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Fast prediction of the interaction broadband noise produced in a turbofan fan stage can
benefit engine preliminary design. Over the years, multiple low-order methods for determining
the unsteady response of the fan exit guide vane (FEGV) and related acoustics have been
developed. These methods provide reasonable predictions of the interaction broadband noise
when the fan wake flow upstream of the FEGYV is known. The wake flow has been obtained
previously from experiment, high fidelity computations and Reynolds Averaged Navier Stokes
(RANS) simulations. In this paper, a machine learning method for obtaining the desired wake
flow parameters is presented. The training database consists of 8 fan geometries that include
varying lean and sweep with a total of 545 fan speed and mass flow cases. The database is
generated using RANS. The efficacy of machine learning as a surrogate model for the wake is
explored. The effect of inaccuracies in the learned wakes on the final acoustic prediction are
noted. Noise outcomes due to varying fan lean and sweep are explored.

I. Introduction

The demand for more efficient and quieter aircraft continues to drive engine design. Broadband fan-stage interaction
noise is a dominant source of noise in modern turbofan engines. The interaction noise is produced when the fan wake
impinges on the FEGV. Methods for predicting this noise source during the design phase are of interest. Much research
has focused on modeling the interaction noise [1, 2]. All of the methods assume that the flow upstream of the fan exit
guide vane (FEGV) is known. The wake flow has been obtained previously from experiment, high fidelity computations
and Reynolds Averaged Navier Stokes simulations. While the acoustics produced by the interaction may be computed
quickly, obtaining the required wake flow parameters to be used as input into the acoustic prediction, renders the total
method less useful for design. Therefore, this work focuses on developing a method for determining the wake flow
parameters quickly. To this end, machine learning is being used as a surrogate model. The goal is to provide information
about a fan’s geometry and performance and allow the surrogate model to provide the necessary flow parameters
upstream of the FEGV.

The first results for machine learned fan wake flow were reported in [3, 4]. Single and multiple output methods
were considered originally and the multiple output method was selected. The fan used in the Source Diagnostic Test
provided the initial geometries and a database with 268 cases was generated. Both deep neural and convolution neural
networks were used to learn the circumferentially averaged axial and tangential mean flows, the turbulence intensity and
the turbulence length scale with good outcomes. This paper begins to address the question of whether machine learning
will work when the fan geometries differ more widely. As such, a series of leaned and swept fan blades have been

created. A new database of 545 cases has been developed and machine learning has been tested on this new set of fans.
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In this paper, some background on the machine learning method used in this work is discussed in Section II. A brief
overview of the low-order acoustic prediction method applied in this work is also provided. More details concerning
the machine learning method together with the development of the training data are given in Section III. Results are
presented for the efficacy of machine learning as a surrogate model for the wake in Section IV. The noise associated
with leaned and swept fans has also been explored and presented. The machine learning is shown to work well when
predicting a fan whose geometry is “inside” the geometries in the database and works less well extrapolating to a design
“outside” of the database.

I1. Background

A. Machine learning applied to wakes

Machine learning (ML) has been applied to wake flows previously. Two dimensional flow downstream of a cylinder
[5] has been considered. More closely related to the turbofan application is the learning of wakes downstream of wind
turbines [6-8]. These utilized a deep neural network (DNN) to learn the total averaged flow at positions from the ground
up to one rotor diameter above the turbine at locations downstream of the turbine. A recent work by Li [9] introduced
the use of a Graphic Neural Network (GNN) which applies to a non-Euclidean space in order to learn the wake on a
nonuniform grid downstream of the turbine.

The wake flow downstream of a fan has some similarity to the wind turbine problem except one can assume
axisymmetry that does not exist for the wind turbine application. Also, in the current research, it is of interest to learn
the circumferentially averaged values across a passage and not just the overall averaged value at a given radial location.

