
'

&

$

%

DETECTING AND SUMMARIZING SALIENT

EVENTS IN COASTAL VIDEOS

Daniel J. Cullen

14 May 2012

Boston University

Department of Electrical and Computer Engineering

Technical Report No. ECE-2012-06

BOSTON

UNIVERSITY

DETECTING AND SUMMARIZING SALIENT EVENTS

IN COASTAL VIDEOS

Daniel J. Cullen

Boston University

Department of Electrical and Computer Engineering

8 Saint Mary’s Street

Boston, MA 02215

www.bu.edu/ece

14 May 2012

Technical Report No. ECE-2012-06

Acknowledgements

Advisors

Professor Janusz Konrad

Professor Thomas D.C. Little

Sponsor

The Consortium for Ocean Sensing

of the Nearshore Environment (COSINE)

(funded by the MIT SeaGrant Program)

Summary

Coastal environment sensing is an application of video surveillance that is of great

interest to many biologists, ecologists, environmentalists, and law enforcement offi-

cials. We present a practical approach to detection and summarization of three salient

events in coastal videos, namely the appearances of boats, motor vehicles, and people

near the shoreline. Our approach consists of three fundamental steps: object de-

tection through background subtraction and connected-components analysis, object

classification using covariance of features in the detected regions, and summarization

by means of video condensation. The goal is to distill hours of video down to a few

short segments containing only salient events, allowing human operators to expedi-

tiously study a coastal scene. We demonstrate the effectiveness of our approach on

long videos taken of the beach on Great Point, Nantucket, Massachusetts.

i

Contents

1 Introduction 1

2 Literature Review 4

2.1 Background Subtraction . 5

2.2 Behavior Subtraction . 7

2.3 Covariance Matrix-Based Object Detection and Classification 8

2.4 Automatic Threshold Selection . 10

2.5 Image Gradients using Cubic Convolution Interpolation 11

2.6 Seam Carving . 12

2.7 Video Condensation . 15

3 Methods 20

3.1 System Architecture Overview . 21

3.2 Implementation Details . 21

3.3 Background Subtraction . 22

3.4 Behavior Subtraction . 24

3.5 Masking . 27

3.6 Obtaining the Regions of Interest . 27

3.7 Covariance Matrix-Based Object Classification 28

3.8 Improvements . 38

4 Experimental Results and Discussion 42

5 Conclusions and Future Work 46

References 48

Appendices 51

A MS Project Symposium Poster 51

B Source Code 53

C Covariance Matrix-Based Detection Reports 53

D AVSS2012 Draft Paper 74

ii

E Draft of System Specification 81

E.1 Introduction . 81

E.2 System Block Diagram . 81

E.3 Usage . 81

E.4 Configuration File . 83

E.5 Output . 88

E.6 Caveats . 88

E.7 Other Observations . 89

E.8 Miscellaneous . 90

F Preliminary C++ Video Condensation Benchmarks 91

iii

List of Figures

1 Case study: Great Point, Nantucket, Massachusetts. The Great Point

Lighthouse (a) has a video camera (b) mounted at the top (from a

prior BU project), which captures scenes of the beach (c). 2

2 Illustration of each step in the proposed approach. 4

3 Original and background-subtracted frames. Top: Pedestrians in Marsh

Plaza on BU campus. Bottom: Traffic on Interstate-90 near BU campus. 6

4 Similarity (i.e., 1/distance) to cars dictionary for fixed-size rectangles

across image. 9

5 Examples of seam carving borrowed from Avidan and Shamir 2007 [2]. 13

6 Video Condensation Example. Two images from two totally different

moments in time merged into same frame. 16

7 Illustration of vertical ribbons (a) and horizontal ribbons (b), borrowed

from [15]. 17

8 Example showing silhouette tunnels (in blue) and ribbons (in red).

Image borrowed from [15]. 18

9 Video condensation demonstration. Frames are from a video of Marsh

Plaza on BU Campus. 19

10 Example of video condensation. The three boats are from three differ-

ent instants in time, but video condensation allows us to summarize

this by merging them into the same frames. 20

11 System Block Diagram . 21

12 Background-subtracted frame before (left) and after (right) enabling

the Markov random field (MRF) model. Notice that the MRF model

helps to “fill in” the interiors of the silhouettes of the cars, the truck,

and the pedestrians. 23

13 Ripples on a pond: original image, background subtraction, and be-

havior subtraction . 26

14 Beach: original image, background subtraction, and behavior subtraction 26

15 Three samples from each of the dictionaries: (a) boats, (b) cars, and (c)

people used in feature-covariance detection. Images have been obtained

from a search on Google Images. 30

16 Multithreaded, Pipelined Implementation 37

iv

17 Aspect ratio technique. (a) shows the original behavior-subtracted

frame, whose connected components give a large bounding rectangle

around the wake, seen in (b). The result of applying the aspect ratio

threshold technique is shown in (c). 40

18 Samples of typical input video frames (top row) and outputs from

the processing blocks in Figure 11: (row 2) background subtraction,

(row 3) behavior subtraction, (row 4) object detection, (row 5) video

condensation. 44

19 SEAL System Block Diagram . 82

20 Object Detection Block Diagram . 82

v

List of Tables

1 Number of frames after each flex-step and cumulative condensation

ratios (CR) for 38-minute, 5 fps video with boats and people (11,379

frames after behavior subtraction). 45

2 Number of frames after each flex-step and cumulative condensation

ratios (CR) for 22-minute, 5 fps video with boats, cars and people

(6,500 frames after behavior subtraction). 45

3 Average execution time for each stage of processing. 46

vi

Detecting and Summarizing Salient Events in Coastal Videos 1

1 Introduction

In recent years, technological improvements have made digital cameras ubiquitous.

They have become physically smaller, less expensive, more efficient in power con-

sumption, wirelessly-networked, more readily available, and altogether easier for the

average consumer to use. Even low-end, off-the-shelf personal digital cameras can

capture hours of high-definition video nowadays, thanks to fast embedded processors

and high-density storage media. For these reasons, cameras are finding increasing use

in many new surveillance applications outside of the more-traditional public safety

applications. One example of this is environmental monitoring. Scientists and re-

searchers can deploy networks of cameras, such as the one described in [16], to gather

video data to study wildlife and the environment.

This project focuses on one particular coastal environment sensing case study.

We have collected hundreds of hours of video data from a networked camera located

at the beach on Great Point, Nantucket, Massachusetts (see Figure 1). Many or-

ganizations are interested in using this data to answer questions about the wildlife,

erosion, and how humans impact the environment. For example, biologists would

like to learn more about how many seals (marine mammals) are on the beach at any

given time and whether or not humans have gotten too close to them. Environmental

protection agencies need to know how many people and automobiles have been on

the beach beach and whether or not they have disturbed the fragile sand dunes. Law

enforcement officials also have concerns about automobiles on the beach. Other or-

ganizations would like to keep track of the boats passing through the harbor. These

are just a few of the many uses of coastal video data.

A fundamental difficulty in many surveillance applications is that there is simply

too much data for human operators to watch. A single camera recording continuously

all day long, seven days a week produces over one hundred hours of video data per

week, and if multiple cameras are used, this number can grow to thousands of hours.

Even if the videos were played back at high speed, the amount of data to visually

inspect is enormous, and there is still a chance of missing an important event (due to

frame skipping, operator fatigue, etc.). Many organizations simply do not have the

resources to hire humans to study the data.

Therefore, the goal of this project is to develop automatic algorithms to identify

and summarize the salient events in the videos. In particular, this project focuses on

events involving three specific classes of objects, namely cars, boats, and people. This

Detecting and Summarizing Salient Events in Coastal Videos 2

(a) Great Point Lighthouse (b) Camera on Great Point Lighthouse

(c) View of beach from the camera in (b)

Figure 1: Case study: Great Point, Nantucket, Massachusetts. The Great Point Lighthouse (a) has
a video camera (b) mounted at the top (from a prior BU project), which captures scenes of the
beach (c).

Detecting and Summarizing Salient Events in Coastal Videos 3

choice of objects of interest is dictated by our specific application but the approach

we propose is general and can be applied in other scenarios as well.

Our proposed approach has three key steps: object detection, object classification,

and video summarization. First, since motion in videos is generally considered inter-

esting, we apply a technique known as background subtraction [18] to identify areas of

motion. Unfortunately, the presence of ocean waves, dune grass blowing in the wind,

and other spurious background activity results causes problems in the subsequent

processing steps, namely increased false positives in object classification and poor

degrees of video summarization. Therefore, we apply a technique known as behavior

subtraction [12] to remove some of this uninteresting, stochastically-stationary back-

ground activity. We next apply connected-components analysis to obtain bounding

rectangles around the blobs of the detected objects. Next, in the object classifica-

tion step, we apply the region covariance approach of [21] to determine whether a

rectangular region likely contains a boat, a car, a person, or none of these. Finally,

we summarize the video using a technique called video condensation [15], adapting

it to our needs by using the outputs of behavior subtraction and object classification

as the cost function for condensation. The end result of our approach is that we

have a system that automatically distills hours of video down to a few short segments

containing only the salient events.

A block diagram of the proposed system is given in Figure 11. A sequence of

sample images illustrating each of the steps is shown in Figure 2. For a quick overview

of the project, we refer the reader to the project poster given in Appendix A, as well

as the Reader’s Digest version of the project in our AVSS conference paper draft

reproduced in Appendix D.

Another reason why object detection and classification is desirable is that once

the objects are identified, we can run algorithms to track the objects and generate

statistics about the quantities and behaviors of objects. The first step in a more-

sophisticated analysis of the scene is detecting and identifying the objects involved.

However, this is outside the scope of this project. For now, a human operator is

still required to analyze the condensed video due to the complexity of the scene

and the fact that that the researcher may not have a clear idea of what constitutes

an anomalous event. Since the human user is unavoidable, video condensation is

indispensable because it greatly expedites his or her job.

In our approach, we place a strong emphasis on designing the system for fast

execution speed. For example, we modified the background subtraction described in

Detecting and Summarizing Salient Events in Coastal Videos 4

Figure 2: Illustration of each step in the proposed approach.

[18] to use a simple, exponentially-smoothed moving average for speed, plus a Markov

Random Field (MRF) model to improve accuracy. Speed is critical when there are

many hours of video to process, or if slower embedded systems will be running the

algorithms, or if the observers would like to quickly respond (in real time) to the

events in the video.

Of course, there are several assumptions that we make about our input videos.

We assume that the camera is fixed (stationary) and does not move or zoom. We

assume that there is no camera shaking, no water on the lens, constant lighting (i.e.,

no change in cloud cover and no sudden changes in camera camera gain), and so on.

This paper is organized as follows. First, the Literature Review section provides

background about each of the techniques we apply in this project. Next, we describe

our system in further detail in the Methods section, explaining how we implemented

and tested each component. After that, we discuss some of the experimental results

from running the complete system. Finally, we offer a few concluding remarks and

suggestions for future improvement.

2 Literature Review

In this section, we discuss the theoretical background of each of the algorithms that

we employ in our system. We hope that this section serves as a useful starting

point for the reader and helps to explain the key points and design decisions of our

approach. We try to keep this section concise and practical, summarizing and relevant

Detecting and Summarizing Salient Events in Coastal Videos 5

referencing prior work while avoiding esoteric detail; for more explanation on each

topic, refer to the cited papers.

2.1 Background Subtraction

Background subtraction is a much-studied and well-understood problem in the lit-

erature. The idea is to separate the salient foreground objects in a scene from the

uninteresting background. For example, consider a video of an urban street corner

captured using a fixed camera. Every so often, pedestrians and cars (the foreground

objects) move past the camera, but the buildings and environment (the background

objects) remain relatively unchanged. Many background subtraction algorithms mea-

sure the change in pixel intensity values in order to classify each pixel as belonging

to either the foreground or background. Thus, these techniques capture motion in an

image.

Figure 3 provides some examples of background subtraction. The original frames

are shown on the left and the background-subtracted frames are given on the right.

As can be seen, the background-subtracted frames are binary images in which the

foreground pixels are marked with logic ones (white pixels) and the background pixels

are marked with logic zeros (black pixels).

One approach to background subtraction is presented by Mike McHugh et al. in

[17] and [18]. This approach uses kernel density estimation (KDE) to estimate the

probability that a pixel belongs to the background. 1 In addition, [18] uses a Markov

random field (MRF) model to greatly improve accuracy. It also presents a foreground

model that can be used for a marginal increase in performance.

Unfortunately, although the KDE approach yields excellent results, it is also very

computationally intensive and is therefore quite slow. Since our system will be used to

process many hours of video, it is important that we perform the background subtrac-

tion as efficiently as possible. A simpler, faster alternative is to use an exponentially-

smoothed moving average (i.e., a recursive filter) to estimate the mean and variance

of each of the pixels in the image. This approach also requires less memory than

KDE, as it only requires storing an average image and a variance image, rather than

a long buffer of images. Yifan Yu explored this moving average approach in his Mas-

ter’s project [25] and found that it works reasonably well, although it is not quite as

accurate as KDE. One reason for this is that KDE intrinsically models multi-modal

1More information about using KDE for modeling the background can be found in Elgammal et
al. [4].

Detecting and Summarizing Salient Events in Coastal Videos 6

Figure 3: Original and background-subtracted frames. Top: Pedestrians in Marsh Plaza on BU
campus. Bottom: Traffic on Interstate-90 near BU campus.

Detecting and Summarizing Salient Events in Coastal Videos 7

probability distributions, whereas the moving average approach assumes uni-modal

distributions.

In this project, we implemented both the KDE and recursive moving average ap-

proaches. Specific details of our implementation are discussed in the Methods section.

Results of our code are discussed in the Experimental Results and Discussion section.

2.2 Behavior Subtraction

In the coastline videos that we wish to process, there is a great deal of uninteresting,

repetitive background motion such as ocean waves and dune grass. This results in

many spurious detections when we perform background subtraction. One simple thing

that we can do is select a region of interest, ignoring or “masking-out” all activity in

regions of the image that we don’t care about. While this primitive method works well

in situations such as monitoring people on the sandy part of the beach but ignoring

all activity in the dune grass and in the ocean, it does not work when we need to

analyze objects in the the same region as the false detections, such as boats on the

water. Furthermore, this approach requires a human to manually select the region

of interest, but ideally we would like to have a method that requires minimal human

intervention.

We implemented an algorithm called behavior subtraction to reduce the number

of false detections. Behavior subtraction [12] is an algorithm that removes stationary

motion from a video. We run background subtraction to create the binary cost video

and then run behavior subtraction to remove the false detections. The behavior

subtraction algorithm has two phases: training and processing. In the training phase,

we examine a window of N frames from the M frames of training data (where M ≥
N). The training data should exhibit the stationary behavior that we want to remove,

but it should not have any “interesting” moving objects. First, we sum up the cost

at each pixel in the window. Then we shift our window by one frame and perform

another summation. We record the maximum of each of the summations at at each

pixel at each window location. This completes the training phase. The next phase

is the processing phase. We perform the same kind of summations over the sliding

window as we did during the training phase, except that we compare the sum against

the maximum, rather than updating the maximum. If the difference between the sum

and the maximum is greater than a certain threshold, we detect the pixel as interesting

motion and write a white pixel to the output video file; otherwise, we write a black

Detecting and Summarizing Salient Events in Coastal Videos 8

pixel. The rationale behind this is that an “interesting” object will occupy those

pixels for more frames than the maximum frames occupied by stationary behavior,

thereby allowing us to discriminate between interesting and uninteresting motion.

2.3 Covariance Matrix-Based Object Detection and Classifi-

cation

We base our object detection and classification approach on the works [21] and [20].

We have selected this approach because of of its success in identifying objects and

also because its robustness to non-idealities such as partial occlusion and illumination

changes. Others, such as [10] and [9], have also had a great deal of success in apply-

ing similar covariance matrix-based techniques to other applications, such as action

recognition and classification.

The approach described in [21] entails computing a d-dimensional vector of simple

features for every pixel in a region of n pixels in an image, and then generating the d×d
covariance matrix from all n of the feature vectors. For simplicity, rectangular regions

of pixels are used. The similarity of two regions can be computed using a distance

metric. Since covariance matrices lie on a Riemannian manifold in non-Euclidean

space, we cannot use a simple Euclidean distance measure. [21] recommends using

the distance metric proposed in [5], in which the square root of the sum of the squared

logarithms of the generalized eigenvalues of the covariance matrices gives the distance.

[9] uses another distance metric in which the matrix logarithms of the covariance

matrices are computed and the Frobenius norm gives the distance between them.

To detect the objects in the image, [21] describes a brute-force search using fixed-

size search rectangles of different scales. The distance between the target covariance

matrix and the covariance matrix of each query location is computed and compared

to a threshold; if the distance is less than the threshold, the object is detected. To

increase the speed of the search, they use a technique called “integral images”, which

allows them to quickly obtain the covariance matrix for any arbitrary rectangular

region by performing simple arithmetic on precomputed integral images.

An example of such a brute-force search is shown in Figure 4. On the left is a

3D surface that shows the similarity (i.e., 1/distance) between the cars dictionary

and fixed-size query rectangles scanned all over the image. The regions around the

two jeeps are most similar (i.e., their distance is minimized) to the cars dictionary.

Clearly, thresholding this 3D surface allows us to detect these vehicles as cars. For

Detecting and Summarizing Salient Events in Coastal Videos 9

more examples of 3D plots such as this one, please refer to C.

Figure 4: Similarity (i.e., 1/distance) to cars dictionary for fixed-size rectangles across image.

The main drawback to the brute-force search is that even with integral images, it

is computationally expensive, especially when many frames of video must be searched

for many different classes of objects. Since we want our own system to run in nearly

real-time, we do not use a brute-force search. Instead, we use the the bounding boxes

from connected components of the behavior-subtracted video as the set of regions that

we need to test. This greatly reduces the number of locations that must be checked,

greatly increasing the search speed and eliminating the need to use integral images.

Another advantage of our own approach is that it is more automatic because the size

of the search windows comes from the connected components; in contrast, [21] uses

several fixed-size search windows, so there is an underlying assumption about the

sizes of the target objects.

We used a feature vector recommended by [21] that contains six features: the x

and y pixel coordinates relative to the top-left corner of the region of interest and

the first-order and second-order gradients in each direction, calculated using simple

derivatives of cubic convolution interpolation [14] of the pixel intensity I. Equation 1

shows this vector:

ζ(x, y) =

[
x, y,

∣∣∣∣
∂I(x, y)

∂x

∣∣∣∣ ,
∣∣∣∣
∂I(x, y)

∂y

∣∣∣∣ ,
∣∣∣∣
∂I2(x, y)

∂x2

∣∣∣∣ ,
∣∣∣∣
∂I2(x, y)

∂y2

∣∣∣∣
]

(1)

Note that for some applications, [21] also proposes augmenting this feature vector

to also contain RGB color components. However, in our system, we do not use the

color-augmented feature vector because we want our system to consider only the

Detecting and Summarizing Salient Events in Coastal Videos 10

shapes of the objects. Many of the types of objects that we wish to test, such as

cars can come in many different colors. Rather than create more databases, one for

each color of car, we simply ignore color and consider only shape. Our preliminary

preliminary experiments have shown that an augmented feature vector can improve

detection accuracy for certain classes of objects, but

We use a nearest-neighbor approach similar to the one described in [9] to detect

the objects. We first compute the similarity between a given test region in the image

and each of the images in our dictionary using the distance metric and then we find

the minimum of these distances. If the minimum distance between the test region

and the dictionary is less than a given threshold, the object is detected. For each

class of object that we want to compute, we have a different dictionary. We repeat

this procedure for each class of object that we wish to detect, comparing the region

against all of the images in the dictionary corresponding to that particular class of

object.

Since covariance matrices do not lie in a Euclidean space, the Euclidean dis-

tance between covariance matrices is a poor measure of similarity. Therefore, for

our distance metric, we instead use the the Frobenius norm of matrix logarithms, as

proposed by [1]. This method is efficient because we can precompute and store the

log covariance matrix for each image in each dictionary. To check if a given target

region contains an object, we simply compute the Frobenius norm between the target

log covariance matrix and the item from the dictionary. This is more efficient than

the [5] method because at each step, all we need to do is take the sum of squared

differences between elements of two matrices, rather than having to apply eigenvalue

decomposition at every step.

The matrix logarithm of a covariance matrix C is computed as follows. Suppose

that the eigen-decomposition of C is given by C = V DV ′, where the columns of V are

orthonormal eigenvectors and D is the diagonal matrix of (non-negative) eigenvalues.

Then log(C) := V D̃V ′, where D̃ is a diagonal matrix obtained from D by replacing

D’s diagonal entries with their logarithms.

2.4 Automatic Threshold Selection

Ideally, one would like the detection threshold for the covariance matrix-based tech-

nique to be automatically established based on a desired confidence level (e.g., 95% like-

lihood of detection), so that the system does not require any human intervention. One

Detecting and Summarizing Salient Events in Coastal Videos 11

technique to accomplish this called leave-one-out cross-validation (LOOCV). This

technique involves generating a distribution of pairwise distances between elements

of the training set, or in our case, between elements of the dictionaries of reference im-

ages. It has been applied successfully for other applications using similar covariance

matrix-based metrics in [6, p.75-76] and [8].

