ENG ME702: Computational Fluid Mechanics (Fall 2016)

Final Project

Shock Tube with rhoCentralFoam, sonicFoam, Lax-Friedrichs and

MacCormacks

Ankush Gupta (U01997897)

BOSTON

UNIVERSITY

Submitted on: December 20, 2016
Submitted to: Dr. Sheryl Grace

Department of Mechanical Engineering
College of Engineering

Boston University

Content

1. Description of the problem
2. Hypotheses
3. Shock Tube with rhoCentralFoam, sonicFoam, Lax-Friedrichs and

MacCormacks

3.1.Pre-processing

3.1.1. Mesh generation

3.1.2. Boundary and initial conditions

3.1.3. Physical properties

3.1.4. Control

3.1.5. Discretization and linear-solver setting
3.1.6. Creating the mesh

3.2.Running the application

4. Results & Discussion
4.1.rhoCentralFoam
4.2.sonicFoam Vs rhoCentralFoam
4.3.rhoCentralFoam vs Lax-Friedrichs

4.4.rhoCentralFoam vs MacCormack

Appendix

1. Description of the problem

In this project, an analysis on the shock tube was performed. During the analysis, a comparison
was created between the effect of viscosity (u) in a two-dimensional system. Two different solvers,
namely, rhoCentralFoam and sonicFoam were analyzed. Also, a comparison between the
rhoCentralFoam solver and Lax-Friedrichs and MacCormack algorithms was performed.

P (N/mA2)

2. Hypotheses 16+05°

e Compressible flow
e Viscous flow
e Bi-dimensional flow
a
(=9

e Laminar

—le+d

—te+d

Zde+d

2e+d

le+04-

3. Shock Tube with rhoCentralFoam, sonicFoam, Lax-Friedrichs and

MacCormacks
3.1.Pre-processing

To start openFoam on the supercomputer, we follow the following command.
module load openfoam

For the initial setup of the files, | transferred the basic setup from of the Shock Tube problem from
the sonicFoam and rhoCentralFoam solvers. For that, | used the following command.

cp -r SFOAM_TUTORIALS/compressible/rhoCentralFoam/shockTube/ SFOAM_RUN/rhoCentralFoam/shockTube
&

cp -r SFOAM_TUTORIALS/compressible/sonicFoam/laminar/shockTube/ SFOAM_RUN/rhoCentralFoam/shockTube

3.1.1. Mesh generation

After the setup, the mesh is defined and refined to the specific comparison. For that, we choose a
domain of 10*5*2 meters. The mesh size was chosen to be 300*150*1 where the refinement was
conducted near the initial dam of the domain.

To edit the mesh file, following code was used.
nedit shockTube/constant/polyMesh/blockMeshDict

In the editor, the code was edited. The mesh filed used is as shown below.

_______ *\
| ========= |
|
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
I \\ / O peration | Version: 2.4.0
|
| \\/ A nd | Web: www . OpenFOAM. org
|
| \\/ M anipulation |
|
A\ K o o
_______ */
FoamFile
{
version 2.0;
format asciiy;
class dictionary;
object blockMeshDict;

}
//**********************************
***//

convertToMeters 1;

vertices

(

hex (001 2 3 45 6 7) (300 150 1)

simpleGrading
(
(
(30 22.5 0.5)
(30 55 1)
(35 22.5 2)
)
1

boundary

(

sides

{
type patch;
faces

(

}
topandbottom

{
type wall;
faces

empty

{
type empty;
faces

(

) ;

mergePatchPairs
(
)7

//

KA AR A A KA A A A A A A A A A A A A A A A A A A Ak A,k k%

* kx x //

3.1.2. Boundary and initial conditions

We setup the boundary conditions in the file. For that we update the \p, \T and \U directories in
the \0 folder.

The pressure in the \0\p directory file is as follows.