The previous fan wake ML research was limited to only the SDT R4 fan and its “hot” geometry variants [3, 4, 10].
The fans were very similar and as such their wakes at a given operating point were very similar. 7 fan speeds and about
10 mass flow rates for each geometry provided an ML training database of 268 cases; but it can be argued that there were
really only 67 truly unique cases. An ML architecture that allowed for very accurate learning of the wake parameters of
interest: streamwise velocity, turbulence kinetic energy and length scale was developed. It was shown that the wake flow
at any certain mass flow rate along a speed line can be well predicted even when the entire speed line was removed from
training database. It also showed that an entire fan geometry could be left out and then its wake flow predicted well. The
previous research determined initial best practices for applying the machine learning to fan wakes. This includes

* learning the axial and tangential mean flow in two steps: DNN for the circumferentially averaged values at each

radial locations; convolution neural network (CNN) for the full passage deficit.

* learning the turbulence length scale directly instead of learning TKE and w separately then forming length scale

* utilizing batch normalization when training for better performance, except when training turbulence length scale

In the prior research, it was also noted that including some input parameters such as the trailing edge boundary layer
thickness did not improve the ML accuracy using the database containing only the SDT fan variants. However, as the
size of training database increases requiring the ML model to resolve more complex features, such input parameters may
be still considered.

B. Low-order FEGYV response

The acoustic prediction is based on the semi-analytical model developed by Grace [2]. The turbulence interacting
with the FEGV is modeled using a Liepmann spectrum which is why the fan wake turbulence intensity and length scale
are necessary inputs. It uses strip theory in that a series of 2D cascade solutions are pieced together. The model allows
for skewed gusts and computes the unsteady cascade response using the Ventres method [11] with added 3-D gust effect
using the Graham similarity method [12]. The Green’s function for an annulus is then applied to obtain the acoustic
power in the exhaust duct. The method utilizes time averaged inflow parameters at 24-45 radial locations depending on
the case. It is noted that some other low-order methods utilize the passage variation of the turbulence intensity. In the
classification of broadband noise prediction models by Guerin et. al. [1] it is considered a Group A model.
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I11. Method
Four fan wake parameters just upstream of the FEGV leading edge location must be known in order to predict the
FEGV broadband interaction noise: the axial and tangential mean velocity, the turbulence intensity and turbulence
length scale. The ML database that includes this information for multiple fans, fan speeds and fan mass flow rates is
obtained from RANS simulations. The two velocity components are extracted directly from the RANS simulation.
The turbulence intensity is related to the turbulence kinetic energy. The turbulence length scale, A is estimated using
Pope’s [13] formula as a function of turbulence kinetic energy, k, and turbulence dissipation rate, w:

Vk
A_0'430.09u) 1)
These flow parameters are specified on 30 axial slices evenly distributed between the trailing edge of the fan and the
leanding edge of the FEGV. Each slice in the database is related to a given fan case through the ML inputs.

The inputs to the ML model are showed in Table 1. They relate to the fan geometry, operating condition, the fan
flow profile, and the relative position of the slice in relation to the fan. The geometry and flow profile related inputs are
specified at the 30 radial locations, except for M;,,, which is uniform. The values of three flow parameters (M;,, Moyu:,
@ouyr) are computed by a meanline code AxStream. The relative axial location of fan trailing edge, 7, is defined as
X — xTE, the axial distance between the fan trialing edge and the axial slice of interest in the interstage. The relative
OTE — Omin . . . .
m is the percentage of circumferential location
of fan trailing edge relative to the passage of the interstage bloc’ﬁai)rcl the RANS simulation, where 6,,,, and 6,,,;,, are the
maximum and minimum circumferential position of the interstage block. The training inputs are concatenated into a
1x333 tensor. As such, the input data set can be represented by X € RI*NexNix333 Where N, is the total number of
CFD cases and N; is the number of slices in the axial direction.

circumferential location of fan trailing edge, éTE, defined as

Table 1 List of fan inputs for ML.

