in this manuscript is available in our deepcellcontrol
repository on Gitlab https://gitlab.com/dunloplab/
deepcellcontrol/.

Cell Simulations. To simulate the behavior of cells under
time-varying optogenetic inputs, we wrote a custom implemen-
tation of the original version of the Gillespie algorithm19 in
Python. This custom code made it easier for us to implement
optogenetic events, delays, and to investigate system behavior.
However, we also wrote a parallel implementation based on the
GillesPy2 Python library (https://github.com/StochSS/
GillesPy2) to verify the validity of our simulations. For the
deterministic simulation, we wrote an ODE solver based on the
SciPy library (https://scipy.org/) that used the same set of
parameters and propensity functions. Values for all species were
sampled every 5 simulated minutes, and the optogenetic inputs
were applied at the same intervals, to mimic the conditions of
our experimental platform.53

The solvers were implemented as methods to Python classes
that simulated the behavior of the circuits shown in this study.
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Specifically, we created a main parent class featuring system
propensity functions, parameters, and species that described the
behavior of the simple circuit described below. This model was
based on themodel fromChait et al.,56 with minor modifications
to propensities to increase the stochasticity of the system, and to
parameters to approximate the dynamics observed in exper-
imental data from our previous work.53 Then, we created child
classes based on this model where the propensity functions,
parameters, and species were altered to emulate the behavior of
different circuits (see Supplementary Methods).
To simulate measurement error and to match the dynamic

range of our experimental data, we multiplied simulated reporter
protein numbers by a factor of 40 and added an offset of 100.We
then clipped these “measured fluorescence” values to our
microscope camera’s range of [0, 4095]. When measurement
noise was applied, we added 5% Gaussian noise to these values
before clipping. For measurement noise, we largely considered
the errors associated with microscopy and downstream analysis.
The noise associated with an sCMOS camera is Poisson
distributed, related to the arrival of photons and generation of
electrons, which becomes normal in the limit of a large
characteristic rate.65 Individual cell fluorescence values are
typically extracted from microscopy images by segmentation,
the possible errors of which we also approximate with a
Gaussian. We ultimately chose to model noise with a
multiplicative factor M ∼ Normal (μ = 1, σ = 0.05) because it
produced traces similar to what we had observed in other
experiments. The resulting fluorescence “measurements” are
used in the training, validation, and test sets.

Genetic Circuits. We simulated the behavior of three main
circuits. First, we simulated a “simple circuit” (Figure 2A,B)
where light activates a constitutively expressed dimer that drives
the expression of a reporter protein. In this simple case, green
light activates expression of the reporter and red light deactivates
the CcaSR system, which leads to reporter decay because of
dilution. This circuit was simulated with the deterministic solver,
with or without added “measurement noise.” It was also
simulated with the stochastic solver, with added measurement
noise. Finally, we added a “cell responsiveness” proxy molecule
to the simulations under a Poisson process that evolves
randomly over time and is independent of the light sequence,
to approximate extrinsic cell-to-cell variability.
The second circuit is a cascade where the CcaSR system is

used to activate the expression of an intermediate gene that in
turn activates the expression of the reporter protein. The
activation of the reporter by the intermediate follows a Hill
function. To explore different versions of the cascade, we
changed the parameter governing the number of intermediate
molecules required for half-maximal induction (i.e., KI, see
Supplementary Methods). To ensure that all versions of the
cascade had the same steady-state behavior and thus
approximately similar fluorescence values, we adjusted the
maximal activation rate for the reporter (Supplementary
Methods).
Finally, the third circuit is an auto-activating loop where the

CcaSR system is simulated to activate the reporter protein, but
the reporter protein is also self-activated. We selected the
parameters of this positive feedback loop such that the circuit
displayed hysteretic behavior for intermediate values of average
optogenetic inputs (Figure S7).
A detailed description of these simulation models including

propensity functions and parameter values is provided in
Supplementary Methods.

