The Shock Tube Problem

ME702 Final project

Luisa Capannolo

December 16th, 2016

The Shock Tube problem

- Studied by Gary A. Sod in 1978
- 1D problem
- analytical solutions are known
- used to test and validate computational fluid models

The Shock Tube problem

- Studied by Gary A. Sod in 1978
- 1D problem
- analytical solutions are known
- used to test and validate computational fluidmodels

The Shock Tube problem

- Studied by Gary A. Sod in 1978
- 1D problem
- analytical solutions are known
- used to test and validate computational fluid models

Governing Equations

Governing Equations

Analytical solutions

diaphragm rarefaction wave shock wave contact discontinuity

OpenFOAM 2D shock tube set-up

OpenFOAM2D shock tube set-up

OpenFOAM2D shock tube set-up

OpenFOAM 2D shock tube set-up

OpenFOAM 2D shock tube set-up

OpenFOAM rhoCentralFoam solver

- Greenshields et al., 2010
- compressible fluids $\nabla \cdot (\rho \ \vec{u}) \neq 0$.
- finite volumes method
- values are provided at the centroid of the volume cell
- cells are contiguous polyhedral volumes
- volume integrals in divergence and gradient terms are converted to surface integrals via Gauss's theorem

line cuts along x-axis

line cuts along x-axis

speed

density

Results: resolution

line cuts along x-axis

Results: resolution

line cuts along x-axis

Results

line cuts along x-axis for 300x300x1 resolution grid

Results

line cuts along x-axis for 300x300x1 resolution grid

Results: 2D plots

xy plane cut

Results: 2D plots

xy plane cut

Results: 2D plots

xy plane cut

Python solvers

Python solvers: Lax-Friedrichs (1-step)

Python solvers: MacCormack (2-step)

OpenFOAM vs. MacCormack

Conclusions

- OpenFOAM can simulate the 2D shock tube problem
- solutions match to the analytical ones for resolution of at least 300x300
- 2D solutions are the same for the 1D case
- can extract 1D solutions to 2D and 3D case, if the diaphragm is along x only

Conclusions

- OpenFOAM can simulate the 2D shock tube problem
- solutions match to the analytical ones for resolution of at least 300x300
- 2D solutions are the same for the 1D case
- can extract 1D solutions to 2D and 3D case, if the diaphragm is along x only

- MacCormack 2-step scheme also approximates well the analytical solutions, but additional artificial viscosity is needed
- MacCormack 2-step scheme has more diffusion

Temperature is obtained given that $e = C_V T = (\gamma - 1)RT$:

$$T = \frac{1}{C_V} \left(\frac{E}{\rho} - \frac{u^2}{2} \right)$$