/* ________________________________ e Ot — e
_______ *\
| ========= |
|
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
[\\ / O peration | Version: 2.4.0
|
| AN\ / A nd | Web: www .OpenFOAM. org
|
| \\/ M anipulation |
|
L
_______ * /
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object | <X

}

//**********************************

***//
dimensions [1 -1 -2 0 0 0 071
internalField uniform O;

boundaryField
{

sides

{

type zeroGradient;

}
topandbottom

{

type zeroGradient;

}

empty
{

type empty;
}

//

KA AR AR KKK

* k% //

The temperature in \0\T directory is as follows.

e e Ot — e
_______ *\
| ========= |
|
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
I \\ / O peration | Version: 2.4.0
|
| \\/ A nd | Web: www .OpenFOAM. org
|
| \\/ M anipulation |
|
K
_______ */
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object T;

}

// *x X X x K*x X*x X*x X*x X*x X*x X*x X*x %

* * * //
dimensions [0OO 01 00 071
internalField uniform 1;

boundaryField
{

sides

{

type zeroGradient;

}
topandbottom

{

type zeroGradient;

}

empty
{

type empty;
}

//

KA AR AR KKK

* k% //

The velocity in the \0 \U directory as follows.

e e Ot — e
_______ *\
| ========= |
|
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
I \\ / O peration | Version: 2.4.0
|
| \\/ A nd | Web: www .OpenFOAM. org
|
| \\/ M anipulation |
|
K
_______ */
FoamFile
{
version 2.0;
format ascii;
class volVectorField;
location "o";
object U;

}

// *x X X x K*x X*x X*x X*x X*x X*x X*x X*x *x *x *x *x *x *x *x *x X*x *x *x *x *x *x *x *x *x *x *x *x *x %

* * * //
dimensions (01 -1 0 0 0 01,
internalField uniform (0O 0 0);

boundaryField
{
sides
{
type zeroGradient;
}
topandbottom
{
type zeroGradient;
}
empty
{
type empty;
}

//

KA AR AR KKK

* Kk * //

The boundary conditions files reported above are for the rhoCentralFoam solver. In the
sonicFoam case, an additional file \O\magU needs to be updated. The file looks like below.

e e Ot — e
_______ *\
| ========= |
|
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
I \\ / O peration | Version: 2.4.0
|
| \\/ A nd | Web: www .OpenFOAM. org
|
| \\/ M anipulation |
|
A
_______ */
FoamFile
{
version 2.0;
format asciiy;
class volScalarField;
object magu;

}

// *x X X X X*x X*x X*x X*x X*x X*x X*x X*x *x X*x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x * %

***//
dimensions [0O1 -1 00 O 071
internalField uniform O0;
boundaryField
{
sides
{
type calculated;
value uniform 0;
}
topandbottom
{
type calculated;
value uniform O;

}
empty
{

type
}
//

empty;

Rl R b b dh b d db b e S b 2h S b SR b Sh b dh b dh b b Sb b db b b 2h S 2 dh b b Sh b 2 db b dh b 2b b dh b b dh b b Sb b db Sh i db S Sb b b db b 24

* Kk * //

After the setup of the boundary condition files, we set the initial conditions in the

\system\setFieldsDict directory which is shown as below.

FoamFile

{
version
format
class
location
object

}

ield
peration
nd

anipulation

2.0;

ascii;
dictionary;
"system";

setFieldsDict;

OpenFOAM: The Open Source CFD Toolbox

Version:

Web:

2.

4.

0

www .OpenFOAM. org

// *x X X X K*x X*x X*x X*x X*x X*x X*x X*x *x *x X*x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x %

***//

defaultFieldValues (

volVectorFieldValue U

(000

volScalarFieldValue T 348.432 volScalarFieldvValue p 100000);

regions
fieldValues

//

(boxToCell { box
(volScalarFieldvValue T 278.746 volScalarFieldValue p
10000) : })=

(0

-2.5

-1) (52.51) ;

KA KA A A A A A A AR A A A A A A A A A A Ak Ak, %

* kx x //

3.1.3. Physical properties

The physical properties of the case are stored in the dictionaries whose names are given the
suffix ..Properties. The thermophysicalProperties files looks as shown below. In this file, the
value of the p is chosen by taking the average of the viscosity for the domain over the two
different initial conditions. The calculation shows that the value of the viscosity is 1.932e-5.