2.5 Image Gradients using Cubic Convolution Interpolation

We want to use object shape as one of the features when building our covariance

matrices. One way to characterize shape is to find the edges in the image. There are

many different approaches to edge detection, but one of the simplest is to compute

derivatives of the pixel intensity in the image. This can be accomplished by taking

simple pairwise differences between pixels along the horizontal and vertical directions

(treating each direction independently). (The pairwise differences can be obtained

by convolving each row and column of the image with the kernel [-1, 0, 1]; second

derivatives can be obtained using the kernel [-1, 2, 1].) Typically, some type of lowpass

filtering is applied before taking the pixel differences in order to minimize the effects

of high frequency noise in the gradient.

However, in this project, we decided to take a slightly more sophisticated ap-

proach. Rather than filtering and convolving with a difference kernel, we use the

cubic convolution interpolation approach suggested by Robert G. Keys in [14] to

model the image with cubic functions passing through each set of four consecutive

points in the rows and columns. The coefficients of the cubic function are obtained

using these sample points. Symbolic differentiation of the equation for this cubic

function yields symbolic equations for the first and second derivatives, which we can

easily use to find the gradients at any point in the image.

The equation for cubic convolution interpolation from [14] is as follows:

g(s) =
f(a)(−s3 + 2s2 − s) + f(b)(3s3 − 5s2 + 2) + f(c)(−3s3 + 4s2 + s) + f(d)(s3 − s2)

2

where a, b, c, and d are four consecutive points, f(x) is the value of the function

(i.e., pixel intensity) at point x, and s is a value on the interval [0.0, 1.0] indicating

the location at which we want to obtain the interpolated value g(s). Note that we

are interpolating between points b and c, so s is the fraction of the linear distance

between b and c. Furthermore, if we wanted to interpolate between points a and b or

between points c and d instead, we would simply shift to the left or to the right by

Detecting and Summarizing Salient Events in Coastal Videos 12

one point so that the desired interpolated point would be centered between b and c

again. If you want to interpolate a point near either the left or right boundary of the

data, but the point a or d is located outside the range of data, you simply use one of

the following equations to estimate the values at a or d using three leftmost or three

rightmost points from the data set:

f(a) = 3f(b)− 3f(c) + f(d)

f(d) = 3f(c)− 3f(b) + f(a)

Finally, note that this algorithm is designed for interpolation, not extrapolation of

data past the boundaries of the data set.

Differentiating, we obtain the following expression for the first derivative:

d

ds
g(s) =

f(a)(−3s2 + 4s− 1) + f(b)(9s2 − 10s) + f(c)(−9s2 + 8s+ 1) + f(d)(3s2 − 2s)

2

Differentiating again, we obtain the following expression for the second derivative:

d2

ds2
g(s) =

f(a)(−6s+ 4) + f(b)(18s+ 4) + f(c)(18s+ 8) + f(d)(6s− 2)

2

It is worth noting that other edge-detection kernels are also popular, such as

the 3x3 Sobel operator, which performs computes pixel differences while performing

some averaging in the orthogonal direction. Other edge detection algorithms are also

possible, such as the popular Canny edge detector. Although these methods were not

explored in this project, they are potential areas for future study.

2.6 Seam Carving

The goal of this project is to distill many hours of video down to a few minutes

showing just the most interesting events in order to help humans to analyze the data.

One algorithm for doing this is called video condensation. However, before we explain

video condensation, we first need to discuss an algorithm called seam carving because

it will facilitate discussion of video condensation in the next section.

The main goal with seam carving is to resize images while preserving image con-

tent. When the dimensions of images are scaled down, they are typically downsam-

pled and interpolated. Unfortunately, downsampling results in a loss of information

in the salient regions of the image. If we could selectively remove uninteresting areas

Detecting and Summarizing Salient Events in Coastal Videos 13

within the image, we could decrease the dimensions of the image while preserving

all of the visual information in the important regions. This principle referred to as

content-aware image resizing in [2].

Cropping an image is another technique to reduce the size of an image. When

an image is cropped, pixels are discarded, resulting in a smaller image. However,

the main drawback to cropping areas from the interior of the image is that visible

discontinuities will occur along the edges of the removed regions when the remaining

pixels are fitted together. These discontinuities can be greatly minimized if the pixels

to be removed are carefully chosen; this is one of the motivations for the seam carving

algorithm presented in [2].

Figure 5: Examples of seam carving borrowed from Avidan and Shamir 2007 [2].

Please refer to the image of the lake in the Figure 5. For the moment, ignore

the two red lines (called seams) that run from top to bottom and right to left. One

might argue that the most interesting features of this image are the building and

perhaps the shoreline, whereas of the lake itself is not very interesting. (One way to

quantify this is that there are many edges in the building and shoreline, but relatively

few edges in the interior of the lake.) Now suppose that we want to reduce the size

of the image in the vertical direction by removing pixels. Since much of the lake

is not very interesting, suppose we remove pixels from the lake area. Note that we

must remove the same number of pixels from each column, so that all columns of the

resulting image have the same number of pixels. Unfortunately, if we remove straight

horizontal rows, we might cut through some of the interesting reflections in the water.

However, if we allow some flexibility in the path of pixels from left to right across the

Detecting and Summarizing Salient Events in Coastal Videos 14

image, we can avoid cutting through interesting objects while still removing one pixel

from each column. An example of such a path is shown by the red line (seam) in

the image that runs from left to right across the image; notice how it bends to avoid

the interesting reflections in the water. The image that results from removing many

left-to-right seams of pixels from the image of the lake is shown below it; notice that

much of the uninteresting area of the lake has been removed but the features have

been preserved.

Avidan and Shamir [2] define a seam to be a “connected path of low-energy

pixels crossing the image from top to bottom or from left to right.” The “energy”

or “cost” function is what allows the algorithm to weight certain pixels with more

importance than other pixels. For the image of the lake in Figure 5, a pixel intensity

gradient cost function was used to automatically select left-to-right seams of pixels

to remove from the image. A gradient cost function works well for many applications

because it allows pixels that are part of edges to be marked with high cost, thus

preserving interesting shapes in an image. The seam carving algorithm finds paths

that avoid cutting through the gradients, thus minimizing the total accumulated cost

of the pixels along those paths. This helps to minimize visual discontinuities in the

image with the seams removed. The seam carving algorithm can be used for other

applications if a different cost function is used. For example, consider the two images

of people on the right-hand side of Figure 5. If high cost is assigned to the man and

low cost is assigned to the woman (indicated by the red and green shading in the

inset image), the woman can be removed from the image, as shown on the right. [2]

refers to this procedure as “object removal.” Video condensation via ribbon carving

is another application based on the seam carving algorithm, in which we use a binary

cost function to preserve certain features in the video frames, such as moving objects.

How does it work? The seam carving algorithm finds a seam through the image

that minimizes the accumulated cost of the pixels along that seam. In order to

efficiently find the minimum-cost path, this algorithm uses a dynamic programming

approach. The following example explains this in further detail. The main idea is to

look for a seam, out of all possible seams, with minimum energy. Suppose that we

have a 3× 3 image and we compute e, the energies at each pixel:

Detecting and Summarizing Salient Events in Coastal Videos 15

e = +---+---+---+

| 1 | 2 | 3 |

+---+---+---+

| 2 | 1 | 2 |

+---+---+---+

| 1 | 2 | 3 |

+---+---+---+

Next is the dynamic programming step. Here we compute M , which contains the cu-

mulative minimum energy for the minimum-energy seam. We compute it by starting

at the top and working our way down (i.e., start with the top row and work our way

down). In other words, we’re looking for vertical seams.

M = +---+---+---+

| 1 | 2 | 3 |

+---+---+---+

| 3 | 2 | 4 |

+---+---+---+

| 3 | 4 | 5 |

+---+---+---+

Then, if you traverse starting with the bottom (i.e., last) row and working your way

back up to the first row, you can find the minimum energy path P :

P = +---+---+---+

| X | | |

+---+---+---+

| | X | |

+---+---+---+

| X | | |

+---+---+---+

The ribbon carving video condensation algorithm is an extension of seam carving

from a 2D to 3D, since video is comprised of a sequence of images, rather than a single

image. As mentioned above, ribbon carving uses a binary cost function to indicate

which pixels must be preserved in the condensed video. Video condensation will be

discussed further in the next section.

2.7 Video Condensation

In this project, we have collected hours upon hours of video data from cameras located

at the beach on Great Point, Nantucket. Although many organizations are interested

in this data, there is too much video for human researchers to watch. This problem

Detecting and Summarizing Salient Events in Coastal Videos 16

is common to many types of surveillance applications. The goal of our research is to

use computers to analyze this data, automatically distilling hours of video down to a

few short segments of only the salient events. One technique for doing this is known

as video condensation.

The main idea behind video condensation is to remove frames of data without

activity, preserving only the salient events. Furthermore, objects from different mo-

ments in time are merged into the same moment in time, as illustrated in Figure 6, as

long as the regions occupied by two objects at the different times do not overlap. This

greatly reduces the amount of data that a human observer must watch. In addition,

if we tag the objects with number of the frame at which that object appeared in the

original video, it is easy for the observer observer to jump back to the original video

clip for closer study.

Figure 6: Video Condensation Example. Two images from two totally different moments in time
merged into same frame.

The algorithm we use in this project to perform video condensation is called ribbon

carving, introduced in [15]. This algorithm is based on the seam carving algorithm

discussed in Section 2.6 (Seam Carving). Seam carving performs quite well on two-

dimensional images, but extending it to a third dimension (time) for sequences of

images (videos) becomes computationally intractable [15]. However, if either the x-

dimension or the y-dimension is constrained, we get ribbon shapes instead of 3D

Detecting and Summarizing Salient Events in Coastal Videos 17

video seams, known as vertical ribbons and horizontal ribbons, respectively, as shown

in Figure 7. This constraint reduces the task to solving a simple 2D seam carving

problem, hence the name ribbon carving. Using ribbons instead of 3D seams makes

the algorithm computationally tractable, easier to code, and still produces nice results

for many practical situations.

Figure 7: Illustration of vertical ribbons (a) and horizontal ribbons (b), borrowed from [15].

Just like seam carving, ribbon carving requires a cost function to determine which

pixels should be preserved and which pixels can be removed. We typically use a

binary background subtraction cost video because we are interested in analyzing

moving objects in a video. By assigning a high cost to the pixels in moving areas,

we can preserve those objects and allow ribbons to cut through other areas. Higher

compression ratios can be obtained if we allow some of the ribbons to partially carve

though some of the objects that we want to preserve, or in other words, if we allow

some ribbons to have a nonzero accumulated cost. In our code for this project, we

have created a parameter θ for this cost threshold. [15] refers to this threshold as

the stopping criterion because the algorithm will carve ribbons until it reaches this

stopping point. It is generally undesirable to allow ribbons to cut through objects

because this can cause display artifacts, but in some situations, a nonzero threshold

may help to improve robustness to noise or to imperfect background subtraction [15].

Visualizing the volumes occupied by objects moving in 3D video space helps in

understanding how ribbon carving works. These regions are referred to as object

tunnels in [15] or as silhouette tunnels in [7], and they show us which pixels from which

frames correspond to which moving objects. The images in Figure 8 are basically 3D

plots of the frames of background subtraction videos and show the silhouette tunnels

for several objects. The figure also shows some examples of ribbons carving through

the 3D space around the silhouette tunnels. The idea behind ribbon carving is that

the closer we can move the silhouette tunnels together (without touching), the better

condensation we will achieve. The way that we move the silhouette tunnels closer

together is by carving ribbons. However, we must make sure that the ribbons do not

cut through the tunnels and that tunnels do not touch each other. From this figure,

Detecting and Summarizing Salient Events in Coastal Videos 18

it is also evident that ribbons that are more flexible can better fit between tunnels,

carving out more pixels and yielding better compression.

Figure 8: Example showing silhouette tunnels (in blue) and ribbons (in red). Image borrowed from
[15].

The ribbon carving algorithm runs in several passes. At each pass, an increasing

amount of flexibility is allowed for the ribbon along the time dimension. The amount

of flexibility is known as the flex parameter, often denoted by φ. As explained in [15],

it is important to perform the flex passes in the order of increasing flex parameter so

that “event anachronism is kept to a minimum”.

In the first pass of the algorithm, known as flex 0, the ribbon is not allowed to

bend at all. Thus, flex 0 is equivalent to removing entire frames. For example, if the

stopping criterion threshold is zero, the flex 0 pass will remove all of the frames with

zero cost. In the next pass of the algorithm, known as flex 1, the maximum allowed

slope of the ribbon is 1 pixel per frame. In other words, flex 1 means that the maxi-

mum allowed deviation in the time dimension between rows (for vertical ribbons) or

columns (for horizontal ribbons) is 1 pixel. Similarly, flex 2 has a maximum deviation

of 2 pixels and so on. Greater values of the flex parameter result in better compres-

sion ratios because the ribbons can more curve more to carve out more pixels while

avoiding the silhouette tunnels. As explained in [15], the amount of condensation

follows the law of diminishing returns; higher flex values result in marginal conden-

sation. In practice, a good upper limit on the number of passes is flex 3 because it

is a good tradeoff between computation time and condensation performance, as was

empirically determined in [15] and in [24].

It is important to understand that ribbon carving does more than just remove

frames without any activity. Removing frames without activity is just the first pass

Detecting and Summarizing Salient Events in Coastal Videos 19

(flex 0). Each subsequent pass (flex ≥ 1) merges events from different moments

of time into the same frames, yielding better and better condensation. Figure 9

illustrates this with frames of a video of people walking down a city street. First, a

girl enters the scene from the top, walks down the street, then exits at the bottom of

the scene. Figure 9a gives one frame from this sequence. Some time passes without

any people in the scene. A while later, two people enter the scene and walk down the

street, as shown in Figure 9b. If we run flex 0 through flex 3 on the video, we will

obtain a condensed video showing the girl entering the scene and walking down the

street, immediately followed by the two people. Figure 9c shows one of the frames

from the condensed video sequence. The flex 0 pass removed all of the empty frames

without any people in them, but it was the flex 1 through flex 3 passes that actually

merged the girl from one frame and the two people from another frame into the same

frame, as shown in Figure 9c. If you look closely, you can see a horizontal boundary

across the middle of the image where the pixels from the two moments of time come

together. (This line is noticeable because the ambient lighting or camera gain changed

slightly between the time that the girl walked across these scene and the time that

the two people walked across the scene.)

(a) Original frame (t=9 sec-
onds)

(b) Original frame (t=36 sec-
onds)

(c) Condensed frame (flex 3)

Figure 9: Video condensation demonstration. Frames are from a video of Marsh Plaza on BU
Campus.

Another example that shows how video condensation merges events from different

moments in time is shown in Figure 10. The three boats in the image

The ribbon carving algorithm is designed to process a sequence of N frames.

However, for very long videos, the computational costs of processing all of the frames

at once are prohibitive. In order to efficiently process long sequences, [15] outlines

a sliding window approach. The minimum and suggested numbers of frames for the

sliding block, as well as the algorithms for adding and removing frames to and from

this block, are discussed in detail in [15] and [24]. Huan-Yu Wu [24] implemented this

Detecting and Summarizing Salient Events in Coastal Videos 20

Figure 10: Example of video condensation. The three boats are from three different instants in time,
but video condensation allows us to summarize this by merging them into the same frames.

technique in MATLAB and developed a C code implementation of the ribbon carving

steps using MATLAB’s MEX interface in order to speed up the ribbon carving step.

The amount of condensation that can be achieve depends upon the amount of

activity in the scene and the behavior of that activity; thus, the compression ratio

depends on the particular application. For example, [15] and [24] have found that

the condensation algorithm works better when objects tend to move across the screen

in the same direction, such as cars traveling one way along a highway. Another

example of this is boats traveling in the same direction across a harbor, one right

after another, as shown in Figure 10. The reason situations like this work so well is

that the silhouette tunnels can be tightly packed together when ribbons are carved out

between them. Another example of a scenario that yields good condensation results

is one in which activity occurs at opposite sides of the screen at different moments

in time, but the objects involved stay on their respective sides of the screen; after

condensation, the two activities can be played back at the same time, side by side.

In this project, we found that for typical videos of the beach, one hour of video can

be condensed to about three minutes. For more discussion of our results, please refer

to the Experimental Results and Discussion section.

3 Methods

This section explains how the system works and how we developed and tested it. It

also describes some of the challenges we encountered as we developed the system, as

well as some of the improvements we implemented to overcome them.

Detecting and Summarizing Salient Events in Coastal Videos 21

3.1 System Architecture Overview

The block diagram of the entire system is given in Figure 11.

Figure 11: System Block Diagram

An early draft of my system specification can be found in Appendix E. It is a bit

out of date, but still provides some useful information about the system parameters

and how to tune them.

3.2 Implementation Details

All code was written in C++ for fast performance and portability so that it may be

readily deployed on embedded sensing platforms in the near future.

Our code uses only free, open-source libraries. For the video I/O (and some im-

age I/O) we used FFMPEG. We used CImg for image I/O. In order to solve for the

eigenvalues in computing the matrix logarithm of the covariance matrix, we used the

Armadillo C++ Linear Algebra Library. To save some time and effort implementing

the connected components, we used the simple OpenCV library function cvFind-

Contours. All of the other algorithms were implemented “from scratch,” using only

standard C++ code.

The code has been developed under Linux, but can easily be ported to Microsoft

Windows (future work).

Since there is far too much source code to include in this report, it is provided as

Detecting and Summarizing Salient Events in Coastal Videos 22

a zipped archive to be distributed along side this report. For more details about the

source code, please refer to the Doxygen documentation in the source.

In the near future, we hope to increase the simplicity and portability of the code

by removing the dependency on OpenCV. The OpenCV libraries require many depen-

dencies, which makes it more difficult to port to different platforms. Currently, the

only pieces that we need OpenCV for are displaying the images (which we can easily

implement with CImg or any GUI toolkit) and performing the connected-components

analysis. We therefore plan to re-write the connected-components code from scratch

or to borrow code for it from another, lightweight library. This should allow eliminate

our dependence on OpenCV, making our code much easier to compile and distribute.

3.3 Background Subtraction

Background subtraction is a much-studied and well-understood problem in the lit-

erature. The idea is to separate the salient foreground objects in a scene from the

uninteresting background. For example, consider a video of an urban street corner

captured using a fixed camera. Every so often, pedestrians and cars (the foreground

objects) move past the camera, but the buildings and environment (the background

objects) remain relatively unchanged. Many background subtraction algorithms mea-

sure the change in pixel intensity values in order to classify each pixel as belonging

to either the foreground or background. Thus, these techniques capture motion in an

image.

[18] presents one approach to background subtraction that uses kernel density

estimation (KDE) to estimate the probability that a pixel belongs to the background.

(More information about using KDE for modeling the background can be found in

[4].) KDE works well because thresholding a a probability distribution is much more

robust than thresholding actual intensity values. [18] also presents a foreground

model can be used for a marginal increase in performance. More importantly, these

authors also describe a Markov random field (MRF) model that considers neighboring

pixels in determining the probability. The MRF model tends to improve detection of

objects by filling in any “missing” pixels within the silhouettes of objects, as shown

in Figure 12.

Unfortunately, although the KDE approach yields excellent results, it is also very

computationally intensive and is therefore quite slow. Since our system will be used to

process many hours of video, it is important that we perform the background subtrac-

Detecting and Summarizing Salient Events in Coastal Videos 23

Figure 12: Background-subtracted frame before (left) and after (right) enabling the Markov random
field (MRF) model. Notice that the MRF model helps to “fill in” the interiors of the silhouettes of
the cars, the truck, and the pedestrians.

tion as efficiently as possible. A simpler, faster alternative is to use an exponentially-

smoothed moving average (i.e., a recursive filter) to estimate the mean and variance of

each of the pixels in the image. This approach also requires less memory than KDE,

as it only requires storing an average image, rather than a long buffer of images. This

recursive update equation is as follows:

m(x, y) = (1− α) ∗m(x, y) + α ∗ I(x, y) (2)

where m is the mean intensity image, I is intensity image for the new frame, x and

y are the pixel coordinates, and α is the smoothing parameter. This model is much

faster than KDE, simpler to implement, and still yields reasonable results.

In this project, I implemented both the KDE and recursive moving average algo-

rithms for background subtraction. Yifan Yu [25] wrote some C code that demon-

strated several different background subtractions. I leveraged his code as a starting

point, but I ported it from Microsoft Windows to Linux, cleaned it up and improved

it, added the MRF model, and adapted it to the needs of our system.

Our final system uses the moving average approach with an MRF model in our

system. The formula for this variable-threshold hypothesis test is as follows:

|Ik[x, y]−Bk−1[x, y]|
M

≷
S
θ exp ((QS[x, y]−QM [x, y])/γ) (3)

where k is the frame number, x and y are the pixel coordinates, BK is the estimated

background image (i.e., m(x, y) when the moving average approach is used), QM and

QS are the numbers of moving and static neighbors, respectively, and gamma is a

Detecting and Summarizing Salient Events in Coastal Videos 24

tuning parameter that adjusts the impact of the Markov model.

I have written a C++ class called ProcessingBlock that defines an interface for a

black box that takes a frame of input, processes it, and produces a frame of output.