Input name Size

Rotor speed 1x1

Mass flow rate 1x1

Relative axial location of rotor trailing edge, X7g 1x30
Relative circumferential location of rotor trailing edge, 7 1 x 30
Rotor chord, ¢ 1x30
Stagger angle, y 1 x30
Rotor camber angle, @ 1 x30
Rotor outlet flow angle, @y,; 1x30
Rotor solidity, o 1x30
Rotor inlet Mach number, M;,, 1x1

Rotor outlet Mach number, M,,,; 1x30
Maximum profile thickness/chord ratio, Tyciarive 1x30
Maximum thickness of rotor profile, T}, 1x30
Outlet metal angle, ®,,,, 1x30
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545 CFD simulation cases representing 8 fans operating at 7 speedlines from 50% to 100% of 12657 RPM
are included in the training data set, each with 30 axial slices in the interstage
gap. The 8 fan geometries are the SDT “cutback hot” fan, a baseline fan as shown
in Fig.1, three baseline variants with added -10°, 15°, 30° degrees lean, and three
baseline variants with added -15°, 15°, 20° degrees sweep. The variants are
shown in Fig.2. While the SDT fan has different geometry and flow profile inputs
compared to the baseline, the lean and sweep variants are only varied in 67z and
X1E compared to the baseline.

The training data is derived from fan-alone RANS simulations performed
using a multi-block structured code (UTCFD) with 219x97x145 grid at the
interstage block. The turbulence is modeled using the k — w-model of Wilcox[14].
More information has been given in [3]. For our method, i.e. training 3-D data Fig. 1 Comparison of SDT R4
via 2-D CNN model, it is convenient to use data in a uniform grid. This allow fan and new fan design. Red: SDT.
us to specify an axial location for each slice and embed it in X7g. As such, the Black: New fan design
CFD results are interpolated into a 30x50x30 grid in axial, circumferential, and
radial locations. A coarse, uniform grid also has the benefits of reducing the ML
training cost and ensuring that training loss is unbiased relative to the location.

z z

+ lean + sweep 2
X : Y <
\ L— X

TE

(a) Leaned geometries (b) Swept geometries

Fig. 2 New baseline fan geometries. Leaned: Grey: -10°, Brown 0° (baseline), Blue: +15°, Green:+30°. Swept:
Blue: -15°, Brown 0° (baseline), Green: +15°, Grey: +20°.

A modified architecture based on the the previous work [4] is applied. The structure is based on a 2-D CNN model
described in Fig. 3 and the detailed model parameters are explained in Tables A1, and A2. While the model in [4] has 7
deconvolutional layers, it was found that with new geometries in the database, adding an additional deconvolutional
layer considerably decreases the test mean absolute error. Previous study found that adding batch normalization layers
between deconvolutional layers improves the performance of training vy, v, and TKE when the database contains
only the SDT variants. However, when switching to the new training database, it was found that the training and
testing accuracy is adversely affected and therefore, the batch normalization layer is turned off. This may be caused by
uneven training inputs, wherein the majority of the input parameters of the new baseline fan variants are the same, but
substantially differ from the SDT fan present in the new database. The concatenated input tensor is transformed into a
1x84 tensor by two fully-connected layers, which can be conveniently reshaped into a 7x12 feature map, and can be
then transformed into a 2850 output layer via 8 deconvolutional layers. Each output image represents the prediction of
an axial slice in a case. For each flow parameter, the total data set can then be denoted by Yeyn € RNeXNixNjx N
where N; and Ny are the number of points in circumferential and radial direction for each slice.

The DNN model explained in Table A3 is utilized to reinforce the training for axial and circumferential velocity. To
train these parameters, the averaged background values and the deficits are separated. The circumferentially averaged
values at every radial location are learned by the DNN model with four hidden layers using the same 1x333 inputs. The
DNN output, which has the dimension of 1XNy, in every axial slice for each veolocity component is then combined with
the velocity deficits learned by CNN to obtain the final axial and circumferential velocity.