/* ________________________________ * — C++ K
_______ *\
| ========= |
|
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
I \\ / O peration | Version: 2.4.0
|
| \\/ A nd | Web: www . OpenFOAM. org
|
| \\/ M anipulation |
|
K o o
_______ * /
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "constant";
object thermophysicalProperties;

}

//**********************************

***//

thermoType
{
type hePsiThermo;
mixture pureMixture;
transport const;
thermo hConst;
equationOfState perfectGas;
specie specie;
enerqgy sensibleInternalEnergy;
}
mixture
{
specie
{
nMoles 1;
molWeight 28.96;

}

thermodynamics

{

Cp 1004.5;

Hf 2.544e+06;
}
transport
{
mu 1.932e-05;
Pr 1;
}
}
//
KA AR A A A A A A A A AR AR A KKK
* x % //

The \constant\turbulenceProperties\ as follows.

/* ________________________________ * — C_|_+ K
_______ *\
| ========= |
|
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
| A\ / O peration | Version: 2.4.0
|
| \N\/ A nd | Web: www.OpenFOAM. org
|
| \\/ M anipulation |
|
K o
_______ */
FoamFile
{
version 2.0;
format asciiy;
class dictionary;
location "constant";
object turbulenceProperties;

}

//**********************************

***//

simulationType laminar;

//

KA AR A AR A AR AR AR kK

* kx x //

3.1.4. Control

Input data related to the control of the time and reading and writing of the solution
data are read in from the \system\controlDict dictionary. The file looks like the
following. This file helps in choosing the solver as well.

/* ________________________________ * — C++ K
_______ *\
| ========= |
|
I \\ / ield | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / peration | Version: 2.4.0
|
| \N\N nd | Web: www.OpenFOAM. org
|
| \\/ anipulation |
|
K o o
_______ * /
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object controlDict;

}

//****************

***//
application
startFrom
startTime
StopAt
endTime
deltaT
writeControl
writeInterval
cycleWrite

writeFormat

rhoCentralFoam;
startTime;

0;

endTime;

0.007;

le-06;
adjustableRunTime;
0.001;

0;

ascii;

*x X kX kX K*x *x Kk Kk *x k* * X*x * k% *x * * *

writePrecision 6;
writeCompression off;
timeFormat general;
timePrecision 6;
runTimeModifiable true;

adjustTimeStep vyes;

maxCo 0.2;

maxDeltaT 1;

R db b b b b b b b b db i b 4
* % % //

3.1.5. Discretization and linear-solver setting

There must be two more files in the \system directory. The first is called fvSchemes and specifies
the choice of finite volume discretization schemes (for each one of the terms of the differential
equations governing the problem). The second is called fvSolution and contains the specifications
of the linear equations solvers and tolerances and other algorithm controls. The dictionary
\system\fvSchemes look as below.

Y e ko Ot — R
_______ *\
| ========= |
|
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
I AN\ / O peration | Version: 2.4.0
|
| \\/ A nd | Web: www .OpenFOAM. org
|
| \\/ M anipulation |
|
|
_______ */
FoamFile
{
version 2.0;
format ascii;

class dictionary;

location "system";
object fvSchemes;

}

// *x X X K*x *x *x *x X*x * %

***//
fluxScheme Kurganov;
ddtSchemes
{
default Fuler;
}
gradSchemes
{
default Gauss linear;
}
divSchemes
{
default none;
div (tauMC) Gauss linear;
}
laplacianSchemes
{
default Gauss linear corrected;

interpolationSchemes

{
default linear;
reconstruct (rho) wvanLeer;
reconstruct (U) vanLeerV;
reconstruct (T) vanlLeer;

snGradSchemes
{

default corrected;
}
ii**
* % % //

And the dictionary \system\fvSolution is as follows.

AR / F ield | OpenFOAM: The Open Source CFD Toolbox

|
|
|
I \\ / O peration | Version: 2.4.0
|
| \\/ A nd | Web: www . OpenFOAM. org
|
| \\/ M anipulation |
|
Ly
_______ */
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object fvSolution;

}

// * X x x *x X*x X*x X*x X*x X*x X*x X*x X*x X*x X*x *x X*x *x X*x *x *x *x *x *x *x *x *x *x *x *x *x *x * %

***//

solvers

{
"(rho|rhoU|rhoE)"

{

solver diagonal;

}

"(Ule)"

{
solver smoothSolver;
smoother GaussSeidel;
nSweeps 2;
tolerance 1e-09;
relTol 0.01;

}

h

{
$U;
tolerance le-10;
relTol 0;

//

R I b e db b e I b S S b 2h b b SR b b S b e A b S dh b b Sb b db S Sb b 2b b S dh b R db b 2R Sh b b Sb I 2R b b db b i Sb b Sb b b Sb I 2b b b 4 b 4