Deriving the background-subtraction (and also the behavior-subtraction) classes from

this abstract ProcessingBlock base class makes these blocks simple to use and easy to

reuse in any design. Furthermore, using this interface makes it easy to swap one block

for another. Along these lines, I have created the MovingAverage and KDE classes,

each of which inherit from the ProcessingBlock class, which makes them completely

interchangeable.

3.4 Behavior Subtraction

In the coastline videos that we wish to process, there is a great deal of uninteresting,

repetitive background motion such as ocean waves and dune grass. This results in

many spurious detections when we perform background subtraction. One simple thing

that we can do is select a region of interest, ignoring or “masking-out” all activity in

regions of the image that we don’t care about. While this primitive method works well

in situations such as monitoring people on the sandy part of the beach but ignoring

all activity in the dune grass and in the ocean, it does not work when we need to

analyze objects in the the same region as the false detections, such as boats on the

water. Furthermore, this approach requires a human to manually select the region

of interest, but ideally we would like to have a method that requires minimal human

intervention.

We implemented an algorithm called behavior subtraction to reduce the number

of false detections. Behavior subtraction [12] is an algorithm that removes stationary

motion from a video. We run background subtraction to create the binary cost video

and then run behavior subtraction to remove the false detections. The behavior

subtraction algorithm has two phases: training and processing. In the training phase,

we examine a window of N frames from the M frames of training data (where M ≥
N). The training data should exhibit the stationary behavior that we want to remove,

but it should not have any “interesting” moving objects. First, we sum up the cost

at each pixel in the window. Then we shift our window by one frame and perform

another summation. We record the maximum of each of the summations at at each

pixel at each window location. This completes the training phase. The next phase

is the processing phase. We perform the same kind of summations over the sliding

Detecting and Summarizing Salient Events in Coastal Videos 25

window as we did during the training phase, except that we compare the sum against

the maximum, rather than updating the maximum. If the difference between the sum

and the maximum is greater than a certain threshold, we detect the pixel as interesting

motion and write a white pixel to the output video file; otherwise, we write a black

pixel. The rationale behind this is that an “interesting” object will occupy those pixels

for more frames than the maximum frames occupied by stationary behavior, thereby

allowing us to discriminate between interesting and uninteresting motion. Overall,

the behavior subtraction algorithm was relatively quick and simple to implement.

The behavior subtraction code takes three parameters:

1. the number of frames in the buffer (a.k.a. sliding window) over which to average

2. the number of frames in the training sequence

3. the detection threshold

The parameters are pretty easy to tune, since there is a pretty wide range of what

works. Generally, longer training sequences and longer buffer lengths give better

performance. In some of my tests, typical training sequences ranged from 500 to

2000 frames and typical buffer lengths ranged from 100 to 500, although this depends

on the type of motion in your data, as well as how much of your data you have

available. For example, the buffer should be long enough to completely capture a full

cycle of the stationary behavior, but not too much longer than necessary, especially

if you don’t have much training data available. When selecting your training data,

you want enough frames to sufficiently capture the stationary behavior that you want

to remove, but you must make sure that the training frames do not contain any of

the objects that you wish to preserve, or else those objects will be removed as well.

The detection threshold I used in my tests was typically very small, ranging from 0

to 10. A higher threshold will remove more pixels since it means that the desirable

motion must last for that many frames longer than the maximum number of frames

in the unwanted motion. Generally, one should keep the threshold at 0 unless trying

to remove noise.

Here are some images from my tests. Figure 13 shows a frame from a video of

ripples on a pond, and Figure 14 shows a frame captured from the camera on Great

Point, Nantucket, on 2010-04-23. In each figure, the image on the left shows the

original frame, the image in the center shows the results of background subtraction,

and the image on the right shows the result of performing behavior subtraction on

the background-subtracted image.

Notice that the ripples and small waves on the pond in Figure 13 are almost

Detecting and Summarizing Salient Events in Coastal Videos 26

Figure 13: Ripples on a pond: original image, background subtraction, and behavior subtraction

Figure 14: Beach: original image, background subtraction, and behavior subtraction

entirely eliminated. Behavior subtraction performed well here because the motion of

the ripples was very stationary and we had plenty of training data.

Notice that if the objects in the video are too small, they can easily be mistaken

for noise. We spent a lot of time carefully tuning the parameters to obtain the result

in 14 in order to remove the waves while preserving the human. We were lucky in this

particular example that we were able to preserve the person; in many other similar

videos we processed, the tiny humans on the beach were completely removed. This is

particularly true if the people are walking quickly, since moving people don’t occupy

many pixels for very long.

It is also important to make sure that the people and cars not present in the train-

ing sequence; otherwise, behavior subtraction will remove them from the processed

data at the places that they were located in the training video.

The behavior subtraction code performed reasonably well for the ocean data.

Obviously, it was not able to completely remove all waves because the waves are

not entirely stationary, but the behavior subtraction still accomplished what it was

supposed to do: it reduced the amount of tests that we must perform using the

somewhat costly covariance matrix object detection.

As an interesting aside, It was difficult to find a video of a boat with lots of waves

because boats generally don’t go out on the ocean where on days when there are lots

of waves.

As expected, the code for behavior subtraction runs very quickly. The execution

Detecting and Summarizing Salient Events in Coastal Videos 27

time benchmarks can be found in the Experimental Results and Discussion section.

3.5 Masking

For this project, we have also written some code that takes takes a binary image as a

mask and applies this mask to each of the input frames. When it applies the mask, it

basically sets any pixels from the input frame that correspond to black pixels in the

mask to zero, while leaving any pixels in the input frame that correspond to white

pixels in the mask unchanged. This allows the system to ignore specified regions of

the image. For example, in an application that only cares about activity on the beach,

you could mask out the regions of the image corresponding to the ocean, so that any

activity caused by waves or boats would be ignored. Obviously, this approach is only

viable when there is a specific region of the scene that can be ignored; if some activity

occurs in the masked-out region, we will miss detecting it.

3.6 Obtaining the Regions of Interest

We use a simple connected components algorithm to identify the regions in the

behavior-subtracted video corresponding to where the objects of interest are poten-

tially located. Since the covariance matrix-based detection algorithm operates on

rectangular regions of pixels, we circumscribe an axis-aligned bounding box (AABB)

around each of the contours we detect with connected components.

We discard any AABB smaller than a given threshold (say 5 pixels by 5 pixels)

as too small to contain any of the target objects. This helps to reduce the effects of

any noise in the behavior-subtracted video.

We also increase the size of each box by a constant scale factor, say 20 percent.

This helps to ensure that that bounding box completely captures the target object.

This margin is important because the edges of the objects obtained from background

subtraction are often imperfect, and the covariance matrix-based detection algorithm

is robust and still works well when the bounding box is a little bigger than the object.

When the bounding box is smaller than the object, we risk losing the edges of the

objects; this is a big problem since our feature vectors are based on object shape.

The resulting set of boxes is passed along to object detection block.

In this project, we also explored an alternate approach for obtaining the rect-

angular regions of interest that involved counting the active pixels in each row and

in each column, and thresholding the peaks of their joint histogram to find areas of

Detecting and Summarizing Salient Events in Coastal Videos 28

high active pixel density. We started with this approach because we wanted a fast

and simple algorithm, but we soon decided to use OpenCV for connected-components

using the cvFindContours function because it is robust, easy to use, and relatively

fast.

Sometimes, gaps in the background-subtracted image cause connected components

analysis to segment the object into distinct pieces. One approach I tried for merging

these pieces was to scale up the size of the returned rectangles so that adjacent rectan-

gles overlapped slightly and then use this to generate a new binary image. Repeating

connected-components analysis on the new binary image would return contours that

now encompassed the all of the sub-rectangles of the objects. However, this approach

is slow because it requires two passes at connected-components, and increasing the

sizes of rectangles for the second pass reduces the accuracy of the outlines. Ultimately,

I found that this technique is unnecessary because if we simply tune the background-

subtraction step to be more sensitive, it does a much better job at filling in the entire

object, thereby eliminating the gaps that cause the segmentation.

3.7 Covariance Matrix-Based Object Classification

As explained in the Literature Review section, we use a covariance matrix-based

approach to determine whether the rectangular region from connected components

contains a car, a boat, a person, or none of these. The main idea is that we compare

the covariance matrix for the given rectangular region to a reference image from

a library or dictionary of images and check if their similarity is within a specified

threshold.

The covariance matrix is easy to compute. First, for each pixel in a given region

of pixels, compute the 6-feature vector from Equation 1. Then, take the covariance

of all of these vectors from the region to obtain the 6×6 covariance matrix. Once

the covariance matrix is computed, the matrix logarithm of the covariance matrix

can be found via eigendecomposition, following the procedure explained in Literature

Review.

For all of the images in each of our dictionaries, we first pre-compute the log

covariance matrices Cd
i , where i is the image index and d is the dictionary index.

Then, for each query region in the images from our bounding boxes, we compute the

Detecting and Summarizing Salient Events in Coastal Videos 29

log covariance matrix Q. Classification is then achieved using the following formula:

class(Q) = d∗ if (d∗, i∗) = arg min
d,i

(Rd
i) & min

d,i
(Rd

i) < ψd (4)

where

(Rd
i) = ‖ log(Q)− log(Cd

i)‖2 (5)

where ‖·‖2 denotes the Frobenius norm. Obviously, if the distance between the Q and

all Cd
i is greater than the threshold for all d, the region is determined to be neither a

car, a boat, nor a person.

We decided not to use “integral images” technique (see [23]) because we only

have to check relatively few locations and scales per frame (since our regions of inter-

est come from background subtraction; we do not perform a brute-force sweep over

the entire image). Therefore, it is not worth precomputing the integral image for

covariance over entire images.

3.7.1 Distance Metrics

As already explained, this project considered two different metrics for similarity be-

tween two covariance matrices: the Forstner-Moonen approach [5] and the Frobenius

norm of matrix logarithms approach [1]. While the literature has shown success with

both approaches, we decided to adopt the latter for several practical reasons. First,

the log-matrix approach is easier to implement because it only requires solving a stan-

dard eigendecomposition, not solving a generalized eigenvalue problem as is required

by the Forstner-Moonen approach. Although MATLAB comes with routines for solv-

ing generalized eigenvalue problems, many simpler linear algebra libraries, such as

the Armadillo C++ Linear Algebra Library adopted in this project, only support

simple eigendecomposition. Furthermore, the Frobenius norm approach is more effi-

cient for our application because we can pre-compute the log covariance matrices for

our dictionary; thus, each query means taking only a summed difference of squares

between the query log covariance matrix and each of the log covariance matrices in

the dictionary. This is in contrast to the Forstner-Moonen approach that requires

solving an eigenvalue problem for every comparison between the query matrix and

the dictionary, which is clearly much more expensive.

Detecting and Summarizing Salient Events in Coastal Videos 30

3.7.2 Dictionaries

For each class of object that we wish to detect, we created a library or dictionary of

many different images of that class. We downloaded the images from Google Images,

rather than extract the images from our video data, so as not to bias our results.

The images are of assorted sizes and we have been cropped as necessary to remove

extraneous background clutter. The dictionaries we have used in most of our tests

each contain roughly 10 to 100 images. A few examples from our dictionaries can be

found in Figure 15. Our system easily can be scaled to detect more types of objects

simply by adding more dictionaries of images.

(a) (b) (c)

Figure 15: Three samples from each of the dictionaries: (a) boats, (b) cars, and (c) people used in
feature-covariance detection. Images have been obtained from a search on Google Images.

Within each object class, we tried to be fairly diverse in our selection of images

to make our dictionaries more representative and thus more robust at detecting a

variety of objects within that class. For example, our database of cars consists a

variety of different automobiles (sedans, pick-up trucks, Jeeps, etc.) with several

different orientations. Since our feature vector does not contain color, it does not

matter what color these objects are; only the shape matters. Our people database

contains primarily black-and-white silhouettes of people standing in different poses,

and this works quite well because only the silhouettes of the people are discernible

Detecting and Summarizing Salient Events in Coastal Videos 31

at the far distance between the camera and the people in our test videos. In all,

the dictionaries must be fairly representative of the objects found in the videos. For

example, if the boats in the videos have wake, the dictionaries should also include

boats with some wake.

Our research has shown that detection works better if objects with significantly

different shape are treated as separate objects. For example, the sails of a sailboats

have large triangular shape, which is quite different than the hull and cabin of most

motorboats, so detection works best if we use a separate dictionary for each type of

boat. For more information about these results, please refer to the reports (particu-

larly the “Boats” report) in Appendix C.

We also ran a few experiments to ascertain how much of a difference the direction

in which the objects in the dictionary are facing matters. The question arose as we

were creating the dictionaries because we did not know how many objects we need

to face to the left or to the right, or how much this really matters. In our tests, we

created an augmented dictionary of boats by taking all of the images from our boats

dictionary and adding a horizontally-mirrored copy of each image to the dictionary.

We also created two dictionaries in which all of the boats face to the left or to the right.

We found that our original dictionary, which consists of some boats facing to the left

and some facing to the right, performs approximately the same as the the augmented

dictionary, and that both the original and augmented dictionaries performed slightly

better than either the all-face-left or all-face-right dictionaries. For more information

about these tests, please refer to the “Boats” report in Appendix C. It is unclear why

there was not a significant difference between the original and augmented dictionaries,

or even why the differences between these and the same-direction-facing dictionaries

were not more significant. This could be due to the fact that even with a small cabin

or conning tower, a side-view of a boat is roughly symmetric. Obviously, more work

behind the math about how symmetry in features affects the covariance matrix needs

to be done in order to better understand this, but we have left this for future work.

3.7.3 Testing

We performed extensive testing 1) to make sure that the covariance-based classifica-

tion algorithm is coded properly, 2) to better understand how the technique works,

and 3) to test the accuracy of this technique. One of our greatest worries throughout

the project was whether or not the covariance-based detection approach is discrim-

inative enough to differentiate between cars, boats, people, and anything else going

Detecting and Summarizing Salient Events in Coastal Videos 32

on in the scene.

As an initial sanity check, we also tested how well the algorithm performs when

using a dictionary consisting of samples of an object taken from earlier frames of the

same video. For example, we manually extracted a region around a boat for the first

few frames of a video, and then tested the detections in the subsequent frames as the

boat drove across the screen, in order to make sure that we could reliably detect the

boat. Although unrealistic, this test gave us confidence that our code was doing what

we expect, thus corroborating the correctness of our code.

We also tested each of our three dictionaries from Google Images with frames

from the coastal videos. The results of these tests can be found in the reports in

Appendix C.

Overall, we fear that our feature vector simply does not contain enough infor-

mation to be able to discriminate between different types of objects and between

an object of interest and other. The simple, 6-feature vector in Equation 1 really

does not contain very much information about an object, and the algorithm can get

confused between two different classes of objects with similar texture and roughly

the same number of edges. Fortunately, the implicit information about the object’s

motion from the background subtraction allows us to disregard many regions in the

scene that may otherwise have caused false positives, greatly helping with detection

accuracy. Furthermore, our preliminary tests have shown that augmenting the fea-

ture vector to include more information, such as color data, can improve detection

accuracy. Much future work is still needed in this area.

3.7.4 Choosing Exactly One Class

Under the formulation shown above in Equation 4, it is possible that a rectangular

region will be detected as belonging to two different classes of objects. For example, a

region may be detected as both a car and a boat. This may happen if the two classes

are very similar or if the detection threshold is too high. Since only one object an

occupy a region at a time (i.e., our system is not really designed to handle occlusions),

we would like our system to select only the single, most-likely class of object.

We can select the class of object that matches the best by selecting the class whose

dictionary yields the lowest minimum distance, or alternatively, the lowest average

distance to all elements in the dictionary. We have tried both approaches in this

project and have adopted the former.

However, the problem with the minimum distance approach is it is susceptible to

Detecting and Summarizing Salient Events in Coastal Videos 33

misclassifications. In other words, since we are only basing the decision on a single

minimum-distance object, any outliers in the dictionaries can easily cause the system

to label a region as the wrong class of object. We therefore propose using a majority

vote of the K nearest neighbors to make the class decision. In other words, out of

the K minimum distances between the query region and all of the dictionaries, we

determine which dictionary produced the most votes and we use this to select the

object class accordingly. We have left this as an area of future work.

3.7.5 Automatic Threshold Selection

Selecting a suitable distance threshold to balance between false detections (threshold

too high) and misses (threshold too low) can sometimes be a a difficult task. As

discussed in the Literature Review, one approach for selecting a suitable threshold

is to generate a histogram of the pairwise distances between all of the images in

each dictionary. The threshold can be chosen to be the distance corresponding to a

specified confidence level, the percentage of area under the cumulative distribution

function. A similar leave-one-out cross-validation (LOOCV) technique has been used

successfully by [9].

In this project, we spent a little time experimenting with this LOOCV technique,

generating and analyzing distributions for different dictionary data sets. A few of

these histograms can be found in the reports in C. However, selecting a suitable

threshold from these histograms is not as intuitive and simple as one might think,

so our final approach uses manually-set thresholds. We still believe this LOOCV

approach has merit, but we did not have time to study it further, and therefore we

have left it as a direction for future work.

3.7.6 Augmented Feature Vectors

We also ran a few experiments in which we augmented the 6-feature vector from

Equation 1 to a 9-feature vector that also contains the red, green, and blue pixel

color components. Our preliminary tests showed that this additional color informa-

tion significantly improves detection robustness for certain classes of objects. How-

ever, we did not perform enough experimentation to see how this affects the choice

of dictionaries. For example, since cars come in a variety of colors, it is probably

necessary to make sure that a wide variety of cars are represented. Of course, this

makes the size of the dictionary much larger, as combinations of different orientations

Detecting and Summarizing Salient Events in Coastal Videos 34

and different colors must be represented. One question that arises is how do we en-

sure that sufficient, but not too much, object diversity is captured in the dictionary?

Moreover, should we create separate dictionaries for separate colors of cars? These

are important questions, but they are outside the scope of this project. There is still

a significant amount of future work that needs to be done with regards to how to best

select images for the dictionaries.

3.7.7 Scaling and Weighting Features

Several authors, including [21, p.6] and [6, p.38] recommend scaling or normalizing

the features, in order to make the covariance of the features invariant to the size of

the image.

This makes sense, particularly for the gradients. For example, if the pixel value

changes from 0 to 100 across two images, but one of the images is twice as wide, then

the change in intensity divided by the change in position will be twice as large for

the smaller image than the larger image.

However, we ran a few empirical tests, comparing detection accuracy between

runs using the scaled and unscaled features, and found that scaling had little effect

on the detection accuracy. For our scaled features, we used sqrt(rectangle width ∗
rectangle height) to normalize both directions. (A naive approach would be to nor-

malize the y-dimension by the height and the x-dimension by the width, but this

might lead to problems when comparing rectangles of different aspect ratios due to

unequal scaling between of the dimensions.) Since scaling seemed to make little dif-

ference in our tests, we abandoned the scaling and thus use only unscaled features in

our final design.

We also performed some simple experiments in which we tried weighting some of

the features to make certain features more significant than others. For example, we

tried multiplying the color values (note that here we are using the RGB-augmented

feature vector) with large constants and the gradient values with small constants to

make color relatively more significant than shape. However, we empirically found this

weighting to make little difference on the detection accuracy, or even on the shape of

the 3D plot of distances to the dictionary (see Figure 4 as an example).

In a related-but-different test, we experimented to see whether or not taking the

absolute value of the gradients, as done in the feature vector proposed in [21], actu-

ally makes a difference. We found that taking the absolute values did not make a

difference; we observed no change in detection accuracy when we did not take the

Detecting and Summarizing Salient Events in Coastal Videos 35

absolute value versus when we took it. In our final design, our code still takes the

absolute value, for no better reason than to agree with the literature.

In order to better understand why scaling and weighting have made little difference

in detection performance, we need to take a closer look into the mathematics behind

the covariance of the features, but we have left this as future work.

3.7.8 Eigenvalue Considerations

An important edge case to consider is what happens when you are computing the

log covariance matrix and the eigenvalues of the covariance matrix are non-positive.

If we attempt to take the logarithm of zero, we get negative infinity, and if we at-

tempt to take the logarithm of a negative value, the result is imaginary. Thus, we

handle negative and zero eigenvalues by replacing them with the value 1.0. Thus,

taking log(1.0) gives us zero, and so this component of log covariance matrix does

not contribute to the Frobenius norm distance. This makes sense logically because

these problematic eigenvalues arise where there is a linear dependence, or in other

words, when a particular feature does not contribute any new information about the

similarity of the objects. Setting the log of the eigenvalue to zero makes sense because

the zero entry does not contribute to the Frobenius norm. In other words, we are just

discarding useless information when we make the comparison between the matrices.

But the question still remains: what causes these negative or zero eigenvalues to

arise? First, recall that covariance matrices are positive semi-definite. However, only

strictly positive-definite matrices have nonzero eigenvalues. So, clearly, it is possible

that the covariance matrix can have zero eigenvalues. But what causes a negative

eigenvalues? Floating-point rounding error. The negative values that arise are very

tiny, near-zero negative values, and due to error in the eigenvalue computation, they

are negative rather than zero or tiny positive values.

