Paper: Elastogranular Mechanics

By in Papers
February 14th, 2018

Elastogranular Mechanics: Buckling, Jamming, and Structure Formation
David J. Schunter, Jr., Martin Brandenbourger, Sophia Perriseau, and Douglas P. Holmes,
Physical Review Letters, 120, 078002, (2018).

Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.

Link: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.078002

elastogranular