* Kk * //

Up to now, all the required fields and dictionaries to run the case have been set. As a final
summary and if all the steps have been followed properly, the used should have the following
scheme in the shockTube directory for the rhoCentralFoam and sonicFoam case.

p
o fr
U

(polyMesh{blockMeshDict
constant § thermophysicalProperties

shockTube_rhoCentralFoam < | turbulenceProperties
(controlDict
fvSchemes
system < fvSolution
sampleDict

\ \setFieldsDict
(p
T

04u

magU
(polyMesh{blockMeshDict
constant § thermophysicalProperties
| turbulenceProperties
(controlDict
fvSchemes
system« fvSolution
sampleDict
\ \setFieldsDict

shockTube_sonicFoam <

3.1.6. Creating the mesh

The mesh is generated after executing the command blockMesh. Running the paraFoam
command lets one view the mesh which has been shown below.

3.2.Running the application

To run the program, first we execute the command setfields. This command refers the
\system\setFieldsDict and update the dictionaries in the directory \0 in accordance with the mesh
size to assign the initial value.

Then, we run the solver. That is executed by calling the name of the solver i.e. rhoCentralFoam
or sonicFoam depending upon the case.

After running the solver, we can view the results in ParaView by executing the command
paraFoam.

To obtain the values for postprocessing, we run the command sample -case ..\shockTube. This
company refers to the dictionary \system\sampleDict and deposits the results in the
\postProcessing directory.

4. Results & Discussion
4.1.rhoCentralFoam

Comparative results while solving the shock tube problem using the rhoCentralFoam solver in
OpenFOAM are shown below with the physical properties measured at three different points in
the y-axis.

Pressure after 0.007 seconds

— y=-25

100

y=25

80

(kN/m*2)

o \

-20

X (m)

Temperature (K)

Density (kg/im= 3}

Lo

08

0.6

0.4

0.2

Density after 0.007 seconds

— y=-25
— y=0
— y=25

0.0
2 0
X{(m)
450 Temperature after 0.007 seconds
— y=-25
— y=0
— y=25
400}
3501
300
250
200
2 0

X (m)

Velocity (m/s)

350 Veloci

ity after 0.007 seconds

300

250

200

150

100

294 —

Te+05+

Te+04-

X (m)

U (m/s)

8

j—
(]
[]

U_

Pressue (p)

—fe+d

D
g

2

2e+d

Discussion:

These curves were plotted to see the
changes observed in the system
because of adding viscosity to the
physical properties of the fluid
inside. From the curves plotted
above, we can observe relatively
higher oscillations when the domain
under question is closer to the
bottom plate (i.e. y = -2.5 m) as
compared to the rest of the domain.
We can also observe that there is no
difference in the physical properties
fromwheny=0mand y = +2.5m.

4.2.sonicFoam VS rhoCentralFoam

Here, a comparison has been made for results obtained for the same problem by two different
solvers in OpenFOAM. The solvers under question are sonicFoam and rhoCentralFoam. The plots
plotted below are for the domain with a horizontal line with a y = 0 m. These plots were plotted at
7 milliseconds after rupturing the hypothetical wall.

Temperature after 0.007 seconds

450
— rhoCentralFoam
sonicFoam

400

350

Temperature (K}

300

200
=2 0 2 4

350 Velocity after 0.007 seconds
—— rhoCentralFoam
— sonicFoam

300

250

200

Velocity (m/s)

150

100

-4 -2 0 2
X (m)

Pressure after 0.007 seconds

— rhoCentralFoam
sonicFoam

100

80

60

(kN/m*~2)

40

Pressure

Discussion:

From the comparison of the pressure, temperature and velocity plots obtained by plotting the
results for both the solvers, we observe that for rhoCentralFoam solver, the curves are sharper. The
magnitude of the slopes at the critical points are higher which are closer to the analytical solution,
hence results obtained for shock tube problem from rhoCentralFoam are better than the results
obtained by using sonicFoam solver. Adding to that, we also saw that there was a considerable
difference in the amount of time taken by sonicFoam to reach the solution (not quite as accurate
to the ones obtained by using rhoCentralFoam solver). The time taken by sonicFoam solver was
139 seconds whereas for rhoCentralFoam solver was 60 seconds.