Furthermore, what causes an eigenvalue of zero? An eigenvalue of zero implies

that the rank of the matrix is wrong, or in other words, that there is some linear

dependence between the entries. Recall that a matrix is invertible if-and-only-if its

rows and columns are linearly independent. Therefore, if the columns are linearly

dependent, the matrix is invertible. The contrapositive of this states that if a matrix

is NOT invertible, then the rows and columns are NOT linearly independent. Thus,

if a matrix is singular (i.e., non-invertible), its determinant is zero and thus there is

some dependence between values. It makes sense if we ignore the linearly dependent

factors.

Detecting and Summarizing Salient Events in Coastal Videos 36

More concretely, zero eigenvalues in the covariance matrix occur when the variance

of a feature is zero, which occurs if all of the pixels in a region have the same value.

You can easily simulate this in MATLAB or GNU Octave by creating a small matrix of

identical values. However, in practice, having identical pixel values seldom happens,

since the pixels in a region are rarely all the same value. My code that replaces the

non-positive eigenvalues with 1.0 will also print warning messages if this ever occurs,

but in the entire twelve months of working on this project, I have yet to see this

happen for real data.

3.7.9 Video Condensation

In this project, we implemented video condensation entirely in C++. We leveraged

the work [24] of a previous student, Huan-Yu, who had created a single-threaded

MATLAB implementation of video condensation that used MATLAB’s MEX interface

to optimize the most time-consuming steps of the algorithm (ribbon carving) in C

code. We first ported this code entirely to C++, creating a baseline, single-threaded

implementation, which we compared against the MATLAB implementation to make

sure that the outputs were identical, frame-for-frame, pixel-for-pixel. (We obviously

used lossless compression for the output videos to ensure a valid comparison.)

Video condensation is an extremely computationally-intensive algorithm and we

wanted to speed up the processing time by utilizing multiple processor cores. We

developed a pipelined, multithreaded algorithm for the video condensation to allow

us to process each pass (flex 0 through flex 3) using separate processor cores. We

found that this reduced processing time by up to a factor of three for typical hour-long

beach videos, compared to a traditional single-core approach. However, note that it is

only effective for videos that are long enough to fill up the pipeline. A report detailing

some of our early benchmark experiments can be found in Appendix F.

The reason why we decided to use a pipelined approach, rather than finding some

other way to partition the problem, is that it is a relatively simple way to leverage

multiple cores, achieving noticeable gains while investing little time and effort; the

video condensation algorithm does not need to be restructured or redesigned at all

to accommodate the pipeline.

The multithreaded pipeline is basically an extension of the producer-consumer

design pattern. The algorithm that I developed is original work; I could not find

anything in the literature that discussed pipelining processing blocks using multiple

threads, so I designed it myself, though I would be surprised if someone has not

Detecting and Summarizing Salient Events in Coastal Videos 37

already thought up the same technique. I use a very large circular buffer of memory

frames, large enough to keep all the threads busy once the pipeline is full. I use

semaphores to pass pointers to the frames from one stage of the pipeline to the next.

Once a frame is no longer being used (either because it was a frame of data that was

carved out by a ribbon, or because it is the output of the last stage of the pipeline),

it gets passed back to the first pipeline stage so that it can be recycled and filled with

the next input frame of data. Overall, this general multithreaded pipline approach

is very clean, simple, and can be applied to other applications as well, not just video

condensation.

I have designed the multithreaded pipeline for a system with four cores. The

first core is responsible for computing all of the preprocessing (which may include

background subtraction, behavior subtraction, connected-components analysis, object

classification, etc.) and flex 0. The second, third, and forth cores are responsible

for flex 1, flex 2, and flex 3, respectively. This is illustrated in Figure 16. Note

that this system is designed only to process up through flex 3; we do not bother to

process higher amounts of flex because each subsequently greater flex provides only

a diminishing marginal benefit.

Figure 16: Multithreaded, Pipelined Implementation

Each pair of successive pipeline stages can be viewed as a producer-consumer pair,

with a shared buffer of pointers to memory frames (not shown in the diagram). The

shared resources (the pointers to memory frames) are coordinated using semaphores.

The memory requirements of the multithreaded, pipelined approach are very large,

much larger than the memory requirements for the single-threaded approach, because

we must allocate enough memory frames to process multiple flex passes simultane-

ously. In contrast, the single-threaded approach stores the results of each flex pass to

temporary files, and thus only needs a buffer large enough to store the frames for only

Detecting and Summarizing Salient Events in Coastal Videos 38

the flex pass that is currently being processed. The high memory requirements for

the multithreaded, pipelined approach restrict the maximum resolution of the video

frames that can be processed.

As long as you allocate enough frames in the circular buffer to keep all of the stages

busy simultaneously, everything works as intended. There is no need to worry about

one thread hogging all of the memory. In general, when you write multithreaded

programs, you worry about one thread hogging all of the memory. However, by the

nature of the fact that we’re pipelining all of our threaded stages, everything works

itself out. Each stage needs the results of the previous stage before it can run, which

causes the stages to wait until they have the resources they need. There is a limit to

the maximum amount of resources that each stage will ever consume, and there are

plenty of resources available. The threads simply wait for the data from the previous

stage to become available before they start to process it. Thus, no stage will ever

starve any other stage.

3.8 Improvements

After we finished coding and unit-testing all of the components, we tested the entire

system and found a few things that needed improvement. First, sometimes the de-

tectors do not steadily detect objects as they move across the scene; in other words,

some moving objects are occasionally be missed in a frame here or there. Another

problem we encountered was that the bounding boxes around the boats were very

wide because they captured the wake as well as the boat itself. A third problem is that

with our current background-subtraction algorithm, moving objects that stop mov-

ing and remain motionless for a while eventually cease to be detected. We developed

techniques to address each of these issues, as described in the next few subsections.

3.8.1 Variable threshold adjustment for improved temporal consistency

The occasional missed detections over a sequence of frames happens for a variety

of reasons: camera vibrations, occlusions, slight changes in orientation of the object,

poor background-subtracted silhouettes in some of the frames that adversely affect the

size of the bounding boxes, etc.– any of which may cause the object to be occasionally

missed. The boats are especially susceptible tho this problem, especially as the wake

of the boat changes and the boat rises and dips in the waves of the ocean. Fortunately,

notice that all of the objects of interest are moving at relatively low velocities; in other

Detecting and Summarizing Salient Events in Coastal Videos 39

words, their displacements between subsequent frames is pretty small; they are not

moving fast enough to be in the middle scene one moment and gone in the next.

We exploit this principle by implementing an adaptive threshold that encourages

temporal consistency between objects of the same class in subsequent frames:

min
d,i

(Rd
i) < ψd ∗max(1, exp(−(δdk−1 − δmax)/δγ)) (6)

where δdk−1 is the distance to the nearest detection of class d in the previous frame

and δmax, δγ are parameters.

We found through experimentation that this method is quite effective at improving

detections. However, care must be used when selecting the parameters because a

detection encourages detections in the surrounding region; if the threshold is too

large, the number of false detections in surrounding regions may increase (this is

particularly the case with boats and false detections in the surrounding wake).

3.8.2 Aspect ratio thresholding to truncate elongated boxes around boat

wake

The motion of the water in the wake behind fast-moving boats creates a long trail

of activity behind the boat in the background-subtracted and behavior-subtracted

videos, as shown in Figure 17a. As a result, connected components analysis gives a

bounding rectangle that encompasses the boat plus the wake, as shown in Figure 17b,

but we really would rather put a rectangle around roughly only the boat.

We implemented a simple-but-effective heuristic to accomplish this goal. We check

the aspect ratio of all of the detected bounding rectangles, and if it exceeds a certain

threshold, it means that the rectangle is very wide and likely encompasses boat wake.

In this case, we replace the wide box with two smaller boxes, one at either end, of the

same height as the original, but with a smaller width (specified by a predetermined

new box aspect ratio). Our experimental results showed that this worked quite well,

as shown in Figure 17c. For these experiments, we used an aspect ratio threshold of

4:1 and a new box aspect ratio of 2:1.

3.8.3 Handling stopped objects

The reason why objects that have stopped moving for a long period of time are even-

tually no longer detected is inherent to our algorithm for background subtraction.

Detecting and Summarizing Salient Events in Coastal Videos 40

(a) Behavior-subtracted frame

(b) Aspect ratio technique not applied (c) Aspect ratio technique applied

Figure 17: Aspect ratio technique. (a) shows the original behavior-subtracted frame, whose con-
nected components give a large bounding rectangle around the wake, seen in (b). The result of
applying the aspect ratio threshold technique is shown in (c).

As the average background image adapts, the stopped objects become the new back-

ground and hence cease to be marked with active pixels. As a result of the eroding

object silhouettes, the bounding rectangles found by connected-components analysis

shrink until they disappear altogether, and when there are no bounding rectangles,

there are no candidate regions for the detectors to check.

In some applications, this behavior might be desired. For example, maybe the

customer only cares about watching the clips of cars when they enter or leave the

scene, but the frames of parked cars can be removed. Nevertheless, we still want to

have a technique capable of preserving these stopped objects so that our system is

flexible; we can always disable it later for these types of applications.

We overcome the problem of missed detections of stopped objects by continuing

to check the regions corresponding to the stopped objects in every subsequent frame,

until those stopped objects are no longer detected. A naive first approach that we

tried was to basically recheck any region from any previous frame that had a detection.

The problem with this was that it produced a lot of false positives, particularly in

the wake of the boat. After much thought, we developed a new approach that does

not have this problem because it only rechecks an object if that object is not moving.

Detecting and Summarizing Salient Events in Coastal Videos 41

Our experimental results showed that this algorithm worked fairly well in practice.

The following is a description of this algorithm:

1. Loop through each detection d from the list of detections from the previous (i.e.,

(k − 1)th) frame. Check to see if the rectangle from d overlaps any detections

from the prior frames (i.e., frame k − 2, frame k − 3, ... until you reach end of

the circular buffer).

(a) Note that we do not check the class of the objects involved, since we only

are interested in finding regions to re-check. So if a car from one frame

overlaps with a boat from another frame, that is fine. We just want to see

if any type of object in that region is stopped, so that we can continue to

recheck it.

2. Let us consider frame k − 2. If the rectangle from d overlaps a rectangle from

the detections in frame k − 2, we set the displacement for frame k − 2 equal to

the distance between the centers of the boxes.

(a) If no boxes overlap, we set the displacement for frame k − 2 equal to

some reasonably large size (i.e. larger than the threshold, but of the same

order of magnitude), for example, twice the length of the diagonal of d’s

rectangle, to penalize frames that missed detections.

(b) If there are multiple overlapping boxes, then we arbitrarily just take the

first one we come across. But this should never happen because code from

the end of the previous iteration always gets rid of overlapping detections.

3. After we have computed the displacements for frames k − 2, k − 3, k − 4, etc.,

we find the average of these displacements and we compare it to a threshold.

This threshold is basically a function of the diagonal of the box (so that it varies

appropriately with the size of the box), times a constant scale factor parameter

(STOPPED OBJECT THRESHOLD SCALE).

(a) If this average displacement is less than the threshold, it means that the

object is stopped.

(b) If this average displacement is greater than the threshold, it means that

the object is moving.

Detecting and Summarizing Salient Events in Coastal Videos 42

4. If the object is stopped, we need to recheck d’s rectangle in the current (i.e.,

kth) frame. To do this, we add d’s rectangle to the list of bounding boxes

to check in the current frame. Otherwise, if the object is NOT stopped (i.e.,

moving), we should NOT check this rectangle in the current frame, so do NOT

add d’s rectangle to the list.

Note that we use circular buffer of the frame history, not just a single frame k−2,

because we want to make our system more robust to missed detections. Without a

buffer of frames, if one or two frames misses the object (which is possible, even for

stopped objects, if there are camera vibrations or changes in gain, for example), the

system will lose track of the stopped object. However, with a buffer, even a miss

in a frame or two does not pose a problem; the detections will be maintained. We

empirically found that a circular buffer length of 5 frames works well in practice.

Also note that at the end of each iteration, we check all pairs of detected rectangles

for overlap. If any detection overlaps any other detection of the SAME class of object,

remove the one with greater distance to the dictionary. If any detection overlaps with

any other detection of a DIFFERENT class of object, we keep only the object that

has the lower average error.

The reason why we discard the overlapping rectangles is so that a stopped object

does not generate an infinite number of rectangles to check over time (i.e., redundant

boxes to check). Also, our system does not handle occluded objects very well (af-

ter all, our connected-components analysis cannot distinguish the difference between

two adjacent moving objects; they look like a single blob), and so we assume that

two different objects cannot occupy the same location at the same time, which is a

reasonable assumption most of the time in the coastal scenes.

It is important to disable the variable threshold technique (described in Sec-

tion 3.8.1) because we do not want to get false positives in the same location after a

stopped object moves.

After we implemented this code, we tested it with a video of the car whose back-

ground subtraction silhouette erodes over time, in order to make sure that it accom-

plishes our goal of maintaining consistent detections. We also tested it by running it

with a video of the boat to make sure that it did not cause a lot of false detections.

4 Experimental Results and Discussion

This section summarizes our final results and key findings.

Detecting and Summarizing Salient Events in Coastal Videos 43

We have collected hundreds of hours of coastal videos at 640×360 resolution and

5fps from cameras mounted at Great Point, Nantucket Island, MA. Figure 18 shows

two examples from one of the videos we processed. We used the following ranges of

parameters:

• background subtraction: α = 0.005, θ = 20 − 25, γ = 1.0, 2nd-order Markov

model with 2 iterations

• behavior subtraction: 300− 2500, N = 50− 100, Θ = 0.0− 1.0

• connected-component analysis: 5×5 bounding box threshold, 20% box enlarge-

ment

• object classification: for boats, cars and people consisting of 30, 80 and 62

objects, respectively, with corresponding thresholds ψ between 2.5 and 4.0.

Note the relative resilience of background subtraction to the presence of waves

(second row in Figure 18). Although behavior subtraction provides only a slight

additional wave suppression in this case, for videos with choppy water surface behavior

subtraction offers a significant improvement for larger values of M . Also, note the

detection of the boat on left despite a long wake behind it. The condensed frame on

left (bottom row) shows two boats together that were never visible in the field of view

of the camera at the same time. Similarly, on right, four boats have been combined

into one condensed frame thus shortening the overall video.

The effectiveness of our joint detection and summarization system can be mea-

sured by the condensation ratio (CR) achieved for each class of objects (or combi-

nation thereof). Table 1 shows detailed results with cumulative condensation ratios

(after flex-3) of over 18:1 for boats, 9:1 for people, but only about 5:1 for boats or

people. Clearly, when one wants to capture a larger selection of objects, the con-

densation ratio suffers. Condensation ratios for another video with boats, cars and

people are shown in Table 2.

Note the last row in both tables labeled “behavior subtraction” with very low con-

densation ratios. These are results for the whole-frame behavior subtraction output

being used as the cost in video condensation instead of being limited to the bounding

boxes of detected objects. Clearly, the spurious detections (e.g., due to ocean waves)

at the output of behavior subtraction reduce the condensation efficiency.

Table 3 provides the average execution time for each stage of processing in a single-

threaded C++ implementation on an Intel Core i5 CPU with 4GB of RAM running

Detecting and Summarizing Salient Events in Coastal Videos 44

Figure 18: Samples of typical input video frames (top row) and outputs from the processing blocks in
Figure 11: (row 2) background subtraction, (row 3) behavior subtraction, (row 4) object detection,
(row 5) video condensation.

Detecting and Summarizing Salient Events in Coastal Videos 45

Table 1: Number of frames after each flex-step and cumulative condensation ratios (CR) for 38-
minute, 5 fps video with boats and people (11,379 frames after behavior subtraction).

Cost
of frames after each step

CR
flex-0 flex-1 flex-2 flex-3

boats only 1346 743 662 614 18.53:1
people only 3544 2411 1772 1265 9.00:1
combined boats and people 4666 3225 2887 2414 4.71:1
behavior subtraction 11001 8609 8147 7734 1.47:1

Table 2: Number of frames after each flex-step and cumulative condensation ratios (CR) for 22-
minute, 5 fps video with boats, cars and people (6,500 frames after behavior subtraction).

Cost
of frames after each step

CR
flex-0 flex-1 flex-2 flex-3

cars only 768 598 513 439 14.81:1
boats only 835 741 692 589 11.04:1
people only 1729 1528 1527 1519 4.28:1
combined cars, boats, and people 2125 2045 2013 1969 3.30:1
behavior subtraction 6437 5843 5619 5460 1.19:1

Ubuntu 11.04 Linux. Note that the execution times for background subtraction and

behavior subtraction depend only on the video resolution (in this case, 640×360).

On the contrary, the execution times of object detection and video condensation

vary depending upon the data (e.g., more activity means that more regions must

be checked for the presence of objects and also that fewer frames can be dropped

in the flex-0 stage of condensation). The benchmarks reported in the table were

obtained for detections of cars in the video from Table 2 and are representative of

typical execution times. Since video condensation operates on blocks of frames, we

computed the average processing time of each “flex” pass by dividing the execution

time for that pass by the number of input frames to that pass. For the background

subtraction, we used second-order Markov neighborhood and two update iterations for

each frame. Disabling the MRF model reduces the execution time to 0.156 sec/frame

but significantly lowers the quality of the output. The object detection benchmark in

the table includes the time for the connected components computation, the bounding

box extraction, and the tests of each candidate region against three dictionaries (cars,

people, and boats).

Clearly, our single-threaded implementation can process only 0.2 fps. Even for

a 5 fps input video this is far from real time. One possibility to close this gap

is by leveraging parallelism. For example, we have experimented with a pipelined,

multithreaded implementation of video condensation for different flex parameters. We

Detecting and Summarizing Salient Events in Coastal Videos 46

Table 3: Average execution time for each stage of processing.

Processing Technique Average Execution Time
Background Subtraction 0.292 sec/frame
Behavior Subtraction 0.068 sec/frame
Detection and Classification 0.258 sec/frame
Video Condensation

flex 0 0.034 sec/frame
flex 1 2.183 sec/frame
flex 2 1.229 sec/frame
flex 3 0.994 sec/frame

Total 5.058 sec/frame

found that on a quad-core CPU this reduced the processing time by up to a factor

of three for typical hour-long beach videos, compared to a traditional single-core

approach. Similar parallelism can be applied to the other steps.

5 Conclusions and Future Work

In this project, we combined multiple video processing algorithms to create a robust

coastal surveillance system that should be useful for biologists, ecologists, environ-

mentalists, and law enforcement officials. We tested our approach extensively using

real coastal video sequences and showed that our system can reduce the length of

typical videos up to about 20 times without losing any salient events. Our system

can dramatically reduce human operator involvement in search for events of interest.

Currently, our system does not operate in real time but with a careful implementation

on a multicore architecture, real-time performance is within reach.

The approach is successful, though imperfect. For instance, the detection block

works well, but ocean waves still cause some false positives. The classification block

attains reasonable accuracy, but there are still some misses and still some instances

of class confusion. The summarization block achieves a 20x reduction in frame count

for scenes with high activity, although greater rates of condensation are possible if

the detection and classification accuracy were improved. Nevertheless, our system is

still a vast improvement over using only the raw background subtraction or behavior

subtraction as the cost input to video condensation, as it allows researchers to observe

ONLY the events involving objects of interest and filters out spurious activity caused

by ocean waves.

In addition to the development of the algorithms, this project contributes a com-

plete software package written in C++ for speed, portability, and ease of deployment

on embedded platforms. In particular, our VideoWriter and VideoReader wrappers

Detecting and Summarizing Salient Events in Coastal Videos 47

for FFMPEG will be especially useful to other students who need C++ video I/O

in future projects, since, to our best knowledge, there do not exist any other simple

interfaces to FFMPEG. All code is clean and thoroughly documented (using Doxygen

and plenty of source code comments) so that it can be easily leveraged. Another key

innovation in this project is the novel use of a pipelined, multithreaded algorithm to

speed up the computationally-intensive video condensation algorithm by a factor of

three. In addition to an efficient C++ version of video condensation, this project

contributes updated, improved versions of the original MATLAB implementation of

video condensation for both Linux and Microsoft Windows platforms.

As is always the case in research, a single question leads to exponentially many

more, and so it is not surprising that there are many possible directions for future

study. One direction for future work is augmenting feature vectors with additional

features, such as RGB, or even some SIFT-inspired features. Our preliminary results

showed that this greatly improved the ability of the system to discriminate between

objects, but it also undoubtedly affects the choice of dictionaries (e.g., need to cap-

ture many different colors of cars since color now matters). More work must also

go into determining a method for selecting a suitable, sufficiently-diverse-but-still-

discriminative dictionary of images. Once the images are chosen, a probability distri-

bution can be calculated, which can then be used to automatically select a detection

threshold, but more work is clearly needed in this area. In addition to augmenting

our choice of features, we should also consider how to best use those features, looking

more closely into things such as scaling, weighting, and symmetry. Another future

improvement to the system’s ability to differentiate between different types of objects

is to select the object class via a best-out-of-K-nearest-neighbors approach.

As a final step to making the system more user-friendly to scientists, we propose

creating a graphical user interface (GUI) that allows the user to select the input

video files, specify and test parameters for the processing, and batch-process entire

directories of videos.

Object detection and classification opens the gateway to performing more-sophisticated,

higher-level analysis of the scene, such as object tracking, counting, and generation of

other statistics. Future work in these areas will allow scientists, law enforcement, and

researchers to better study the behavior of the objects and the interactions between

them.