The learning rate is manually tuned by trial-and-error. When training velocity deficits and turbulence kinetic energy
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Output layer

1x333 1x256 1x84 1@7x12 256@7x12 256@7x12 128@7x12 64@14x24 32@14x24 32@14x24 16@14x25 8@28x50  1@28x50
& L) & = =
& & &
Input tensor Dense Dense 3x3 kernel 3x3 kernel 3x3 kernel 5x5 kernel 7x7 kernel 3x3 kernel 1x2 kernel 7x7 kernel 5x5 kernel

Fig.3 CNN architecture

using CNN, a slight improvement is observed when a dynamic learning rate is employed. Therefore, a simple step-based
decaying learning rate function is applied:
1+n

Nn=1n0-0.94"r 2
where 7, denotes the learning rate at current iteration step, 7¢ is the initial learning rate set to 0.005 for turbulence
kinetic energy and 0.002 for velocity deficits. #n is the current step number, and r is the decay step which is set to 300.
This method requires multiple trials to find the optimum decay parameters. Fixed learning rates are used in the DNN
model for the mean velocities and the CNN model for the turbulence length scale as the dynamic learning rate had little
to no improvement.

IV. Results

A. Wake Behavior and Acoustic Trends

Before addressing the ML aspect of the research, the RANS database is used to investigate the effect of fan lean
and sweep on the fan wake and the broadband fan stage noise. Flow values are specified at 45 radial strips at the axial
location coincides with the SDT HW?2 location, where the experimental measurements were acquired. Fig. 4 shows the
circumferentially averaged normalized wake parameters for the baseline fan and its leaned and swept variants taken
directly from the RANS simulations. The axial and tangential Mach numbers (Mach number based on downstream
temperature) are shown in the top two rows. The turbulence is assumed to be homogeneous so that the turbulence

intensity, u’ is found by 1/%TK E, and is normalized by the streamwise velocity. The turbulence length scale, A is
normalized by the duct radius.

All of the geometries show somewhat similar Mach number at low speed. Forward lean appears to create more
turbulent flow at the mid-span but less turbulence near the tip. The sweep design has a large effect on the turbulence
length scale especially near the tip. This is possibly due to the change in axial distance between fan trailing edge and the
axial slice of interest, which affects the turbulence development.

The interaction broadband noise produced by the different fan geometries with the same baseline FEGV geometry is
shown in Fig. 5. Past studies [2, 10] have found that turbulence length scale tips the spectrum. As such, the forward
sweep fans have higher sound power at low speed. This is shown in Fig. 5(a).

At high speeds, both adding forward lean and forward sweep result in much higher #’ and A at low mass flow rate
leading to higher sound power level as shown in Fig.5 (b). As mass flow rate increases, the u’ and A become less
sensitive to lean and sweep, but the wake flow coming out of the backward sweep fan is comparably more axial which
also contributes to higher noise. The sound power spectra at a higher mass flow rate is plotted in Fig.5 (c).
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Fig. 4 CFD wake flow parameters. Left columnn approach fan speed, middle and right columns sideline fan

speed.
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Fig. 5 PWL spectrum computed using inputs obtained from CFD.



To compare the overall sound power trends, the integral averaged sound power level is computed across the spectrum
for all cases and shown in Figs. 6 & 7 for leaned and swept fans. The adiabatic efficiency is also provided. The optimal
flow rate for acoustic does not perfectly mirror the highest adiabatic efficiency, and appears to be slightly shifted toward
the lower mass flow rate. However, the efficiency and acoustic have fairly consistent trends when compared across
the fan design. The lean variation has a small impact on the acoustic at low speeds. At higher speeds, forward lean
produces more noise and larger variation with respect to mass flow rate. Sweep has the effect of shifting both acoustic
and efficiency curves, where the forward sweep shifts the optimal point toward higher mass flow rates and backward
sweep shifts the optimal point toward lower mass flow rate. Within a speed line, high efficiency roughly equates to
lower noise. From speedline to speedline however, the maximum efficiency does not change much while the broadband
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noise changes drastically, increasing with speed.
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Fig. 6 Integral averaged PWL and adiabatic efficiency baseline and leaned fans. Downward triangles: -10°.
Squares: 0° (BL). Circles: 15°. Upward triangles: 30°
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B. ML Predicted Wake and Acoustic Trends for Leaned and Swept Fans

The ML model is first tested by reserving a random set of 20% of the cases for testing and using the other 80%
for training and validation. The reserved cases cover all 8 fans at every speed line. Fig. 8 shows the predicted wake
parameters from an example case that represents a typical outcome. Both the CFD and ML predicted values are
interpolated onto a 28x50 axial slice (two radial locations are removed due to the solid wall condition). The plots show
that ML can precisely capture the wake shape of the passage with relatively small error.