This clearly demarcates that rhoCentralFoam is a better solver than sonicFoam for problems like
the shock tube.

4.3.rhoCentralFoam vs Lax-Friedrichs

Here, the results obtained from rhoCentralFoam solver have been compared with the results

obtained by a self-written code (Appendix A.1.) in python which follows the Lax-Friedrichs(LF)
algorithm.

Density after 0.007 seconds

— rhoCentralFoam
— Lax-Friedrichs
10 —

08

e
)

Density (kg/m*~3)

o
-
I

0.2

0.0

-4 -2 0 2
X (m)

Pressure after 0.007 seconds

— rhoCentralFoam
Lax-Friedrichs
100 =

80

60

40

Pressure (kN/m~2)

20

-20

X (m)

150 Velocity after 0.007 seconds

— rhoCentralFoam
— Lax-Friedrichs
300

250

200

150

Velacity (m/s)

100

30

4
X (m)

Discussion:

From the curves plotted above, we see that LF code performs better for some instances, for
example the vertical shock drops, as compared to the curves obtained by using rhoCentralFoam

solver. Something we can observe that the OpenFOAM solver performs between in portions of
gradual change. As we will see in the next case, they match quite well.

Disclaimer: By increasing the mesh size of the domain or by increasing the sampling point, we
may obtain better results while using rhoCentralFoam solver.

4.4.rhoCentralFoam vs MacCormack

Here, the results obtained from rhoCentralFoam solver have been compared with the results

obtained by a self-written code (Appendix A.2.) in python which follows the MacCormack (MC)
algorithm.

Density after 0.007 seconds

— rhoCentralFoam
— MacCormack
1.0

0.8

=
o

Density (kg/m~3)

_

0.0

X (m)

Pressure after 0.007 seconds

— rhoCentralFoam
MacCormack
100 -
N\

40

Pressure (kN/m~2)

20

Za) 0 2 a
% (m)

asg Velacity after 0.007 seconds

rhoCentralFoam
MacCormack

300
|
250

|
200

Velocity (m/s)

/
100 #

50 / |

X (m)

Discussion:

From the curves plotted above, we can see that the rhoCentralFoam solver follows much closer
to the MC solution. And from theory, we understand that MC is a much better way to approach a
complicated problem like the shockTube as compared to using the LF algorithm. We also notice
that MC, much like the LF has a much sharper slope at the extremely high slope areas as
compared to the rhoCentralFoam solver, which might be resolved by refining the mesh a bit
more, or by increasing the number of sampling points.

Also, something worth noticing is that the codes written in python were much faster to simulate
the results, BUT, we should also keep in mind that while solving the program using python, the
domain was one dimensional, whereas, it was a two-dimensional domain for OpenFOAM. Also,
OpenFOAM is more robust, and functional than performing fluid dynamic simulations in python.

The process for initial setup for complex problems and geometries will be extensive in python as
compared to OpenFOAM.

Appendix

A.1l. Python code for Lax-Fredrichs and plotting results in comparison with
OpenFOAM results.

def £ f(uu,nn):

ff = np.zeros((nn,B))
fl:,0] = uul:,1]
fl:,1] = (uul:,1]1*uul:,1]/uul:,0]) + (gamma - 1)*(uul:,2] -
uu[:]*uu[,11/(2*uul:,0]))
fl:,2] = (uul[:,2] + (gamma - 1)*(uul:,2] -
uu[:]*uu[11/ (2*uul:,0]1)))*(uul:,1]/uul:,0])

return ff

import numpy as np
import openpyxl
import matplotlib.pyplot as pyplot

#Constants
xmin = -5
xmax = 5

ne = 2500
nn = ne +1

xsteps = np.linspace (xmin, xmax,nn)
dx = (xmax-xmin) /ne

sigma = 0.4 #CFL
gamma = 1.4 #Taken from the book
c = 374.17 #m/s : Initial wave speed

dt = sigma*dx/c
T = 0.007

nt = int(T/dt) + 1

#INITIAL CONDITIONS
rho L =1

ul =0

p L = 100000

rho R 0.125
u R =20

p R = 10000

#Intial Flux and basic vectors

uu = np.zeros((nn,3)) # uu is the basic vector which is eugal to [rho;
rho*u ; rho*e t]

ff = np.zeros((nn,3))