Detecting and Summarizing Salient Events in Coastal Videos 48

References

[1] Vincent Arsigney, Piere Fillard, Xavier Pennec, and Nicholas Ayache. Log-

Euclidean Metrics for Fast and Simple Calculus on Diffusion Tensors. Magnetic

Resonance in Medicine, 2006.

[2] Shai Avidan and Ariel Shamir. Seam Carving for Content-Aware Image Resizing.

ACM Transactions on Graphics, 26(3), July 2007. Article 10.

[3] Gary Bradski and Adrian Kaehler. Learning OpenCV - Computer Vision with

the OpenCV Library. O’Reilly Media, 2008.

[4] Ahmed Elgammal, Ramani Duraiswami, David Harwood, and Larry S. Davis.

Background and Foreground Modeling Using Nonparametric Kernel Density Es-

timation for Visual Surveillance. Proceedings of the IEEE, 90(7), July 2002.

[5] W. Förstner and B. Moonen. A Metric for Covariance Matrices. Technical Report,

Dept. of Geodesy and Geoinformatics, Stuttgart University, 1999.

[6] Kai Guo. Action recognition using log-covariance matrices of silhouette and

optical-flow features. PhD thesis, Boston University, September 2011.

[7] Kai Guo, Prakash Ishwar, and Janusz Konrad. Action Recognition in Video

by Covariance Matching of Silhouette Tunnels. Proc. XXII Brazilian Symp. on

Computer Graphics and Image Processing, pages 299–306, October 2009.

[8] Kai Guo, Prakash Ishwar, and Janusz Konrad. Action change detection in video

by covariance matching of silhouette tunnels. Proc. IEEE Int. Conf. Acoustics,

Speech, and Signal Processing, pages 1110–1113, March 2010.

[9] Kai Guo, Prakash Ishwar, and Janusz Konrad. Action recognition in video by

sparse representation on covariance manifolds of silhouette tunnels. Proc. Int.

Conf. Pattern Recognition, August 2010. (Semantic Description of Human Ac-

tivities Contest).

[10] Kai Guo, Prakash Ishwar, and Janusz Konrad. Action recognition using sparse

representation on covariance manifolds of optical flow. Proc. IEEE Int. Conf.

Advanced Video and Signal-Based Surveillance, pages 188–195, August 2010.

Detecting and Summarizing Salient Events in Coastal Videos 49

[11] Pierre-Marc Jodoin, Janusz Konrad, and Venkatesh Saligrama. Modeling back-

ground activity for behavior subtraction. ACM/IEEE Int. Conf. Distributed

Smart Cameras, September 2008.

[12] Pierre-Marc Jodoin, Venkatesh Saligrama, and Janusz Konrad. Behavior Sub-

traction. Proc. SPIE Visual Communications and Image Processing, 6822:10.1–

10.12, January 2008.

[13] Pierre-Marc Jodoin, Venkatesh Saligrama, Janusz Konrad, and Vincent Veilleux-

Gaboury. Motion Detection with an Unstable Camera. Proc. IEEE Int. Conf.

Image Processing, October 2008.

[14] Robert G. Keys. Cubic Convolution Interpolation for Digital Image Processing.

IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-29(6),

December 1981.

[15] Zhuang Li, Prakash Ishwar, and Janusz Konrad. Video Condensation by Ribbon

Carving. IEEE Transactions on Image Processing, 18(11), November 2009.

[16] Thomas D.C. Little, Janusz Konrad, and Prakash Ishwar. A Wireless Video

Sensor Network for Autonomous Coastal Sensing. Proc. Conference on Coastal

Environmental Sensing Networks (CESN), 2007.

[17] J. Mike McHugh. Probabilistic Methods for Adaptive Background Subtraction.

Master’s thesis, Boston University, 2008.

[18] J. Mike McHugh, Janusz Konrad, Venkatesh Saligrama, and Pierre-Marc Jodoin.

Foreground-Adaptive Background Subtraction. IEEE Signal Processing Letters,

16(5), May 2009.

[19] Robert Laganière. OpenCV 2 - Computer Vision Application Programming Cook-

book. Packt Publishing, 2011.

[20] Oncel Tuzel, Fatih Porikli, and Peter Meer. Covariance Tracking using Model

Update Based on Means on Riemannian Manifolds. Proc. IEEE Conf. on Com-

puter Vision and Pattern Recognition, June 2006.

[21] Oncel Tuzel, Fatih Porikli, and Peter Meer. Region Covariance: A Fast De-

scriptor for Detection and Classification. Proc. Ninth European Conf. Computer

Vision (ECCV 06), 2:589–600, May 2006.

Detecting and Summarizing Salient Events in Coastal Videos 50

[22] Oncel Tuzel, Fatih Porikli, and Peter Meer. Pedestrian Detection via Classifi-

cation on Riemannian Manifolds. IEEE Transactions on Pattern Analysis and

Machine Intelligence, October 2008.

[23] Paul Viola and Michael Jones. Rapid Object Detection Using a Boosted Cascade

of Simple Features. Technical Report, Mitsubishi Research Laboratories, May

2004.

[24] Huan-Yu Wu. Sliding-Window Ribbon Carving for Video Condensation. Tech-

nical report, Boston University, December 2009. Master’s project.

[25] Yifan Yu. Robust Real-Time Background Subtraction in C++. Technical report,

Boston University, November 2010. Master’s project.

Detecting and Summarizing Salient Events in Coastal Videos 51

Appendices

A MS Project Symposium Poster

This is the poster prepared for the BU ECE MS Project Symposium held on 3 May

2012. The original file format for the poster was MS Powerpoint (as that was the

format of the department-provided template). Note that unfortunately, some of the

formatting for the equations got a little bit messed up when converting to PDF for

inclusion in this report.

• Improvements

–Adaptive threshold in class assignment encourages temporal class consistency:

–Handle elongated rectangles produced from the wake of boats

–Prevent stopped objects from disappearing as background subtraction adapts

• Apply the video condensation algorithm [1] to each object class

–Creates summary of cars, boats, people, or any combination of these

–High computational complexity

• Contribution: Multi-threaded, pipelined implementation

–3x speed improvement over single thread

–Only effective if videos are long enough to fill pipeline

• Detects cars, boats, or people in each bounding rectangle

• Covariance matrix-based approach [4]

– Feature vector:

–Pre-compute log covariance matrices

 where i = image index and d = dictionary index

–Compute log covariance matrix Q for each bounding box

–Assign object class:

– If multiple classes found, accept the class with minimum Ri
d

Object Detection

Detecting and Summarizing Salient Events in Coastal Videos
Daniel Cullen, Janusz Konrad, and Thomas D.C. Little {dcullen, jkonrad, tdcl}@bu.edu

Department of Electrical & Computer Engineering, Boston University, Boston, MA

MS Project Symposium, 3 May 2012

Introduction Subject 5

Acknowledgments

Object Detection Video Summarization

Object Classification Experimental Results

References

Processing Technique Typical Execution Time

Background Subtraction 0.292 sec/frame

Behavior Subtraction 0.068 sec/frame

Detection and Classification 0.258 sec/frame

Summarization flex 0 0.034 sec/frame

Summarization flex 1 + flex 2 + flex 3 4.406 sec/frame

Total 5.058 sec/frame

Setup: C++, single-thread, Intel Core i5, 4GB RAM, Ubuntu 11.04

• Motivation: Monitoring coastal environments

–Case study: Great Point, Nantucket, MA

• Method: Surveillance video cameras

• Applications:

– Scientific research: ecology, biology

– Environmental protection

– Law enforcement

• Challenge: Too many hours for humans to watch!

• Objective: Develop automatic algorithms to identify
and summarize salient events (e.g., appearance of
cars, boats, people)

Key components: Object Detection, Object Classification, Video Summarization

1. Background Subtraction

– Finds regions of interest

–Recursive moving average

–Variable-threshold hypothesis test uses MRF [2]

2. Behavior Subtraction [3]

–Removes stochastically-stationary motion (e.g., waves)

3. Connected-Components Analysis

– Finds bounding rectangles around objects

Original Frame

Background-Subtracted Frame

Behavior-Subtracted Frame

],[],[)1(],[
1

yxIyxByxB
kkk

)/]),[],[exp(],[],[
1

yxQyxQyxByxI
MS

M

S

kk

2

2

2

2

,,,,,),(
y

I

x

I

y

I

x

I
yxyx

Cars Boats People • Dictionaries

–10 to 100 images per class

–Orientation matters; many captured

–Only shape matters; color is ignored

–Require different databases for classes with
distinct shapes (e.g., motorboats vs. sailboats)

– Source: Google Images

Results for the Great Point 2010-08-02 Video

640x360 resolution. Video contains boats and people.

Cost function for

video condensation

Number of frames in each video input to

flex 3 ratio input flex 0 flex 1 flex 2 flex 3

 behavior subtraction 11379 11001 8609 8147 7734 1.47

 boats only 11379 1346 743 662 614 18.53

 people only 11379 3544 2411 1772 1265 9.00

 boats and people 11379 4666 3225 2887 2414 4.71

Summarization results

Execution time benchmarks

System Block Diagram

Background
Subtraction

Behavior
Subtraction

Connected
Components

Analysis

Object
Classification Video

Condensation

Bounding Rectangles

Binary
Frames

Binary
Frames

Video
Frames

Binary Car Frames

Binary Boat Frames

Binary People Frames

Video Summary
of Cars

Video Summary
of Boats

Video Summary
of People

Video Summary
of Cars, Boats,

and People

Multi-threaded Implementation

 Main Thread:

BG & BH subtract,

flex 0

Thread A:

flex 1

Thread B:

flex 2

Thread C:

flex 3

frames from shared memory buffer

Conclusions

• Approach successful, though imperfect

–Detection: Works well, but ocean waves still cause some false positives

–Classification: Achieves reasonable accuracy, but some misses and class confusion

– Summarization: 20x reduction in frame count for scenes with high activity

• Contribution: Complete software package

–Written in C++ for speed, portability, and ease of deployment on embedded platforms

–Uses only free, open-source libraries: FFMPEG (video I/O), CImg (image I/O), Armadillo
C++ Linear Algebra Library (solving for eigenvalues), OpenCV (connected components)

• Future work

–Augment feature vector (e.g., with RGB color) to improve accuracy

See video results at vip.bu.edu

Outputs of processing steps

Classification examples

Original Frames

Background Subtraction

Behavior Subtraction

Detection & Classification

Video Condensation

Discussion

• Execution times and summarization ratios vary with the amount of activity
in the scene. Results shown are for typical video sequences.

• Our approach yields better condensation ratios than using raw cost from
background or behavior subtraction due to fewer false detections (e.g., waves).

Condensed Frame

Frame #324 Frame #12926

QS, QM - number of static and moving neighbors

Ik, Bk - image and background intensities in frame # k

Similarity (i.e., 1/distance)
to cars dictionary for fixed-size

rectangles across image

d

i
C

2

)log()log(
d

i

d

i
CQRwhere

dd

i
id

d

i
id

RRiddQclass)(min &)(minarg),(if)(
,,

Rectangle colors: cars = red, boats = blue, people = green

[1] Z. Li, P. Ishwar, and J. Konrad. Video condensation by ribbon carving. IEEE Trans.
 Image Processing, 18(11):2572-2583, Nov. 2009.

[2] J. McHugh, J. Konrad, V. Saligrama, and P.-M. Jodoin. Foreground-adaptive
 background subtraction. IEEE Signal Processing Letters, 16(5):390-393, May 2009.

[3] V. Saligrama, J. Konrad, and P.-M. Jodoin. Video anomaly identification: A statistical
 approach. IEEE Signal Processing Magazine, 27(5):18-33, Sept. 2010.

[4] O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast descriptor for detection
 and classification. In Proc. European Conf. Computer Vision, May 2006.

Approach

 - distance to nearest detection of class d in previous frame; , - parameters
d

k 1 max

))/)(exp(,1max()(min
max1

,

d

k

dd

i
id

R

Detecting and Summarizing Salient Events in Coastal Videos 53

B Source Code

Please refer to the zipped repository distributed along with this report. There are far

too many lines of source code to include in this report.

C Covariance Matrix-Based Detection Reports

This section provides three short reports that I created as I was testing the covariance

matrix-based object detection and classification algorithm. There is one report for

cars, one for boats, and one for people.

1 of 6

Results of covariance matrix detection using frames of beach video and a library of cars
Written by D.Cullen

Last updated 2012-02-02

Status update

Not much new over break. Been writing final report and cleaning up code and resolving known issues. Started work with

detecting cars (similar to boats, but it’s good to test our algorithm with other databases, and also a good refresher for me).

Experiment setup (Contains excerpts from my 2011-11-08 email. Obviously revised for the new experiments.)

For the distance computation, I used the Frobenius norm between the log covariance matrices of the two images. I used

feature vectors containing six features: raw x and y pixel coordinates (where (0,0) is the top-left corner of the rectangular

query region) and the absolute values of the first-order and second-order gradients in each direction (where the gradients

have been calculated using Keys’ cubic convolution interpolation). In other words: features = [x, y, abs(dI/dx), abs(dI/dy),

abs(d2I/dx2), abs(d2I/dy2)]. This is the same feature vector suggested by Porikli for detecting shape and ignoring color

components.

In order to create my cars database, I downloaded a set of images of automobiles from Google images, cropping them as

necessary. (More information about this database will be given later.) I next computed the minimums of the pairwise

distances, following the method that Kai explains in his thesis (p.75-76) and in his ICASSP paper (i.e., leave-one-out

cross-validation) to build a probability distribution of the distances between the cars. From this, I built a cumulative

distribution, which I used to select a threshold distance (i.e., I chose a confidence level and picked the threshold distance

that corresponded to this percentage of the area under the pdf). (For the tests described in this document, I set several hard

thresholds so that I could better analyze the behavior, but my approach for the real system uses the threshold computed

from the CDF.)

I also extracted several frames from the Great Point videos that contain cars and trucks on the beach. I ran my code on

each frame in order to detect the vehicles. I performed a brute force search for the vehicles in each frame, sliding a fixed-

size search window (80x50 pixels, which is roughly the same size as the cars in most of the frames) all over each frame,

stepping by 4 pixels each time in each direction. (For this simple test, I only used a single search window size; I did not

check for cars of different sizes.) At each search position, I computed the log covariance matrix, and compared it to the

log covariance matrix of each of the images in the database. If the minimum of these distances was less than or equal to

my threshold, I marked that position as a detection, and drew a red rectangle in the output video to mark it as such. I have

attached a thumbnail of a frame from this video to help you to visualize this.

Observations from these experiments

 Notice that the datestamp causes many false detections, just like we observed with our boat experiments.

 When we are trying to see if our algorithm for setting threshold from the library is good, it’s good to test it on lots

of data. Since the same threshold was good for different cars and background images, it suggests that our library

algorithm is good.

Goals and next steps

 Goal for Prof. Little: Try to answer this question: How many per day? (boats, cars, seals, people, etc.)

 Figure out why datestamp produces such a large peak.

 Is thresholding based on CDF the best approach? Database diversity? Separate classes of objects?

 Feature vectors. Are these features sufficient? Test different features. Also study covariance matrix theory.

 Detecting people?

 Discriminate between object classes. Collect statistics. Make confusion matrix.

 How will I perform my performance (speed & accuracy) benchmarks? How will I generate my tables of statistics?

 Create good database: iss:/mnt/data/misc/visualdata/video/beach. Create thumbnails. Document parameters used.

 Symposium in May. Final report. Final code.

 Loose ends: speed up video condensation. More benchmarks. Batch processing. GUI/visualizations?

 I have plenty of things to keep me busy. I’ll e-mail in a few weeks when I’m ready to meet or if I have questions.

2 of 6

We created a database of 30 images using a Google image search and cropping where appropriate. The resolution of the

images varies, but it is roughly 500x300 on average.

Here are thumbnails of all of the images in our library.

3 of 6

Histogram of the pairwise distances between images in our library:

Relevant source code files:

 Code/src/processing/CovarianceDetection.h

 Code/src/testbench/tb_CovarianceDetection.cpp

 Code/src/testbench/tb_CovarianceDetection_plots.m

Feature vector used for all tests:
 inline arma::mat feature_matrix(const FeatureImages &f, RROI roi)

 {

 const int X = roi.x;

 const int Y = roi.y;

 const int W = roi.w;

 const int H = roi.h;

 arma::mat result = arma::zeros(W*H, 6);

 for (int j=0; j < H; j++)

 {

 for (int i=0; i < W; i++)

 {

 int index = j*W+i;

 result(index,0) = (float) i;

 result(index,1) = (float) j;

 result(index,2) = fabs(f.dx1->get(i+X, j+Y));

 result(index,3) = fabs(f.dy1->get(i+X, j+Y));

 result(index,4) = fabs(f.dx2->get(i+X, j+Y));

 result(index,5) = fabs(f.dy2->get(i+X, j+Y));

 }

 }

 return result;

 } // feature_matrix()

Parameters of the covariance window (a.k.a. “scan window” or “search window” or “query window”) are given below. I

chose the width and height to be that of each of the jeeps in GP-2010-05-01_twojeeps.png.
 const int search_width = 80; // width of search window.

 const int search_height = 50; // height of search window.

 const int step_x = 4; // number of pixels to step in x direction

 const int step_y = 4; // number of pixels to step in x direction

4 of 6

GP-2010-04-23_silversubaru.png (1280x720)

3.4 threshold

109 detections

threshold=3.8

203 detections

5 of 6

GP-2010-05-01_twojeeps.png (1280x720)

threshold = 3.4

118 detections

threshold = 3.8

196 detections

6 of 6

GP-2010-05-01_twopickups.png (1280x720)

Left:

threshold=3.2

129 detections

Below left:

threshold=3.4

230 detections

Below right

threshold=3.8

452 detections

Page 1 of 10

Results of covariance matrix detection using frames of beach video and a library of boats
Written by D.Cullen

Last updated 2012-02-22

Goals of the following tests:

 Test to see how well the covariance matrix-based object detection works for boats.

 Determine whether it’s better to have separate dictionaries for motorboats and sailboats, or if is okay to put them

all in the same database. In other words, should motorboats and sailboats be treated as a separate class of objects?

Which method yields the best detections?

 Does the direction of the boats in the dictionary image matter? In other words, if I have a dictionary of boats all

facing to the left, with the system be able to detect boats that face to the right? Taking this one step further, if I

augment my dictionary by adding flipped copies of all of the boats to the dictionary, does detection accuracy

improve? Also take a look at the mathematics behind the covariance of flipped images. Is there any mathematical

basis for any conclusions that I make?

We created a database of 80 images of motorboats and another database of 25 images of sailboats. We also combined

these two sets of images to create a third database. All images were obtained from a Google Images search and cropping

where appropriate. The resolution of the images variables, but it is roughly 200x100 on average.

Below are the thumbnails of all of the images in each database. Note that even though a square border is drawn around

each of the thumbnail images, the actual sizes of the images have been cropped to tightly fit the boundaries of each image.

Here are the sailboats:

Page 2 of 10

Here are the motorboats:

The combined library is just the union of the above two libraries.

Page 3 of 10

Histogram (with two different bin sizes) of the pairwise distances between images in our motorboats-only library:

Histogram of the pairwise distances between images in our sailboats-only library:

Histogram of the pairwise distances between images in our combined motorboats and sailboats library:

Page 4 of 10

Relevant source code files:

 Code/src/processing/CovarianceDetection.h

 Code/src/testbench/tb_CovarianceDetection.cpp

 Code/src/testbench/tb_CovarianceDetection.m

Feature vector used for all tests:

This is the same feature vector used in [Porikli, May 2006]. Note that i and j are relative to the region of interest.

I used the following parameters for the search window in all of my tests:
 const int search_width = 100; // width of search window.

 const int search_height = 50; // height of search window.

 const int step_x = 8; // number of pixels to step in x direction

 const int step_y = 8; // number of pixels to step in x direction

I selected these dimensions by looking at the data and choosing a reasonable size for the bounding box of a boat.

Note that I step by 8 pixels in each direction, not 4 pixels or anything smaller, so that the tests won’t take as long to run.

In "tb_CovarianceDetection.cpp", I used the following “debug” lines to ignore the datestamp in the top-left corner:
 // Perform detections. Also store distances for debugging purposes.

 std::vector< std::pair<int,int> > detect_coords;

 std::vector<DistanceSample> distance_samples;

 for (int j=0; j < gray->height()-search_height; j+=step_y)

 {

 for (int i=0; i < gray->width()-search_width; i+=step_x)

 {

 RROI search_roi(i, j, search_width, search_height);

 arma::mat search_logcov = get_log_cov_matrix(feature_images, search_roi);

 float min_dist = cd.min_distance_to_library(search_logcov);

 // DEBUG --

 // IGNORE THE DATESTAMP IN THE TOPLEFT CORNER BY FORCING DISTANCE TO A CONSTANT VALUE.

 if (j <= 20 && i < 125)

 min_dist = 10;

 // END DEBUG ---

 distance_samples.push_back(DistanceSample(i,j,min_dist));

 if (min_dist <= cd.get_threshold())

 detect_coords.push_back(std::pair<int,int>(i,j));

 } // for ...

 printf(" Just finished row %d\n", j); // Debug print lets you know how much time is remaining.