To further assess the model. A full fan geometry can be removed from the training set. Four tests were run leaving
out an entire fan geometry: two fans with intermediate lean and sweep angles, 15° lean and 15° sweep; the fan with the
largest lean angle, 30° lean; and the fan with the lowest sweep angle, -15°. These fans are reserved one at a time with all
cases associated with that fan being removed from the training dataset. An example case is shown in Fig. 9 when the
15° sweep cases are reserved. The results show that ML is capable of predicting the wake of a fan with sweep variation
if the sweep angle is within the range of fan geometries used for training the ML. When the 30°lean fan is reserved, the
test results show that the model typically overpredicts the axial velocity and the turbulence kinetic energy as shown in

Fig. 10. It also predicts the wake width incorrectly.
_: _:

-40 -20 0 20 40

ML predicted Error map CFD ML predicted Error map
(a) Axial velocity (ft/s) (b) Circumferential velocity (fz/s)
1000 2000 3000 -1000 0 1000 -0.01 0 0.01
_:I —l:l
ML predicted Error map ML predicted Error map

(c) Turbulence kinetic energy (f 12 / s2) (d) Turbulence length scale (f¢)

Fig. 8 ML test prediction using random evaluation method. Evaluation slice taken at HW2 location. SDT
cutback hot operating at 77.5% speed, 72.8 Ibm/s.
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Fig. 9 ML test prediction when 15° sweep fan cases are removed. Evaluation slice taken at HW2 location. 15°
sweep fan operating at 100% speed, 100 Ibm/s.
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Fig. 10 ML test prediction when 30° lean fan cases are removed. Evaluation slice taken at HW2 location. 30°
lean fan operating at 60% speed, 59.2 Ibm/s.
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The circumferentially averaged flow parameters that serve as the inputs for the acoustic prediction are shown in
normalized form in Fig. 11 for the example cases described in Figs. 8, 9 and 10. Both the random evaluation and
the 15° sweep test cases agree very well with the CFD results. The 30° lean test case exhibits comparatively greater
discrepancies especially in u’.

Fig. 12 shows the computed acoustic spectra of these cases, the results also reflect the aforementioned ML outcomes,
with the largest error occuring when the 30° lean fan is reserved. This is expected because reserving the 30° lean fan
requires the ML model to extrapolate and the turbulence behavior is nonlinear with respect to the fan design.
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Fig. 11 CFD (solid) and ML (dashed) predicted circumferentially averaged acoustic input. Black: random
evaluation, SDT fan at 77.5% speed, 72.8 lbm/s. Blue: 15°sweep fan reserved, 100% speed, 100 Ibm/s. Red:
30°lean fan reserved, 60% speed, 59.2 Ibm/s.
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Fig. 12 PWL spectrum using CFD (solid) and ML (dashed) predicted inputs. Black: random evaluation, SDT
fan at 77.5% speed, 72.8 Ibm/s. Blue: 15°sweep fan reserved, 100% speed, 100 Ibm/s. Red: 30°lean fan reserved,
60% speed, 59.2 Ibm/s.

