

MODELING AND SIMULATION OF HEAT TRANSFER BY MIXED CONVECTION

Overview

- Experimental data taken from Mercier, et al. (2014) "Self-Propulsion of Immersed Objects via Natural Convection." Physical Review Letters 12:204501
- The system is analytically complicated, requiring coupled governing equations for both fluids and heat transfer
- Our goal is to construct a faithful simulation using OpenFOAM CFD software, as well as an accurate but tractable model that we can use to approximate the experimental and numerical results

Experiment

Experimental setup, left, and experimentally measured velocity profile near heated edge, right. Figures taken from Mercier, et al.

Developing the Analytical Model

- Begin with essential correlations
- Correlate drag force with thermal expansion
- Resultant Nu for convectiondriven flow over a body

Nusselt Condition		Correlation	Constituent Terms
Definition	(1)	$rac{hL_c}{k_f}$	$h = \frac{q}{(T - T_{\infty})}$
Forced Convection: laminar flow over a flat plate	(2)	$0.6795 * Re^{\frac{1}{2}} Pr^{\frac{1}{3}}$	$Re = rac{vL_c}{v} Pr = rac{v}{lpha}$
Natural Convection: heated bottom of an inclined wall	(3)	$\left[0.825 + \frac{0.387 * Ra^{\frac{1}{6}}}{\left(1 + \left(\frac{0.492}{Pr}\right)^{\frac{9}{16}}\right)^{\frac{8}{27}}}\right]^{2}$	$Ra = Gr * Pr$ $Gr = \frac{g \cos \theta * \beta (T - T_{\infty})L_{c}^{3}}{v^{2}}$

Extension of Natural Convection to Velocity				
Drag Force	$D = \frac{1}{2} \rho v_f^2 C_D A_D$			
Pressure Gradient	$F = \Delta P \sin \theta * A_S$			
Hydrostatic Pressure	$\Delta P = gH(\rho - \rho_0)$			
Thermal Expansion	$(\rho - \rho_0) = \beta (T - T_{\infty})$	(8)		
Natural convection velocity correlation→	$Nu = \left[0.825 + \frac{0.387 * \left(\frac{\cos\theta * \rho v_f^2 C_D A_D L_c^3}{2H \sin\theta * A_S v \alpha}\right)^{\frac{1}{6}}}{\left(1 + \left(\frac{0.492}{Pr}\right)^{\frac{9}{16}}\right)^{\frac{8}{27}}}\right]^2$			

Comparing Nu Formulations

- Adding the forced convection relation, we arrive at an upper bound for T and v
- The forced correlation only accounts for forced velocity; the actual velocity includes free convection and so should be larger
- Therefore the T estimate is an upper bound

Analytic Model Results		
	<i>T</i> [°C]	$v[^{mm}/_{s}]$
Natural Convection	28.18	4.46
Forced Convection	36.65	6.36
Experimental	32.42	5.0

Modeling Heat Transfer

GOVERNING EQUATIONS SIMULATED VELOCITY

•
$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

•
$$u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + g \beta (T - T_{\infty})$$

•
$$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

Meshing

- Modeled a stationary wedge with fluid moving around it
- Block Mesh
- Divided Region into seven blocks
- Finer Meshes around the wedge

FINAL MESH

Solvers

BUOYANT SIMPLE FOAM

- Steady State: no dt term
- Added relaxation factor to help converge
 - Reduces the amount p can change over iterations
- Polynomial fit of thermal properties
 - Another option is a Boussineq model with β constant

PRESSURE

- Pressure flux model
 - Solves for pressure without gravitational influence
 - Allows constant boundary condition on verticel walls
- Used a Gauss Siedel solver for pressure
 - Can solve both symmetric and asymmetric matricles

Boundary Conditions

- Approximations that need to fit the data
- Temperature:
 - Zero Gradient
- Inlet:
 - Constant velocity
 - Variable Pressure (constant flux)

Outlet:

- inletOutlet Condition
- Free movement of fluid, with average velocity
- Constant pressure

• Surface:

- 0 total velocity
- Free movement of fluid
- Constant pressure

Wedge Velocity vs Temperature

Velocity Profile

Discussion and Future Work

- The concept works and the numerical data matches
- Lessons learned:
 - Relaxation factors are good for efficiency, but don't help until the code works
 - Be willing to try many boundary conditions, even if they seem unlikely to work
 - Finer meshes don't always work
- Future work:
 - Write in a shell code for iterative process
 - Try different shapes, temperature and heat fluxes