 } // for ...

Page 5 of 10

GP-2010-08-02_boats008.png with motorboats library

Datestamp kept:

threshold=2.6; 96 detections

threshold=2.7, 132 detections

Datestamp ignored:

Why is there a high peak where the date stamp is on the actual (non-flipped) plot above? It’s because I set it to an

arbitrarily and sufficiently large, constant distance to prevent anything from being detected here.

threshold=2.6; 67 detections

threshold=2.7; 102 detections

Page 6 of 10

GP-2010-08-02_boats008.png with sailboats library

threshold=2.7; 939 detections

Notice that only one of the boats was detected, and barely so.

GP-2010-08-02_boats005.png with sailboats library

Next we tried the sailboats library on an image with an actual sailboat, although the sails were lowered. It does better than

the previous image, although there are still many false detections in the grass.

threshold=2.4; 326 detections

Page 7 of 10

GP-2011-10-23_boats001.png with sailboats library

Very few sailboats travel near Great Point, so I had difficulty finding any frames of sailboats. The following image has a

boat with a tall conning tower and antennas, which gives it a triangular shape similar to that of a sailboat’s sails, and thus

it performs very well, as shown below.

2.4 threshold; 20 detections

GP-2010-08-02_boats008.png with combined library

threshold=2.6; 819 detections

threshold=2.7; 1034 detections

Notice that the combined library performs much worse than the motorboats-only library. Prior to running these tests, I

thought that perhaps adding more diversity to the database would be good because it might make the detections more

robust for handling a larger variety of different boats. However, it appears that the contrary is true; adding more diversity

to the database essentially just adds noise and makes the system less discriminative. Therefore, we recommend treating

motorboats and sailboats as different classes of objects, with separate databases for each.

Page 8 of 10

Now we will perform some experiments to determine how much the direction of the boats in the database matters.

Here is how I prepared these tests:

1. Copied all of the images from the original library_motorboats database to a new folder called

library_motorboats_all_face_left. I manually went through the database and made all of the right-facing images

face to the left using the mogrify command. For example:
mogrify -flop "motor 052.jpg"

(I used the “flop” option to mirror horizontally; the “flip” option would have meant to mirror vertically.)

The result is a database of 80 images of boats that all face to the left.

2. I copied all of these left-facing images from library_motorboats_all_face_left into a new folder called

library_motorboats_all_face_right. Than I ran the following command to flip all the images:
mogrify -flop *

The result is a database of 80 images of boats that all face to the right.

3. Next, I copied all of the images from library_motorboats_all_face_left and library_motorboats_all_face_right

into a new folder called library_motorboats_face_both_ways. The result is a database of 160 images of boats, in

which there are 80 different boats and 80 mirrored copies of those boats.

Histogram (with two different bin sizes) of the pairwise distances between images in our motorboats all-face-left library:

Histogram of the pairwise distances between images in our motorboats all-face-right library:

Histogram of the pairwise distances between images in our motorboats face-both-ways library:

Page 9 of 10

GP-2010-08-02_boats008.png with library_motorboats_all_face_left library

threshold=2.6; 67 detections

threshold=2.7; 102 detections

GP-2010-08-02_boats008.png with library_motorboats_all_face_right library

threshold=2.6; 43 detections

hreshold=2.7; 62 detections

Page 10 of 10

GP-2010-08-02_boats008.png with library_motorboats_face_both_ways library

threshold=2.6; 67 detections

threshold=2.7; 102 detections

The results from the above tests suggest that the direction of the motorboats does not matter much. This could be caused

by any of the following:

1. Motorboats, especially at far distance, look somewhat similar regardless of whether they face right or left.

2. Does the way the covariance matrix is computed make the direction not matter much? This is still TBD.

The “all face left” library did slightly better than the “all face right” library, but this was probably just due to random

chance for this particular image; the boats were oriented in just such a way that favored the “all face left” library. The

“face both ways” library performs just as well as the “all face left” library. Interestingly, if we look back to our first set of

results for this image on page 5, in which our database consisted of just 80 images of boats, some facing left and some

facing right, we see that this had performance equivalent to our “face both ways” library.

We conclude that when creating a database, it is sufficient to just select half of the images to be facing to the right and half

of the images to be facing to the left, just to give sufficient diversity, but that ultimately, the direction does not matter a

whole lot. It is not really worth the trouble to duplicate all of the images and flip the duplicates, so that there are left-

facing and right-facing versions of each image; this just makes the database twice as big for marginal benefit.

It would be interesting to study the mathematics of the covariance matrices for the original and flipped version of the

image, in order to try to better understand why the direction does not matter much, but we’ll save this analysis and

discussion for the final project report. Another test that would be interesting to do would be to select another class of

objects that doesn’t have the approximate left-to-right symmetry that the boats exhibit, and then run more experiments to

see if a library of images facing all one way or the other makes a significant difference.

Page 1 of 4

Results of covariance matrix detection using frames of beach video and a library of people
Written by D.Cullen

Last updated 2012-02-07

We created a database of 62 images of the silhouettes of people standing using a Google Images search and cropping

where appropriate. The resolution of images varies, but it is roughly 50x200 on average.

Below are thumbnails of all the images in our library. Note that even though a square border is drawn around each of the

thumbnail images, the actual size of the image has been cropped to tightly fit the boundary of each person.

Page 2 of 4

Histograms of the pairwise distances between images in our library:

Relevant source code files:

 Code/src/processing/CovarianceDetection.h

 Code/src/testbench/tb_CovarianceDetection.cpp

 Code/src/testbench/tb_CovarianceDetection_plots.m

Feature vector used for all tests:

This is the same feature vector used in [Porikli, May 2006]. Note that i and j are relative to the region of interest.

I used the following parameters for the search window in all of my tests:
 const int search_width = 20; // width of search window.

 const int search_height = 40; // height of search window.

 const int step_x = 4; // number of pixels to step in x direction

 const int step_y = 4; // number of pixels to step in x direction

(I selected these dimensions by looking at the data and choosing a reasonable size for the bounding box of a person.)

In "tb_CovarianceDetection.cpp", I used the following “debug” lines to ignore the datestamp in the top-left corner:
 // Perform detections. Also store distances for debugging purposes.

 std::vector< std::pair<int,int> > detect_coords;

 std::vector<DistanceSample> distance_samples;

 for (int j=0; j < gray->height()-search_height; j+=step_y)

 {

 for (int i=0; i < gray->width()-search_width; i+=step_x)

 {

 RROI search_roi(i, j, search_width, search_height);

 arma::mat search_logcov = get_log_cov_matrix(feature_images, search_roi);

 float min_dist = cd.min_distance_to_library(search_logcov);

 // DEBUG --

 // IGNORE THE DATESTAMP IN THE TOPLEFT CORNER BY FORCING DISTANCE TO A CONSTANT VALUE.

 if (j <= 20 && i < 125)

 min_dist = 10;

 // END DEBUG ---

 distance_samples.push_back(DistanceSample(i,j,min_dist));

 if (min_dist <= cd.get_threshold())

 detect_coords.push_back(std::pair<int,int>(i,j));

 } // for ...

 printf(" Just finished row %d\n", j); // Debug print lets you know how much time is remaining.

 } // for ...

Page 3 of 4

GP-2010-04-23_people002.png

Datestamp kept:

threshold=3.4; 123 detections threshold=3.6; 154 detections

Datestamp ignored:

threshold=3.6; 35 detections threshold=3.8; 163 detections

Page 4 of 4

GP-2010-05-01_people003.png

threshold=3.4, 45 detections (threshold=3.6, 67 detections looks similar) threshold=3.8, 181 detections

GP-2010-08-02_people001.png

threshold=3.6, 2 detections threshold=3.8, 98 detections

Detecting and Summarizing Salient Events in Coastal Videos 74

D AVSS2012 Draft Paper

This is a preliminary draft submitted on 2012-03-21 to the 9th IEEE Advanced Audio

and Signal-Based Surveillance conference.

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

AVSS
#183

AVSS
#183

AVSS 2011 Submission #183. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Detection and Summarization of Salient Events in Coastal Environments

Anonymous AVSS submission for Double Blind Review

Paper ID 183

Abstract

The monitoring of coastal environments is of great inter-
est to biologists and environmental protection organizations
with video cameras being the dominant sensing modality.
However, it is recognized that video analysis of maritime
scenes is very challenging on account of background an-
imation (water reflections, waves) and very large field of
view. We propose a practical approach to the detection of
three salient events, namely boats, motor vehicles and peo-
ple appearing close to the shoreline, and their subsequent
summarization. Our approach consists of three fundamen-
tal steps: region-of-interest (ROI) localization by meansof
behavior subtraction, ROI validation by means of feature-
covariance-based object recognition, and event summariza-
tion by means of video condensation. The goal is to distill
hours of video data down to a few short segments contain-
ing only salient events, thus allowing human operators to
expeditiously study a coastal scene. We demonstrate the ef-
fectiveness of our approach on long videos taken at Great
Point, Nantucket, Massachusetts.

1. Introduction

Technological improvements of the last decade have
made digital cameras ubiquitous. They have become phys-
ically smaller, more power-efficient, wirelessly-networked,
and, very importantly, less expensive. For these reasons,
cameras are finding increasing use in new surveillance ap-
plications, outside of the traditional public safety domain,
such as in monitoring coastal environments [5]. At the same
time, many organizations are interested in leveraging video
surveillance to learn about the wildlife, land erosion, im-
pact of humans on the environment, etc. For example, bi-
ologists interested in marine mammal protection would like
to know whether humans have come too close to seals on
a beach. US Fish and Wildlife Service would like to know
how many people and cars have been on the beach each
day, and whether they have disturbed the fragile sand dunes.
These are just two of the many uses of coastal video data.

However, with 100+ hours of video recorded by each

Figure 1. Example of a detected boat and truck (top row) and a
summary frame (bottom row) that shows both objects together.

camera per week, a search for salient events by human oper-
ators is not sustainable. Therefore, the goal of our research
is to develop an integrated approach to analyze the video
data and distill hours of video down to a few short segments
of only the salient events. In particular, we are interestedin
identifying the presence of boats, motor vehicles and people
in close proximity to the shoreline. This choice of objects
of interest is dictated by our specific application but the ap-
proach we propose is general and can be applied in other
scenarios as well.

Although to date many algorithms have been proposed
for moving object localization and recognition, very few
approaches deal explicitly with the marine environment
[13, 10]. Among the many approaches to video summariza-
tion we note key-frame extraction, montage and synopsis.
While key-frame extraction [7], by design, loses the dynam-
ics of the original video, video montage [3] can result in loss
of context as objects are displaced both in timeandspace.
Video synopsis [8] does not suffer from the loss of context
but is conceptually-complex and computationally-intensive.

There are three challenges to the detection and summa-
rization of events in coastal videos. First, video analysis
of maritime scenes poses difficulties because of water an-
imation in the background, dune grasses blowing in the
wind in the foreground, and the vast field of view. Sec-
ondly, a reliable recognition of objects from large distances
(small scale) and especially of boats at sea is highly non-

1

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

AVSS
#183

AVSS
#183

AVSS 2011 Submission #183. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 2. Block diagram of the entire system.

trivial. Thirdly, it is not obvious how to effectively summa-
rize salient events for viewing by human operators.

We address these three challenges as follows. We rely on
the movement of boats, motor vehicles and people for their
detection. While difficult at small scales, motion detection
is particularly challenging for boats at sea due to waves. We
attack this problem by recognizing the fact that over longer
time scales water movement can be considered stationary
while boat movement is locally non-stationary both spa-
tially and in time. In this context, we leverage the so-called
behavior subtractionthat has been shown to effectively deal
with animated water while accurately detecting boat move-
ment [9]. The obtained moving-object masks serve as re-
gions of interest (ROIs) for subsequent boat, motor vehi-
cle and people detection. We apply thefeature-covariance
framework[11, 12] to reliably distinguish between different
objects even at small scales. Having detected and classified
salient events, the last step is their summarization. We adapt
the so-calledvideo condensation[4] to our needs by devis-
ing a suitable cost needed by the algorithm based on the
outcome of behavior subtraction and object detection.

Our paper focuses on one particular coastal environment,
namely Great Point, Nantucket, MA. We have collected
hundreds of hours of video data from networked cameras
located close to the beach (Figure1). We have demonstrated
the effectiveness of our algorithms on this data set and ob-
tained condensation ratios of up to almost 20:1 thus dramat-
ically reducing a human operator involvement in search for
events of interest.

2. Proposed Approach

The goal of our system is to automatically distill hours
of video down to a few short segments containing only the
types of objects sought. Our system must be simple enough
to be used by operators with no expertise in image process-
ing or video surveillance. Furthermore, we want a system
that can be easily extended to detect new types of objects.
The final summarization must be natural and useful to biol-
ogists, environmental protection agents, etc.

Our system, whose block diagram is shown in Figure2,
meets these requirements. Each of the processing blocks
requires only a few parameters that are easy to tune; a fairly
wide range of values will produce reasonable results. To
extend the system to detect new types of objects, the user
needs only to provide new images similar to the target class
of objects of interest. Finally, any combination of classesof
objects can be selected for summarization, which gives the
operator a lot of control over the output.

We assume that input video is acquired by a camera with
fixed position, orientation, and zoom, that no camera shake
or vibration takes place, that there is no moisture on the lens
(from rain or fog), and that the lighting is constant (i.e., no
sudden changes in cloud cover or in camera gain). We plan
to address some of these limitations in the near future.

Our system first runs background subtraction to detect
the ROI (moving) areas in the video, followed by be-
havior subtraction to reduce the amount of uninteresting
activity such as ocean waves. Next, the system runs a
connected-component analysis on the behavior-subtracted
(binary) video to label the regions where moving objects are
likely. Then, the corresponding regions in video frames are
tested for the presence of objects of interest using a feature-
covariance classification. The regions classified as either
boats, cars or people are then used as high-cost areas that
cannot be removed in the subsequent video condensation.

The following sections describe each step of the overall
system. However, for the sake of brevity, many details have
been omitted, so we refer the reader to the literature.

2.1. Background Subtraction

We detect moving objects in the camera field of view by
means of background subtraction. Many background sub-
traction algorithms have been developed to date [2] with
more advanced ones requiring significant computational re-
sources. Since our system needs to process many hours of
video, it is critical that background subtraction be as ef-
ficient as possible. Therefore, we use a very simple and
computationally-efficient background model in combina-
tion with a Markov model for the detected labelsL [6].
First, an exponentially-smoothed moving average is used to
estimate backgroundBk by means of recursive filtering:

Bk[x] = (1− α) ∗Bk−1[x] + α ∗ Ik[x] (1)

whereIk is the input video frame,k is the frame number,
x = [x y]T are pixel coordinates, andα is a smoothing
parameter. The computed backgroundBk is then used in
the following hypothesis test on the current video frame:

|Ik[x]−Bk−1[x]|
M
≷
S
θ exp ((QS [x]−QM[x])/γ) (2)

whereQS andQM denote the number of static (S) and
moving (M) neighbors ofx, respectively,θ is a thresh-

2

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

AVSS
#183

AVSS
#183

AVSS 2011 Submission #183. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

old andγ is a tuning parameter that adjusts the impact of
Markov model. Note that the overall threshold in the above
hypothesis test depends on the static/moving neighbors. If
there are more moving than static neighbors, then the over-
all threshold is reduced thus encouraging anM label atx.
The above test produces moving/static labelsLk for each
video frameIk. In our experiments, we have used 2nd order
Markov neighborhood (8 nearest pixels). The second row in
Figure4 shows typical results for the above algorithm.

2.2. Behavior Subtraction

In our coastline videos, there is a great deal of repetitive
background motion, such as ocean waves and dune grass,
that results in spurious detections after background subtrac-
tion. However, this motion can be considered stationary (in
a stochastic sense), when observed over a longer period of
time, and suitably characterized. One method to accom-
plish this is the so-called behavior subtraction [9] that we
leverage here due to its simplicity and computational effi-
ciency. The algorithm operates on binary frames of labels
L produced by background subtraction (Figure2) and has
two phases: training and testing. In the training phase, a
segment ofN frames from anM -frame training sequence
(M ≥ N) is being examined. The training sequence is
assumed to exhibit the stationary dynamics we want to re-
move, but no “interesting” moving objects. First, labelsL
at each pixel are accumulated across all frames of theN -
length segment to form a 2D array. Then, all such 2D ar-
rays (for allN -frame segments withinM -frame training se-
quence) are compared to select the maximum at each pixel.
The resulting 2D training array constitutes the description
of stationary scene dynamics. In the testing step, a sliding
N -frame segment is used to accumulate labelsL, from the
background-subtracted sequence being processed, in a new
2D test array. If a pixel in the test array exceeds the value of
the same pixel in the training array (maximum across many
segments) by a threshold ofΘ, then a detection is declared
(white pixel). The rationale behind this is that an “interest-
ing” object will occupy those pixels for more frames than
the maximum number of frames occupied by stationary be-
havior, thereby allowing us to remove regions with “uninter-
esting” motion, such as waves. Typical results of behavior
subtraction are shown in the second row of Figure4.

2.3. Region of Interest (ROI) Extraction

We use a simple connected-components algorithm to la-
bel regions in the behavior-subtracted video. Each such
region potentially includes a moving object. Since the
feature-covariance classification operates on rectangular re-
gions of pixels for efficiency, we circumscribe an axis-
aligned bounding box around each of the connected com-
ponents. We discard any bounding boxes smaller than a
given threshold (5×5 in our experiments) as too small to

contain any of the target objects. We also increase the size
of each bounding box by a constant scale factor (20% in our
experiments) to ensure that it completely captures the tar-
get object. This margin is important because the connected
components may be misaligned with the underlying video
objects and we risk losing part of the object causing sub-
sequent mis-detection. The resulting bounding boxes are
passed to the object detection step.

2.4. Object Detection Using Feature Covariance

The bounding boxes identify video frame areas that
likely contain moving objects of interest. The goal now is
to verify whether each box contains either a boat, a motor
vehicle or a person, or, alternatively, is a false alarm, e.g.,
due to an ocean wave. We employ a method developed by
Tuzel et al. [11, 12] that compares covariance matrices of
features. This approach entails computing ad-dimensional
feature vector for every pixel in a region, and then generat-
ing ad×d covariance matrix from all such feature vectors.
For computational efficiency, rectangular regions of pixels
are often used. The degree of similarity between two re-
gions is computed by applying a distance metric to their
respective covariance matrices.

In order to detect objects in an image, Tuzelet al. ap-
ply exhaustive search where each object from a dictionary
is compared with query rectangles of different sizes at all
locations in the searched image. If the dictionary object
and the query rectangle are sufficiently similar, the object
is detected. However, even with the use of integral images
[11], this approach is computationally expensive, especially
when each video frame must be searched for many different
sizes, locations and classes of objects. Instead, we use ROIs
identified by the bounding boxes at the output of connected-
component analysis (Figure2) as the query rectangles and
test each against three dictionaries: boats, motor vehicles,
and people (described below). This greatly reduces the
number of queries, thus increasing the search speed. An-
other advantage of our approach is the automatic selection
of rectangle size (from the connected-component analysis).
In contrast, Tuzelet al. use several fixed-size query rectan-
gles, thus making an implicit assumption about the size of
target objects. In our experiments, we used the following
feature vector:

~ξ(x) =

[
x, y,

∣∣∣∣
∂I[x]

∂x

∣∣∣∣ ,
∣∣∣∣
∂I[x]

∂y

∣∣∣∣ ,
∣∣∣∣
∂I2[x]

∂x2

∣∣∣∣ ,
∣∣∣∣
∂I2[x]

∂y2

∣∣∣∣
]
,

(3)
that contains location, and first- and second-order deriva-
tives of intensityI. Note that our feature vector is void of
color attributes since we believe shape of objects of interest
is more informative than their color.

Similarly to Tuzel et al., we use the nearest-neighbor
classifier to detect the objects. For each bounding box de-
tected in a video frame (ROI), we compute the distances

3

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

AVSS
#183

AVSS
#183

AVSS 2011 Submission #183. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) (b) (c)
Figure 3. Three samples from each of the dictionaries: (a) boats,
(b) cars, and (c) people used in feature-covariance detection. Im-
ages have been obtained from a search on Google Images.

between its covariance matrix and the covariance matrix of
each object in the three dictionaries. If the minimum dis-
tance is below a thresholdψ, then the class of the object
from the dictionary corresponding to this minimum distance
is assigned to the ROI. We repeat this procedure for all the
detected bounding boxes.

Since covariance matrices do not lie in a Euclidean
space, as the distance metric between two covariance matri-
ces we use the Frobenius norm of the difference between co-
variance matrix logarithms proposed by Arsignyet al. [1],
that is often referred to as the log-Euclidean metric.

For each class of objects we wish to detect, we created a
dictionary composed of many representative images (sam-
ples are shown in Figure3). In order to minimize bias in
our results, we downloaded the images from Google Im-
ages rather than extracting them from our video data. The
images are of assorted sizes and have been cropped to re-
move extraneous background clutter. We tried to diversify
the selection to assure that our dictionaries are representa-
tive of real-life scenarios. For example, our motor vehicles
dictionary consists of sedans, pick-up trucks, Jeeps, etc.,
at various orientations. Since our feature vector does not
contain color, it does not matter what color these objects
are; only the shape matters. Our people dictionary contains
primarily silhouettes of people standing in different poses,
and this works quite well because only the silhouettes of the
people are discernible from far away. The dictionaries we
have used in our tests are composed of 30-100 images.