The integral averaged PWL is again calculated to measure the overall accuracy of ML predictions. Fig. 13 shows the
values computed using CFD and ML predicted inputs when 20% of the cases are randomly reserved for testing. The ML
predicted acoustic outcomes are in good agreement with the acoustic predictions computed using inputs directly from
the CFD. Most cases exhibit less than 1 dB error. The acoustic results based on machine learned values for a fan not
included in the training set are shown in Fig. 14. In this figure, the circles denote intermediate geometries (15° lean and
15° sweep) results using CFD input, and the crosses represent results using ML predicted inputs. The triangles are
marginal geometries (30° lean and -15° sweep) results using CFD inputs, and the corresponding ML predicted results
are represented by asterisks. These results exhibit small error when an intermediate fan is removed, i.e. 15° sweep
and 15° lean, but relatively large error when the model has to extrapolate, i.e. -15° sweep and 30° lean. Specifically,
all 30° leaned fan cases are overpredicted, and the -15° swept fan cases show good agreement at low speed but are
overpredicted at high. The overall mean errors are 0.2788 dB for 15°sweep fan, 1.1441 dB for -15°sweep fan, 0.3650
dB for 15°lean fan, and 1.2724 dB for 30°lean fan. Notably, even when the ML model has to extrapolate the flow
parameters from outside of the fan designs included in the training set, the acoustic predictions based on these inputs
still capture the trends very well.

The mean error averaged over each speed line for all of the test cases is shown in Fig. 15. The mean prediction error
increases with fan speed when the -15° swept fan is reserved, whereas it decays when the 30° leaned fan is reserved.
However, when evaluated randomly or with an intermediate fan design, the error does not appear to be strongly related
to fan speed.
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Fig. 13 Integral averaged PWL computed using inputs from CFD (circles) and ML (crosses) random evaluation
set. Overall mean error is 0.4313 dB.
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extrapolation case.

V. Conclusions

A hybrid fan-stage broadband interaction noise prediction method that couples machine learning (ML) of the fan
wake with a semi-analytical acoustic model is improved and further analyzed using a larger database consisting of fans
with varying lean and sweep. The ML outcomes showed that the model can predict the fan wake flow values when
trained using random fan speed and mass flow rate combinations or when trained with full fan geometries excluded.
The ML’s prediction accuracy is lower for fans with geometry parameters that lie outside of the range of geometry
parameters represented in the training data set. Still, the final acoustic trend predictions are reasonable across speed
lines even for an extrapolated fan geometry.

Future efforts will expand the training database to include fan designs with different blade count and diameter. The
selection of input parameters and their influence on the model’s predictions will also be further investigated.
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Appendix: ML model structure

Table A1 CNN layer parameters for velocity deficit, turbulence kinetic energy and length scale.

Structure Numbers of feature maps  Size of feature map  Size of kernel ~ Stride
Fully connected layer-1 256 Ix1 / /
Fully connected layer-2 84 1x1 / /
Transposed 2D convolution layer-1 256 7x12 3x3 1x1
Transposed 2D convolution layer-2 256 7x12 33 1x1
Transposed 2D convolution layer-3 128 Tx12 3x3 Ix1
Transposed 2D convolution layer-4 64 14x24 5%5 2x2
Transposed 2D convolution layer-5 32 14x24 X7 1x1
Transposed 2D convolution layer-6 32 14x24 3x%3 1x1
Transposed 2D convolution layer-7 16 14%25 1x2 1x1
Transposed 2D convolution layer-8 8 28x50 TXT 2%2
Output layer 28x50 5%5 1x1

Table A2 CNN model parameters for velocity deficit, turbulence kinetic energy and length scale.

Parameter Value
Activation function at hidden layer LeakyReLU
Optimizer Adam

Learning rate
Objective function
Metrics

Batch size

0.0005 and dynamic
Mean squared error

Mean absolute error
256
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Table A3 DNN model parameters for mean axial and circumferential velocity.

Parameter Value
Input size 1x333
Number of neurons in hidden layer-1 512
Number of neurons in hidden layer-2 256
Number of neurons in hidden layer-3 128
Number of neurons in hidden layer-4 64
Number of neurons in output layer 28
Activation function at hidden layer LeakyReLU
Optimizer Adam
Learning rate 0.0002
Objective function Mean squared error
Metrics Mean absolute error
Batch size 256
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