CReM logo

Lung Stem Cell and
Developmental Biology

The mission of the CReM’s Program in Lung Stem Cell Biology is to develop the world’s leading lung regeneration initiative by advancing the basic science that will result in personalized therapeutics to prevent and cure diseases or injuries of the lung, including emphysema, ARDS, pulmonary vascular disease, cystic fibrosis, additional adult and pediatric genetic lung diseases, and pulmonary fibrosis. We seek to understand the essence of how lung cells decide and remember their fate, thereby revealing the basic mechanisms by which diseased or dysplastic lung cells can be returned to normalcy. We study the genetic and epigenomic landscapes of lung cell fate, the mechanisms that establish those fates, and the stem cell populations that can be harnessed to produce those fates.

Here at the institution that invented the principle spirometric measure of lung function (FEV1), founded on a half century of internationally recognized leadership in basic and clinical lung research, we utilize BU-patented reprogramming technology for the production and differentiation induced pluripotent stem (iPS) cells and we examine the biology and embryonic development of endogenous lung progenitors. Utilizing the world’s largest lung disease-specific stem cell bank, the BU/BMC iPS cell bank, we engineer stem cells for next generation clinical trial simulation, personalized therapeutic model predictions, high throughput drug screenings, and cell-based therapies of lung diseases. Ultimately our initiative’s discoveries seek to culminate in the de novo generation of all the lung lineages required to generate transplantable, tissue-engineered cells, complex tissues or entire organs needed to accomplish successful lung regeneration.

To read more about these programs, please click on the links for each of our labs—all located on a single floor of our 16,000 square ft CReM stem cell facility

  1. Kotton and Hawkins Labs
  2. Ikonomou Lab
  3. Wilson Lab
  4. Rock Lab