Dataset Generation. For each circuit, we generated training
sets of simulated cell responses to random optogenetic
sequences. Unless otherwise specified, 10,000 cells were
simulated per training set, for 36-hour-long sequences to
match what we were able to achieve experimentally.53 The
optogenetic sequences were randomly generated as described in
our previous work,53 by binarizing a one-dimensional random
walk. These simulated training sets were saved to disk and used
for network training. Training was done in batches, where in
each batch, cells were uniformly sampled, and a uniformly
random timepoint in each sequence was picked. The “past”
time-series data prior to this point was fed as input to the
encoder. The “future” optogenetic sequence over the prediction
horizon was concatenated with the encoded representation of
the past and fed into the decoder. Finally, the “future”
fluorescence values were used as the ground truth for training.
To evaluate the impact of smaller datasets, we subsampled the
original training sets and saved these versions to disk for training.
We also generated test sets for each cell class to quantify the

accuracy of our prediction networks after training. However,
these test sets differed from our training sets in one crucial way.
Because our “cells” are simulated, we can compute several
stochastic realizations of a cell’s response to an optogenetic
sequence that are all consistent with its past. To do this, we first
generated a single realization of the response over a 24-hour-
long optogenetic sequence for 1000 different cells. This
constitutes the “past” part of our evaluation sets and serves as
input to the model being evaluated. Then, for each of these 1000
samples, we computed 1000 realizations of the response to a
single “future” optogenetic sequence of 4 h (or 8 h for the auto-
activation case, which allowed us to evaluate the probability
landscape prediction accuracy over long periods and better show
bistable responses). In this way, we estimated the distribution of
possible responses to the future sequence, which we then used to
compute prediction accuracy by comparing the prediction
(either a single value, for the MLP decoder, or distribution of
predictions, for the convolutional decoder) to the distribution of
possible futures.
To train the convolutional decoder version of our network we

used the same datasets as we did for the MLP decoder version,
but re-formatted the “future” fluorescence ground truth
trajectory as an image for training. A simple way to do so
would be to represent fluorescence by the vertical pixel position
in the image and time by the horizontal pixel position, setting the
pixels corresponding to time-series data to 1 and all remaining
pixel values to 0. However, the dimensions of the “image” must
not be too large or it slows down training. For technical reasons
related to the network architecture, image dimensions also need
to be multiples of 8. We therefore binned the [0; 4095] floating-
point fluorescence values into 96 bins. To avoid losing too much
information by directly quantizing fluorescence values, we
applied a Gaussian kernel to these values, and the resulting
Gaussian curve itself was binned into the corresponding pixels
along the fluorescence axis (Figure S11). Thus, the actual
fluorescence value can be reconstructed from the binned image
representation with minimal loss of information. Along the time
axis of the image, we simply sampled all timepoints, and because
we use an 8 h horizon with a 5 min sampling rate, the time axis is
also 96-element long. Thus, the resulting image is a 96 × 96
representation of the single cell, single realization response to
the “future” optogenetic sequence, that can then be used as the
ground truth to compare to the output of the convolutional
decoder in training. For the test set, we used the same approach
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to compute the “actual” probability landscape: For each sample,
we computed the image representations of each of the 1000
future realizations of the cell response to the future optogenetic
sequence and then averaged all 1000 images together to obtain
the probability landscape.

Machine Learning Network Architectures. All models
were written with the Tensorflow library and the Keras API. The
first network is almost identical to the one introduced in our
previous work,53 which features an encoder−decoder architec-
ture (Figure S12). Briefly, the encoder contains two LSTM
layers of 64 and 16 units that process past fluorescence and
illumination time series into a 32-element latent vector
representation. The decoder is an MLP that is trained to predict
future fluorescence levels based on a concatenation of the latent
representation of the past with the future optogenetic events.
The decoder features 5 densely connected layers of 32 neurons,
with rectified linear activation functions. The final layer is a
densely connected layer of 12, 24, or 48 units depending on the
prediction horizon (1, 2, or 4 h, respectively), with a linear
activation function. We used a multilayer perceptron decoder
because it can be parallelized more efficiently than another
LSTM.
To predict probability distributions, we introduced a second