2.5. Video Condensation

After each ROI has been identified as either a boat, motor
vehicle or person, or, alternatively, ignored, a compact sum-
mary of all objects moving in front of the camera needs to
be produced. To this effect, we employ the so-called video
condensation [4], a method that is capable of shortening a
long video with sparse activity to a short digest that com-
pactly representsall of the activity while removing inactive

space-time regions. Since the method is quite involved, we
refer the reader to the original paper [4] and describe here
only the main concepts.

Video condensation takes a video sequence and an asso-
ciated cost sequence as inputs. The cost sequence is used
to decide whether to remove specific pixels from the video
sequence or not. Although, any cost can be used, we are
interested in preserving the detected boats, cars or people
while removing areas void of activity and thus we use the
originally-proposed cost [4], namely moving/static labels at
the output of behavior subtraction. More specifically, we
use only those labels that are within bounding boxes of the
detected boats, cars or people; the pixels outside are as-
signed 0 (no activity) and thus can be removed.

Consider a boat at sea traveling to the right in the field
of view of a camera whose scan lines are aligned with the
horizon (Figure4). After the behavior subtraction step we
obtain, ideally, a silhouette of the moving boat in each video
frame. Jointly, all these silhouettes form a silhouette tunnel
that is at some angle to the time axist in thex−y− t space
of the video sequence (video cube). This tunnel starts at
the left edge of the video cube and ends at the right edge
(converse is true for a boat moving to the left). If another
boat follows after the first boat disappears, another tunnel
will be formed with a “dead” space, where is no activity,
between them. In the first stage, video condensation elimi-
nates this “dead” space by removing all frames void of sil-
houettes. In consequence, as soon as one tunnel finishes
(boat exits on right), another tunnel starts (boat enters on
left). In the next stage, ribbons rather than frames are re-
moved. Ribbons are connected surfaces that, for the above
case of horizontal motion, are rigid vertically and can flex
horizontally between consecutive time instants (see [4] for
details). This ability to flex in thex−t plane (while remain-
ing rigid vertically) allows ribbons to “fit” between two sil-
houette tunnels. If a ribbon cuts through “dead” space of no
activity and is removed, the two tunnels get closer to each
other. After recursively repeating this removal, the two tun-
nels almost touch each other which is manifested in the con-
densed video by the two corresponding boats appearing in
the same video frame despite being far apart in time in the
original video. Ribbons with increasing degree of flexibility
can be used to remove topologically more complex “dead”
space. Here, we first use rigid ribbons, or frames (flex-0),
and follow them with progressively more and more flexible
ribbons (flex-1, flex-2, and flex-3) [4].

2.6. Implementation Details

All code was written in C++ for computational efficiency
and portability so that it may be readily deployed on embed-
ded sensing platforms in the near future. For the image and
video input and output, we used the open-source FFMPEG
video libraries, and for connected-component analysis we

4

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

AVSS
#183

AVSS
#183

AVSS 2011 Submission #183. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

used the simple OpenCV library functioncvFindContours.
All other code was written “from scratch”.

3. Experimental Results

We have collected hundreds of hours of coastal videos
at 640×360 resolution and 5fps from cameras mounted at
Great Point, Nantucket Island, MA. Figure4 shows two ex-
amples from one of the videos we processed. We used the
following ranges for parameters: background subtraction –
α = 0.005, θ = 20−25, γ = 1.0, 2nd-order Markov model
with 2 iterations; behavior subtraction –M = 300− 2500,
N = 50− 100, Θ = 0.0− 1.0; connected-component anal-
ysis – 5×5 bounding box threshold, 20% box enlargement;
object detection – dictionaries for boats, cars and people
consisting of 30, 80 and 62 objects, respectively, with cor-
responding thresholdsψ between 2.5 and 4.0. The large
range forM in behavior subtraction (training set size) is
needed to adapt to weather conditions (see below).

Note the relative resilience of background subtraction to
the presence of waves (second row in Figure4). Although
behavior subtraction provides only a slight additional wave
suppression in this case, for videos with choppy water sur-
face behavior subtraction offers a significant improvement
for larger values ofM . Also, note the detection of the boat
on left despite a long wake behind it. The condensed frame
on left (bottom row) shows two boats together that were
never visible in the field of view of the camera at the same
time. Similarly, on right, four boats have been combined
into one condensed frame thus shortening the overall video.

The effectiveness of our joint detection and summariza-
tion system can be measured by the condensation ratio (CR)
achieved for each class of objects (or combination thereof).
Table1 shows detailed results with cumulative condensa-
tion ratios (after flex-3) of over 18:1 for boats, 9:1 for peo-
ple, but only about 5:1 for boats or people. Clearly, when
one wants to capture a larger selection of objects, the con-
densation ratio suffers. Condensation ratios for another
video with boats, cars and people are shown in Table2.
Note the last row in both tables labeled “behavior subtr.”
with very low condensation ratios. These are results for the
whole-frame behavior subtraction output being used as the
cost in video condensation instead of being limited to the
bounding boxes of detected objects. Clearly, the spurious
detections at the output of behavior subtraction reduce the
condensation efficiency.

Table 3 provides the average execution time for each
stage of processing in a single-threaded C++ implementa-
tion on an Intel Core i5 CPU with 4GB of RAM running
Ubuntu 11.04 Linux. Note that the execution times for
background subtraction and behavior subtraction depend
only on the video resolution (in this case, 640×360). On the
contrary, the execution times of object detection and video
condensation vary depending upon the data (e.g., more ac-

Figure 4. Samples of typical input video frames (top row) and out-
puts from the processing blocks in Figure2: (row 2) background
subtraction, (row 3) behavior subtraction, (row 4) object detection,
(row 5) video condensation.

tivity means that more regions must be checked for the pres-
ence of objects and also that fewer frames can be dropped
in the flex-0 stage of condensation). The benchmarks re-
ported in the table were obtained for detections of cars in
the video from Table2 and are representative of typical ex-
ecution times. Since video condensation operates on blocks

Table 1. Number of frames after each flex-step and cumulative
condensation ratios (CR) for 38-minute, 5fps video with boats and
people (11,379 frames after behavior subtraction).

Cost
of frames after each step

CR
flex-0 flex-1 flex-2 flex-3

boats 1346 743 662 614 18.53:1
people 3544 2411 1772 1265 9.00:1
boats or people 4666 3225 2887 2414 4.71:1
behavior subtr. 11001 8609 8147 7734 1.47:1

5

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

AVSS
#183

AVSS
#183

AVSS 2011 Submission #183. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Number of frames after each flex-step and cumulative
condensation ratios (CR) for 22-minute, 5fps video with boats,
cars and people (6,500 frames after behavior subtraction).

Cost
of frames after each step

CR
flex-0 flex-1 flex-2 flex-3

cars 768 598 513 439 14.81:1
boats 835 741 692 589 11.04:1
people 1729 1528 1527 1519 4.28:1
boats or people 2125 2045 2013 1969 3.30:1
behavior subtr. 6437 5843 5619 5460 1.19:1

of frames, we computed the average processing time of each
“flex” pass by dividing the execution time for that pass by
the number of input frames to that pass. For the background
subtraction, we used second-order Markov neighborhood
and two update iterations for each frame. Disabling the
MRF model reduces the execution time to 0.156 sec/frame
but significantly lowers the quality of the output. The ob-
ject detection benchmark in the table includes the time for
the connected components computation, the bounding box
extraction, and the tests of each candidate region against
three dictionaries (cars, people, and boats).

Clearly, our single-threaded implementation can process
only 0.2fps. Even for a 5fps input video this is far from
real time. One possibility to close this gap is by leverag-
ing parallelism. For example, we have experimented with a
pipelined, multithreaded implementation of video conden-
sation for different flex parameters. We found that on a
quad-core CPU this reduced the processing time by up to
a factor of three for typical hour-long beach videos, com-
pared to a traditional single-core approach. Similar paral-
lelism can be applied to the other steps.

3.1. Conclusions

In this paper, we combined multiple video processing
algorithms to create a flexible, robust coastal surveillance
system that should be useful for marine biologists, environ-
mental agents, etc. We tested our approach extensively us-
ing real coastal video sequences and showed that our sys-
tem can reduce the length of typical videos up to about 20
times without losing any salient events. Our system can dra-
matically reduce human operator involvement in search for
events of interest. Currently, our system does not operate in
real time but with a careful implementation on a multicore
architecture real-time performance is within reach. In the
course of our research, we have observed that the detection
step works better if objects with significantly different shape
are treated as a separate class. For example, the sails of sail-
boats have large triangular shape, which is quite different
from the hull and cabin of most motorboats; the detection
works best in this case if we use a separate dictionary for
each type of boat.

Table 3. Average execution time for each stage of processing.

Processing Step Average Execution Time
Background Subtraction 0.292 sec/frame
Behavior Subtraction 0.068 sec/frame
Object Detection 0.258 sec/frame
Video Condensation

flex 0 0.034 sec/frame
flex 1 2.183 sec/frame
flex 2 1.229 sec/frame
flex 3 0.994 sec/frame

Total 5.058 sec/frame

References

[1] V. Arsigny, P. Pennec, and X. Ayache. Log-euclidean metrics
for fast and simple calculus on diffusion tensors.Magnetic
resonance in medicine, 56(2):411–421, 2006.4

[2] A. Bovik, editor. The Essential Guide to Video Processing.
Academic Press, 2009.2

[3] H.-W. Kang, Y. Matsuhita, X. Tang, and X.-Q. Chen. Space-
time video montage. InProc. IEEE Conf. Computer Vision
Pattern Recognition, pages 1331–1338, June 2006.1

[4] Z. Li, P. Ishwar, and J. Konrad. Video condensation by
ribbon carving. IEEE Trans. Image Process., 18(11):2572–
2583, Nov. 2009.2, 4

[5] T. Little, P. Ishwar, and J. Konrad. A wireless video sen-
sor network for autonomous coastal sensing. InProc. Conf.
on Coastal Environmental Sensing Networks (CESN), Apr.
2007.1

[6] J. McHugh, J. Konrad, V. Saligrama, and P.-M. Jodoin.
Foreground-adaptive background subtraction.IEEE Signal
Process. Lett., 16(5):390–393, May 2009.2

[7] J. Oh, Q. Wen, J. Lee, and S. Hwang. Video abstraction.
In S. Deb, editor,Video Data Mangement and Information
Retrieval, chapter 3, pages 321–346. Idea Group Inc. and
IRM Press, 2004.1

[8] Y. Pritch, A. Rav-Acha, and S. Peleg. Non-chronological
video synopsis and indexing.IEEE Trans. Pattern Anal. Ma-
chine Intell., 30(11):1971–1984, Nov. 2008.1

[9] V. Saligrama, J. Konrad, and P.-M. Jodoin. Video anomaly
identification: A statistical approach.IEEE Signal Process.
Mag., 27(5):18–33, Sept. 2010.2, 3

[10] A. Samama. Innovative video analytics for maritime surveil-
lance. InInt. Waterside Security Conference, Nov. 2010.1

[11] O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast
descriptor for detection and classification. InProc. European
Conf. Computer Vision, May 2006.2, 3

[12] O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via
classification on Riemannian manifolds.IEEE Trans. Pattern
Anal. Machine Intell., 30(10):1713–1727, Oct. 2008.2, 3

[13] Q. Wu, H. Cui, X. Du, M. Wang, and T. Jin. Real-time mov-
ing maritime objects segmentation and tracking for video
communication. InInt. Conf. on Communcation Technology,
Nov. 2006.1

6

Detecting and Summarizing Salient Events in Coastal Videos 81

E Draft of System Specification

The following is an early draft of my system specification. It is a little out of date

now, but I have included it because it still has some good information about the

parameters that the system takes and how to tune them. The working title of this

system was SEAL (Salient Extracted visuALS).

E.1 Introduction

The SEAL (Salient Extracted visuALs) program analyzes videos of the beach and

distills them, creating statistics and summaries of the most interesting features. This

document specifies the input, output, and behavior of the SEAL system.

E.2 System Block Diagram

The system block diagram can be found in Figure 19. A detailed diagram of the object

detection block can be found in Figure 20. The block diagram shows all of the possible

processing paths through which data in the system can flow. All of the modules shown

in the block diagram are connected together in one top-level executable file.

E.3 Usage

The SEAL program has the following syntax:

./seal MODE CONFIG FILE

The configuration file CONFIG FILE is a human-readable text file containing all of the

input arguments and configuration parameters for running the seal program.

There are three modes of operation that can be specified using the MODE option:

• configure: Generates a default configuration file with the recommended default

parameters.

• tune: Processes and plays back the background-subtracted and/or behavior-

subtracted and/or masked videos in (nearly) real-time. Use this to test the back-

ground subtraction parameters and/or behavior subtraction parameters and/or

the mask file; iteratively change the configuration file and re-run the playback

to assess the performance. Tuning is the step that requires the greatest amount

of human intervention, which is why it has its own mode. The default parame-

ters will generally work pretty well, but nevertheless, better performance can be

Detecting and Summarizing Salient Events in Coastal Videos 82

Figure 19: SEAL System Block Diagram

Figure 20: Object Detection Block Diagram

Detecting and Summarizing Salient Events in Coastal Videos 83

achieved if the behavior subtraction and background subtraction are tuned to

minimize the numbers of false positives and false negatives. It makes sense that

the tune mode only tests the background subtraction, behavior subtraction,

and masking processing stages (i.e., it doesn’t test video condensation or object

detection) because the other stages don’t have any parameters that need to

be iteratively tuned like this. Luckily, this mode is easy to implement because

these processing steps can be computed very quickly (i.e., in real time, or nearly

so) and these steps all occur near the beginning of the processing pipeline. (For

tips on selecting suitable parameters, please see report.tex.)

• process: Performs batch processing of all the input files specified in CONFIG FILE.

Note that the same parameters are applied for each of the specified input files;

if instead you want different parameters for each file, you must use a separate

configuration file for each input file and run the seal program separately for

each configuration file.

E.4 Configuration File

There are two categories of entries in the configuration file: required fields and op-

tional fields. Each type is described below. Note that the defaults for these fields (i.e.,

the settings generated by using the CONFIGURE mode) are given after each option.

Required Fields

Required fields are fields that must always be present in the configuration file.

• input file = filename.avi

– You must have at least one input file entry. You can have as many as

you want, one for each file file that you want to process.

– Input video files can be in any video format supported for decoding by

FFMPEG. (Input files may also be in my proprietary “.dan” video file

format.)

• output dir = ./output

– Specifies the directory in which to save all of the output files.

– Note that this program will clobber any existing files with the same names

in the output directory without warning.

Detecting and Summarizing Salient Events in Coastal Videos 84

• output videos = final videos

– These are flags that indicate which intermediate video files should be cre-

ated (primarily for debugging purposes).

– Simply list each type of video that you want to output, separated by spaces,

for example, to output all videos, use the following: output flags =

condensed0, condensed1, condensed2, condensed3 background-subtracted

behavior-subtracted masked. The 0, 1, 2, or 3 following the word “con-

densed” indicates to which pass of the the video condensation algorithm

these videos correspond (flex0, flex1, flex2, or flex3). Flex0 means that the

frames containing no activity have been dropped, but no further conden-

sation has been performed. Flex3 videos will have the greatest amount of

condensation. Flex1 and flex2 will fall somewhere in between.

Optional Fields

Although these fields are generally optional, many are still required

• backgroundsubtract external file = (not included)

– This option allows you to specify an existing file to use as the output of

the background subtraction, rather than computing.

– This option is primarily used for debugging purposes.

– Note that there is no corresponding behaviorsubtract external file

option. This is because you could accomplish the same thing by just speci-

fying an external behavior-subtracted file as the backgroundsubtract external file

and bypassing the behavior subtraction block.

• backgroundsubtract type = MovingAverage

– This option is required if backgroundsubtract external file is not used.

– Supported types: MovingAverage, KDE

– The simple MovingAverage mode is recommended, since it is fast and has

pretty good accuracy. KDE works better but is much slower.

• backgroundsubtract num init = 100

– This option is required if backgroundsubtract external file is not used.

Detecting and Summarizing Salient Events in Coastal Videos 85

– Number of frames to use to initialize the background for background sub-

traction.

– Note that the frames used to initialize the background subtraction are dis-

carded after the background subtraction module uses them; in other words,

the frames that are outputted by the background subtraction module while

it is initializing are NOT passed along to the next pipeline stage.

• backgroundsubtract alpha = 0.001

– This option is required if backgroundsubtract external file is not used.

– Moving average parameter. (Controls the effective buffer length.)

• backgroundsubtract theta = 10.0

– This option is required if backgroundsubtract external file is not used.

– Background subtraction threshold.

• backgroundsubtract gamma = 5.0

– Include this option if you wish to enable the Markov random field (MRF)

model when performing background subtraction. Using the MRF model

is somewhat computationally intensive but improves the background sub-

traction by reducing stray false positives and filling in some of the missing

pixels inside objects. If you do not include this parameter, the MRF model

with not be used.

– This parameter adjusts the argument of the exponential when using Markov

random fields to influence the thresholds.

• behaviorsubtract num averaging = 200

– This option is required unless the behavior subtraction module is being by-

passed.

– Number of frames in the sliding window over which to perform the aver-

aging.

• behaviorsubtract num training = 1000

– This option is required unless the behavior subtraction module is being by-

passed.

Detecting and Summarizing Salient Events in Coastal Videos 86

– Number of frames to use to train the behavior subtraction.

– Note that the frames used to train the behavior subtraction are discarded

after the behavior subtraction module uses them; in other words, the

frames that are outputted by the behavior subtraction module while it

is training are NOT passed along to the next pipeline stage.

• behaviorsubtract threshold = 10

– This option is required unless the behavior subtraction module is being by-

passed.

– This is the distance between the window sum and the max sum when

performing the comparisons that determine whether or not a pixel is “in-

teresting.”

• mask file = (not included)

– If this option is provided, a binary mask file will be applied to the output

of the behavior subtraction stage.

– If this option is not provided, no masking will be applied.

• videocondensation epsilon = 0

– If you want to use video condensation; you must include this option; oth-

erwise, if you wish to bypass video condensation, simply omit this option

from the configuration file.

– This is the stopping criterion. Generally you will leave this at zero (which

is the default), but if you want higher condensation ratios and you don’t

care about losing pieces of your objects, you can increase it.

• objectdetect library = (not included)

– This is a folder containing a database of images of the objects that you

want to detect.

– If you want to detect multiple classes of objects, give a separate objectedetect library

entry for each. For example, if you want to detect both cars and boats, you

would have one entry that points to a directory containing images of cars

and another entry that points to a directory containing images of boats.

Detecting and Summarizing Salient Events in Coastal Videos 87

• objectdetect confidencelevel = (not included)

– This parameter must be specified when at least one objectdetect library

entry is included. An error will be given if this parameter is specified when

no objectdetect library entries are included, or if it is omitted when

objectdetect library entries are present.

– Allows you to specify the confidence level for detecting the objects.

– It should be specified as a fraction, not a percentage (e.g., 0.90 rather than

90%).

– For simplicity, this confidence level is applied to all classes of objects. For

example, you can’t detect cars with confidence of 95% and boats with

confidence of 90%; you must use the same confidence level for each class

of objects.

Syntax Notes

Here are a few notes on the syntax of this configuration file.

• The order of entries in the configuration file does not matter.

• The configuration file is case-sensitive.

• Comments may be included, with the following restrictions (since our parsing

is so primitive):

– A comment must appear on its own line; it cannot follow at the end of

another line of text.

– A ‘#’ indicates the start of a comment. This MUST be the first character

on the line; it cannot be preceded by whitespace.

• A minimal amount of checking will be performed to ensure that the parameters

are all understood and that they all make sense. This should help to catch some

errors, but the user should still take care to avoid typos.

Example

Here is an example configuration file.

Detecting and Summarizing Salient Events in Coastal Videos 88

input file = beachvideoA.avi

input file = beachvideoB.avi

input file = beachvideoC.avi

output dir = ./output

output videos = final videos

backgroundsubtract type = MovingAverage

backgroundsubtract num init = 100

backgroundsubtract alpha = 0.001

backgroundsubtract theta = 10.0

backgroundsubtract gamma = 5.0

behaviorsubtract num averaging = 200

behaviorsubtract num training = 1000

behaviorsubtract threshold = 10

videocondensation epsilon = 0

covobjectdetect library = ./boat library

covobjectdetect library = ./car library

covobjectdetect confidenceleve = 0.90

E.5 Output

This program generates the following output in the specified output directory:

• Video files are specified by the option output videos. The output videos

have the same filenames as the corresponding input videos, except that their

names are prefixed with the characters “condensed0 ”, “condensed1 ”, “con-

densed2 ”, “condensed3 ”, “backgroundsubtracted ”, “behaviorsubtracted ”, or

“masked ”, depending on which videos they are.

• A simple HTML file index.html is also generated, which gives hyperlinks to

the generated video files for easy viewing, summaries of the parameters used,

and statistics2 related to the detected objects.