architecture that replaces the MLP decoder with an expanding
convolutional decoder, an architecture similar to the decoder
part of variational autoencoders for image generation (Figure
S13). The LSTM encoder architecture is unchanged from the
first model, where the latent representation of the past time
series is also concatenated with the future optogenetic time
series. However, before being passed to the decoder, this vector
is then used as input to a single densely connected layer and then
reshaped into a three-dimensional (3D) tensor of shape 12 × 12
× 16, and a two-dimensional (2D) convolutional layer with 16
filters is applied. This 3D tensor is then fed through 3 up-scaling
blocks composed of 2 layers: a transposed convolutional layer
with a stride of 2 that doubles the size of the tensor along its first
2 dimensions, and then a convolutional layer to further process
the result. The layers in these three consecutive blocks feature
32, 16, and 8 filters, and upscale the image by a total factor of 8,
generating a final tensor of shape 96 × 96 × 8. This tensor is
processed by a final convolutional layer into an output of shape
96 × 96 × 1, corresponding to our horizon of 96 timepoints and
96 quantized fluorescence levels.

Training and Evaluation. The networks were trained for
200 epochs, with a batch size of 100, and 200 steps per epoch.
Unless otherwise specified, the training set was split into 90%
training data and 10% validation data. Root mean square error
(RMSE) and mean absolute error (MAE) were evaluated over
the validation data after each training epoch to assess overfitting.
After each epoch, model weights were saved to two different files
depending on whether theyminimized training loss or validation
data error. Unless otherwise specified, the weights that had
minimized the validation error were used after training. We used
the Adam optimization algorithm,66 with a learning rate of
0.001. For the networks with an MLP decoder, mean square
error was used as training loss. For the network with a
convolutional decoder, Huber loss was used.67

We evaluated the quality of our single-trajectory predictions
by computing various error metrics. In most cases, we computed
the normalized RMSE or normalized RMSE(t) across all of the
ground truth realizations for each sample in the test set, as
defined in the main text. Briefly, for each sample, the error
between each of the 1000 realizations and the prediction was

computed, squared, and then the mean error across all
realizations was computed at each timepoint, resulting in a
single, time-distributed vector per sample in the test set. Finally,
the square root of all elements in these vectors was computed.
This way, we were able to obtain not only the normalized RMSE
over time but also a distribution of that error across the test set,
which would not have been possible to compute without
multiple realizations of future ground truths. In cases where
comparing normalized RMSE values were challenging because
the two test sets had systematically different ranges of
fluorescence values and thus very different normalization values,
we computed RMSE (or RMSE(t)) as follows
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where i indexes the possible future realizations of a cell’s
response and Fp(t) is the predicted response.
In many cases, the RMSE or normalized RMSE was large

because the spread of possible values for Fi(t) was also large and
could not be approximated by a single future prediction. We
were therefore curious if the model was correctly predicting the
average future response, i.e., producing the minimal possible
RMSE. We therefore also computed the normalized root mean
squared error relative to the average future (NRMSEaverage) as
follows
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with i as the index for each cell’s possible future responses. To
explore how this error evolves with time, we also computed a
normalized absolute error
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To evaluate the quality of our probability landscape
predictions, we computed the Jensen−Shannon distance57

across time between the model predictions and the Gaussian
kernel histograms of the test set ground truth described above.
The Jensen−Shannon distance is a measure of the similarity
between two probability distributions. It is calculated as the
square root of the Jensen−Shannon divergence, which is a
symmetric version of the Kullback−Leibler divergence, using
the following formula:
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and D(P||Q) is the Kullback−Leibler divergence, computed as
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with x as the bins of fluorescence values used for the
convolutional neural net prediction. By definition, the Kull-
back−Leibler divergence is not symmetric, as it quantifies the
information lost by using one distribution to approximate
another, which is not the same as its inverse. The Jensen−
Shannon divergence involves computing the Kullback−Leibler
divergences twice, between either of the two distributions and
the average of these two distributions. The resulting Jensen−
Shannon distance ranges from 0 to 1, where 0 means the two
distributions are identical and 1 means they are completely
dissimilar.
We used the statistical dip test58 to evaluate whether the

distribution over the last hour of the evaluation histograms was
unimodal or bimodal. This test works by calculating the
empirical distribution function over all sample points and then
minimizes the maximum vertical difference between a unimodal
reference distribution and the cumulative empirical distribution.
This minimized difference is thus indicative of how close the
empirical distribution is to being unimodal, and after analyzing
our evaluation dataset with this test, we chose a dip difference of
3 × 10−3 as a threshold below which our data was considered
unimodal, and 6 × 10−3 as a threshold above which our data was
considered bimodal (Figure S9).
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