E.6 Caveats

This section describes some of the assumptions we have made when designing this

system, as well as some of the limitations of our current system.

2Not implemented quite yet. Statistics include counts of numbers of boats, numbers of seals,
times in the video at which interesting events occurred, etc.

Detecting and Summarizing Salient Events in Coastal Videos 89

• Input video files should be selected to meet certain assumptions for good data,

such as no camera shake, no water on lens, constant lighting (i.e., no change in

cloud cover and no sudden changes in camera gain), no zoom, etc.

• Maximum input video resolution: Generally about 320x240 due to high memory

requirements of video condensation.

• “src ref mode” from my old “beachanalyzer” program will not be supported in

the new “seal” program.

• Video condensation always runs flex0 through flex3; you cannot control the

number of flex passes.

• We do not attempt to detect boats that are very far away on the horizon because

they are very tiny and we probably do not have enough pixels to detect them

accurately, anyway. Luckily, boats that are on the

• It is interesting to note that boats do not tend to go out onto the water when

the ocean is very choppy. As a result, it is fairly rare that we will have to detect

a boat in the middle of heavy waves.

• If we limit our system to process data on days in which the weather is good

(not enough wind to make the camera shake), chances are that there will be

fairly few waves to interfere with the boats.

E.7 Other Observations

• Since waves in the ocean and along the shoreline cause many false-positives, I

have selected a mask that only includes the sandy beach region. I have also

masked on the grassy dune, just because I don’t care about this region, and

I don’t want any possibility of dune grass blowing in the wind to create false

positives.

• Video condensation cuts out any frames without moving objects (i.e. people)

• Notice that the background subtraction algorithm detects something that wouldn’t

be visible by the human eye: a seal is moving around near the shoreline, in the

left half of the video, near the car. This is like the person walking across the

highway overpass in my older test videos; the human eye wouldn’t have noticed

Detecting and Summarizing Salient Events in Coastal Videos 90

it, but marking it with white on black using the background subtraction makes

it more visible.

• Notice that some notion of the time scale is important, as this affects what gets

kept and what gets cut out. Depending size of the ”window” or ”buffer” of the

background subtraction recursive filter, we may or may not detect the car as

background, depending on how long it sits before driving away.

• When people stand near the shore, their legs are in front of the beach portion

but their upper bodies are in front of the waves and ocean. Thus, we risk

chopping people in half and other distortions in the condensed video because

the mask that we are using to ignore the ocean passes through their bodies.

• There are a few false detections when clouds pass overhead and cast shadows on

the beach. I could try to minimize these by adjusting my detection threshold.

E.8 Miscellaneous

Interesting side note: Sometimes it is useful to watch the cost function video because

it can draw your attention to things that you might not otherwise notice. For exam-

ple, the human eye tends to focus on people and cars in the foreground on the beach,

and easily overlooks tiny (a few pixels wide) objects that blend into the background

and move around near the periphery of the screen (such as seals). On the black and

white cost function, these small objects show up as white detected pixels and are

much more apparent to the viewer, which signals the viewer to go back and check

the original video in these locations for something interesting. I have another video

of the highway overpass near St. Mary’s street, which also shows this: I would never

have noticed a tiny pedestrian walking over the bridge had I not watched the cost

function video.

Observations about the condensed videos:

• In the people and cars video, sometimes the people disappear and reappear

as they walk quickly across the beach. This is because the networked camera

dropped frames when it was capturing the original video. (It is NOT a problem

with the background subtraction algorithm or video condensation algorithm.)

The dropped frames cause the person to ”teleport” from position to position,

Detecting and Summarizing Salient Events in Coastal Videos 91

rather than to move smoothly between them. It is simply a problem with the

way the original video was recorded. (Analogies: strobe light. picket fence.)

• In the boats video, you’ll notice that rectangular regions of the ocean near the

boats don’t match up. This is because the pixels in the region of one boat

are from a different moment in time than the pixels in the region of another

boat. The difference in coloration of the ocean pixels between these two regions

is due to changing ambient light levels over time (due to clouds, movement of

sun, etc.) or the camera’s automatic gain control. Also, the textures of these

two regions are different because the waves are different at different moments in

time. These regions are rectangular due to the fact that our video condensation

algorithm ”carves” either horizontal or vertical ”ribbons”. The fact that we see

these discontinuities indicates that our algorithm is really condensing the video

by showing non-overlapping segments of video from different moments in time

on the screen simultaneously!

• Notice that the condensation algorithm works better when the objects tend to

move across the screen in the same the direction. For example, during certain

times in the boats video, we see that several boats traveling in the same direction

can be sent across the screen one right after another, in rapid succession. This

is similar to the results of condensing video of a highway, in which cars are

all traveling in the same direction (see http://vip.bu.edu/projects/video/video-

condensation/) – under these circumstances, higher compression ratios can be

achieved.

• Another example of a scenario that yields good condensation results is one in

which activity occurs at opposite sides of the screen at different moments in

time, but the objects involve stay on their respective sides of the screen; after

condensation, the two activities can be played back at the same time, side by

side.

F Preliminary C++ Video Condensation Bench-

marks

This section provides some of our early benchmark results for our multithreaded,

pipelined C++ implementation of video condensation that we implemented during

Detecting and Summarizing Salient Events in Coastal Videos 92

the summer of 2011. Please understand that these benchmarks are out of date and

no longer very relevant because the source code has changed tremendously since then.

We have included these results only to give an idea of the work that was done much

earlier in the project, for historical reasons.

Summer 2011 Research Summary

Summary of software developed and data gathered for the multi-threaded C++ implementa-

tion of video condensation as applied to processing beach videos from Great Point, Nantucket.

Daniel J. Cullen

dcullen@bu.edu

2011-09-19

Prof. Little & Prof. Konrad

Electrical and Computer Engineering

College of Engineering

Boston University

1 Introduction

The purpose of this document is to document the work I did over the summer. It explains some

of the code I wrote and some of the results we obtained. It is important to document this work so

that we do not forget what I accomplished, and so that this work can be more useful to others in

the future.

By no means is this document an exhaustive summary; it does not go into detail about the

workings of all of the code, nor does it contain all of my research notes. For these things, please see

the source code comments, Doxygen documentation, and my research notes. There are also many

video files containing insightful results.

1.1 Benchmarks and Discussion

Preliminary Benchmark Results

For the benchmarks of the C++ code, we use the Linux time command. This command reports

the “real” time, “user” time, and “system” time. The CPU time actually used by the process is

“user+system”, but we do not want to take into account the amount of time used on each of the

cores. Rather, we want the “wall-clock” time, so we take the benchmark recorded by the “real” time

statistic. Besides, taking the “real” time better agrees with the way that we take the MATLAB

benchmark.

MATLAB benchmarks are recorded using the MATLAB tic and toc benchmarking functions.

We sum up the total time it takes to process flex0 through flex3. This gives us the total wall-

clock time of running the MATLAB code, which we can use to compare against our C++ code

benchmarks.

(Sanity check: I verified that user+sys for multiple cores is approximately equal to real time

for single core.)

For the multi-core benchmark, I left all 48 processor cores on iss9 enabled. (Of course, the

algorithm is designed to use only up to four cores at once, but we wanted to allow the program

easy access to all resources.)

Discussion of Preliminary Benchmark Results

Note that the local disk storage vs. the network drive storage doesn’t make a huge difference

in performance for any of these benchmarks.

Note that we get a speedup of about a factor of 3 of the multi-core approach over the single-

core approach. This is as we would expect. It is not a factor of 4 because the first thread spends

relatively time processing compared to the other two threads; it only handles loading and saving

the data. When the background subtraction is enabled, we get a slightly higher (about 3.1 vs 2.9)

speedup because the first thread gets to do more processing work. Another thing to note is that the

1

Table 1: Benchmark results

Benchmark Results

Type of test Cores Storage used Wall-clock time

C++, marsh plaza src and pre-computed cost (9800 frames) Multi-core /home (network disk) 74m10.021s

C++, marsh plaza src and pre-computed cost (9800 frames) Multi-core /tmp (local disk) 75m14.484s

C++, marsh plaza src and pre-computed cost (9800 frames) Single-core /tmp (local disk) 156m37.196s

MATLAB, marsh plaza src and pre-computed cost (9800 frames) Single-core /tmp (local disk) 61m9.1s

MATLAB, marsh plaza src and pre-computed cost (9800 frames) Single-core /home (network disk) 60m53.2s

C++, marsh plaza src and pre-computed cost (9800 frames) Single-core /tmp (network disk) 145m44.425s

C++, marsh plaza src and pre-computed cost (9800 frames) Single-core /home (local disk) 155m15.793s

C++, marsh plaza src, on-the-fly cost, long video (26488 frames) Single-core /tmp (local disk) 143m46.598s

C++, marsh plaza src, on-the-fly cost, long video (26488 frames) Multi-core /tmp (local disk) 49m17.085s

C++, marsh plaza src, on-the-fly cost, long video (52976 frames) Single-core /tmp (local disk) 282m47.967s

C++, marsh plaza src, on-the-fly cost, very long video (52976 frames) Multi-core /tmp (local disk) 90m14.248s

speedup is greater for long video sequences because the time required to fill the pipeline becomes

less significant for longer sequences.

Also note the inconsistencies between the C++ marsh plaza single-core pre-computed cost and

on-the-fly cost! A video with more than twice as many frames takes about one third the computation

time! The culprit: probably disk access time. Also, disk access time would also explain why the

MATLAB code runs twice as fast; the MATLAB code is using a Motion JPEG codec.

One thing that I might do to try to get a slightly better comparison between my C++ code is

to create a ramdisk on iSS9, copy the input files to this ramdisk, and then run the code from the

ramdisk; this will mitigate disk accses time as being an issue. Unfortunately, I’m not sure I really

have enough ram on iss9 to make a sufficiently large ramdisk; running the command free -m only

reported about 3.8GB free.)

Another thing that I might try to do is, when running the code, change the flags so that we

don’t write all the intermediate result videos to disk; only write the end result videos. I decided to

do this test first. I ran single-core and multi-core instances of this, without outputting any output

video files. I’m still using .dan input files (for source and cost videos), and these are being read

from the network drive (/home). These results are shown in Table 2.

More Benchmark Results

Discussion

There are several other inconsistencies that must be addressed:

• My MATLAB benchmark is inaccurate because the video files are unreliable (due to the lossy

MJPEG compression, even when quality setting is 100%.

• Also, the MATLAB benchmarks are unreliable because of how I use the MATLAB tic/toc

2

Table 2: More benchmark results

Benchmark Results

Type of test Cores Storage used Wall-clock time

MATLAB, marsh plaza src and pre-computed cost (9800 frames) (all output files) Single-core /tmp (local disk) 61m9.1s

MATLAB, marsh plaza src and pre-computed cost (9800 frames) (all output files) Single-core /home (network disk) 60m53.2s

C++, marsh plaza src and pre-computed cost (9800 frames) (all output files) Single-core /tmp (network disk) 145m44.425s

C++, marsh plaza src and pre-computed cost (9800 frames) (all output files) Single-core /home (local disk) 155m15.793s

C++, marsh plaza, pre-computed cost (9800 frames) (no output files) Single-core /home (network disk) 89m59.561s

C++, marsh plaza, pre-computed cost (9800 frames) (no output files) Multi-core /home (network disk) 61m38.005s

commands; to be consistent, I should do a wall-clock time, rather than separate times and

summing them, just to make sure I haven’t forgotten to capture any time. The wall-clock

tic should be the first line of the MATLAB script and the corresponding toc should be the

last line of the MATLAB script.

• I should really get the uncompressed AVI working in MATLAB and in my C++ code so that

the codec is the same. Also, using the AVI uncompressed codec in MATLAB will allow us to

have reliable results, unlike the unreliable lossy MJPEG files.

• The server iss9.bu.edu might need a reboot because most of its RAM is used up but it’s idle.

This might explain why my recent C++ benchmarks have been performing poorly.

• Another thing to consider is that my C++ code, when forced to run only on a single core,

may perform worse than the algorithm coded in C++ to run several independent passes; this

is because there is overhead to perform the context switches. (I’m not sure how the overhead

for writing/reading the intermediate flex videos for the multi-pass approach factors into this,

though.)

• Another issue I encounter that other people might be running intensive applications on

iss9.bu.edu at the same time that I’m trying to run my applications. The machine has 48

cores and a bunch of RAM, but we might still be competing over some resources, especially

RAM and access to harddisk or network drive.

Even more benchmarks

I addressed some of these issues. For example, I implemented the lossless MJPEG2000 sup-

port in MATLAB, which works correctly (unlike the lossless MJPEG support, which still gives

compression artifacts even with 100% quality selected). The new benchmarks are given in Table 3.

Commentary on these benchmarks:

• Keep in mind that these latest benchmarks were run only using 9800 frames.

3

Table 3: Even more benchmark results

Benchmark Results

Type of test Cores Storage used Wall-clock time

MATLAB, lossless MJPEG marsh plaza (9800 frames, 270x162 resolution) all cores enabled /tmp (local disk) 78m40.125s

MATLAB, lossless MJPEG2000 marsh plaza (9800 frames, 270x162 resolution) all cores enabled /tmp (local disk) 92m43.758s

MATLAB, uncompressed AVI marsh plaza (9800 frames, 320x240 resolution) all cores enabled /tmp (local disk) 365m51.947s

C++, marsh plaza (.dan format) (9800 frames, 320x240 resolution) single-core /tmp (local disk) 420m35.318s

C++, marsh plaza (.dan format) (9800 frames, 320x240 resolution) multi-core /tmp (local disk) 225m18.521s

• I think other people were running jobs on the machine at this time too.

• Comparing the first two benchmarks in the table above, we see that the file format and file

size has a significant impact on the execution time.

• Keep in mind that the uncompressed AVI benchmark can’t be readily compared to the

other benchmarks because it is a bigger resolution than the all others (320×240 rather than

270×162), because I had to pad it to get rid of artifacts.

• The ratio of C++ single-core to C++ multi-core from the 2011-09-17 results is about 1.867.

The ratio of C++ single-core to C++ multi-core from the 2011-08-25 results is about 2.082.

I forget why I thought this was important to note. Maybe to try to check for reproducibility

and consistency on the machine on which I’m running the tests? Maybe the worse ratio on

2011-09-17 suggests that more people were using Processor Core 0 on 2011-09-17. Either

that, or the 320x240 videos don’t perform as well as the 270x162 videos? I’m not sure.

Here is another test that I thought about doing: I should Implement my C++ VideoReader to

use mjpeg (270x162 res) input files or uncompressed RGB24 AVI (320x240 res) input files instead

of .dan files. These would be great tests, but they won’t work on iss9, since I haven’t gotten the

FFMPEG support for OpenCV working yet, which is why I keep avoiding this test.

Summary and Reflections:

Ideally, I would have used the exact same video file formats for the MATLAB and the C++ code.

This wasn’t possible because first I was struggling with formats that MATLAB could understand,

and then I was struggling with getting the OpenCV and FFMPEG codecs working on the server

iss9.bu.edu. (It would have been great if iss9 had ubuntu, because it was a breeze installing the

packages on my Linux laptop. Or it would have been great if I could use my Linux laptop to do

all the benchmarks, but I don’t have MATLAB installed on my Linux laptop, and I needed a good

common Linux platform to run the tests).

4

Also, I would have ideally had two different versions of my C++ code: one that was structured

like the MATLAB code, that wrote to and read from separate files for each flex stage, which I could

use for the single-core benchmarks, and another version that uses my pipeliend algorithm for doing

the multi-core benchmarks. Thus, I could really get a better comparison between MATLAB and

C++ and then between C++ single-thread and C++ multi-thread. Unfortunately, I didn’t have

the time to fully code or debug a version of the C++ code optimized for a single thread, so I tried to

run the same multi-threaded code for both C++ tests, and just disable all cores except for one core

when running the single-thread code. I had hoped that this would be a fairly good approximation

of a C++ single-threaded implementation. Unfortunately, there are a lot of unknown factors that

confound my measurements: overheads of multiple threads make the code less efficient when run on

a single core (i.e. context switching overheads), time to write multiple video files, core management

in the OS (and maybe other users on iss9 running processes on the chosen core), etc., so I’m not

sure how reliable my approximation of single-threaded processing is.

Rather than just one benchmark, I’ve had to run so many benchmarks just to get a feel of things

because I haven’t been able to compare apples to apples. It’s very hard when the best that you

can do is compare apples to oranges. My hope, however, is that by comparing apples to oranges,

peaches, bananas, and lots of different kinds of fruit, I can get a good qualitative, intuitive feel

about the relative performance.

That said, I think the best results to compare are:

• The MATLAB lossless MJPEG2000 results (from 2011-09-16): 92m43.758s

• The MATLAB lossless MJPEG2000 results (from 2011-09-19, test 1): 72m42.656s

• The MATLAB lossless MJPEG2000 results (from 2011-09-19, test 2): TBD

• C++ single-core results (from 2011-08-30, all output files): 145m44.425s

• C++ single-core results (from 2011-09-15, no output files): 89m59.561s

• C++ multi-core results (From 2011-09-15, no output files): 61m38.005s

You’ll notice that there are several MATLAB lossless MJPEG2000 results above. They were

all run more or less the same way, but for some reason they came out somewhat inconsistently. I

ran this benchmark several times because I was curious if the results are consistent, and the answer

turns out to be: not really.

Another thing you’ll notice is that since I’ve discovered that file format/file size makes a dif-

ference, I thought that for the C++ benchmark, a huge input file with no output files might be

roughly good comparison against the MATLAB with the losslsess MJPEG2000 which has smaller

5

file sizes, which is why I ran the benchmarks on 2011-09-15 with no output files. I also thought I

might try to level the playing field by comparing tests involving uncompressed AVI in MATLAB

against C++ test using .dan format (granted, there is some lossless zlib compression involved in

these .dan format tests, but I think the results will still be fairly comparable). These comparisons

are given below:

• MATLAB uncompressed AVI results (from 2011-09-17): 365m51.947s

• C++ .dan format single-core (from 2011-09-17): 420m35.318s

• C++ .dan format multi-core (from 2011-09-17): 225m18.521s

Some bottom-line results are given in the next section.

1.2 Bottom Line on time performance benchmarks

The performance between the MATLAB code and the single-core C++ code is approximately the

same; the single-core C++ tests might be slightly (less than 10%) slower because the threaded

algorithm is optimized for four cores, not one core.

The C++ multi-core code runs approximately 2x faster than the C++ single-core code for

shorter (i.e., approx. 10,000 frames) sequences, and as much as 3x or more faster for longer (i.e.,

approx 25,000 frames or more) sequences. The first stage of the pipeline (background subtraction

and flex0) is currently under-utilized, since the flex1, flex2, and flex3 stages of the pipeline require

considerably more computation time. With more processing in the first stage (e.g., behavior sub-

traction?), the multi-core vs. single-core performance increase factor will approach closer to the 4x

upper limit.

Aside from implementing the multi-threaded algorithm, I have not spent much time trying to

optimize my C++ code. With a little more time optimizing the code (e.g., fixing some memory

management things in the ribbon carving code), I should be able to increase the speed of my C++

code by 20% for each of the flex processing stages.

Other observations:

• The file format and file size has a significant impact on execution time.

• The storage medium (local disk versus network drive) doesn’t make much of a difference on

execution time.

So, the bottom line is that even though the single-core C++ algorithm doesn’t really improve

over MATLAB, the multi-core algorithm does, and will be especially useful when we make the cost

function processing in the first pipeline stage more computationally intensive. Furthermore, there

is still plenty of room for optimization improvement with the C++ code.

6

1.3 Next steps

I really need to finish optimizing the C++ code. Earlier this summer, I spent a lot of time just

trying to get my C++ code to produce the exact same results as the MATLAB code. More recently,

I’ve been spending just a lot of time trying to compare the C++ vs. MATLAB performance. I’ve

spent so much time working on these other things that I haven’t had time to sit down and refine

my C++ code at all. For example, I think I can probably get my C++ ribbon carving code to run

about 20% faster than Huan-Yu’s C version that I’m currently using, just because I can manage

the memory more efficiently. (See log.odt on 2011-09-14 for my benchmark of this. Granted, there

are still some problems with it, but I still believe there’s room for improvement.) There are also

probably many other things I can do, like make sure the compiler is properly inlining the functions

for accessing pixel data.

2 Conclusion

This concludes the Summer 2011 Results report.

7

	Introduction
	Literature Review
	Background Subtraction
	Behavior Subtraction
	Covariance Matrix-Based Object Detection and Classification
	Automatic Threshold Selection
	Image Gradients using Cubic Convolution Interpolation
	Seam Carving
	Video Condensation

	Methods
	System Architecture Overview
	Implementation Details
	Background Subtraction
	Behavior Subtraction
	Masking
	Obtaining the Regions of Interest
	Covariance Matrix-Based Object Classification
	Improvements

	Experimental Results and Discussion
	Conclusions and Future Work
	References
	Appendices
	MS Project Symposium Poster
	Source Code
	Covariance Matrix-Based Detection Reports
	AVSS2012 Draft Paper
	Draft of System Specification
	Introduction
	System Block Diagram
	Usage
	Configuration File
	Output
	Caveats
	Other Observations
	Miscellaneous

	Preliminary C++ Video Condensation Benchmarks