#Initializaition

for i in range (nn):

if 1 < int(nn/2):

uuli,0] = rho L
uuli,1] = rho L*u L
uuli, 2] = rho L * (p_L/((gamma—l)*rho_L) + u L*u L*0.5)
f£f[i,0] = uuli,1]
££[1i,1]1 = ££[1,0]*(uu(i,1]/uuli,0]) + p L
ff[(i,2] = ££f[1i,0]1*(uuli,2]/uuli,0] +
(uul[i,1]/uuli,0])* (uuli,1]/uuli,0])*0.5)
else:
uuli,0] = rho R
uuli,1] = rho R*u R
uuli,2] = rho R * (p R/((gamma-1)*rho R) + u R*u R*0.5)
£f£[(i,0] = uuli, 1]
££[(1,1] = ££[1,0]*(uuli,1]/uuli,0]) + p R
ff[(i,2] = ££[1i,0]1*(uuli,2]/uuli,0] +
(uuli,1]/uuli,0])*(uuli,1]/uuli,0])*0.5)
uu t = np.zeros((nn,3))

for t in range(nt):

uu t[l:-1,:] = 0.5*(uu([2:,:]4+uul:-2,:]) - dAt*0.5*(£f[2:,:]-ff[:-
2,:1)/dx

uu t[0,:] = uu t[1,:]

uu t[-1,:] = uu t[-2,:]

ff = £ f(uu_t,nn)
uu = uu_t.copy ()

wb = openpyxl.load workbook ('0.004.xlsx")

= np.zeros((100,4))

= np.zeros((100,4))
np.zeros ((100,4))

rho = np.zeros((100,4))

H < o
I

for i in range (1,100):
sheet = wb.get sheet by name('0.007 00")

pli, 0] = sheet['A' + str(i+l)].value
uli,0] = sheet['A' + str(i+l)].value
T[i,0] = sheet['A' + str(i+l)].value

rho[i,0] = sheet['A' + str(i+l)].value

sheet = wb.get sheet by name('0.007 00")

pli,2] = sheet['B' + str(i+l)].value
ul[i,2] = sheet['G' + str(i+l)].value
T[i,2] = sheet['C' 4+ str(i+l)].value
rho[i,2] = sheet['D' + str(i+l)].value

pyplot.figure (1)

pyplot.plot (ul:,0]-5, ul:,2],label ="rhoCentralFoam")
pyplot.plot (xsteps,uul:,1]/uul:,0],label = 'Lax-Friedrichs"')
pyplot.axis ([-5,5,-20,3501])

pyplot.title('Velocity after 0.007 seconds')
pyplot.xlabel ('X (m)"')

pyplot.ylabel ('Velocity (m/s)'")

pyplot.grid (True)

pyplot.legend()

pyplot.figure(2)
pyplot.plot (pl[:,0]-5,
pyplot.plot (xsteps, (ff
'Lax-Friedrichs')
pyplot.axis([-5,5,-20,110])

pyplot.title ('Pressure after 0.007 seconds')
pyplot.xlabel ('X (m)"'")

pyplot.ylabel ('Pressure (kN/m"2)")
pyplot.grid (True)

pyplot.legend()

pyplot.show ()

pl:,2]1/1000,1label ="rhoCentralFoam")
[:,1] - uul:,1]*uul:,1]1/uul:,0])/1000,label =

pyplot.figure (3)

pyplot.plot (rho[:,0]-5, rho[:,2],label ="rhoCentralFoam")
pyplot.plot (xsteps,uul:,0],label = 'Lax-Friedrichs')
pyplot.axis([-5,5,0,1.117)

pyplot.title('Density after 0.007 seconds')
pyplot.xlabel ('X (m)"'")

pyplot.ylabel ('Density (kg/m”3)"')

pyplot.grid (True)

pyplot.legend()

pyplot.show ()

A.2. Python code for MacCormacks and plotting results in comparison with

OpenFOAM results.

def f_f(uu,nn):
ff = np.zeros((nn,B))

fl:,0] = uul:,1]
fl:,1] = (uul:,1]1*uul:,1]/uul:,0]) + (gamma - 1)*(uul:,2] -
uu[:]* [,l]/(Z*uu[-,O]))
f[:,2] = (uul[:,2] + (gamma - 1)*(uul:,2] -
uu[:]*uu[]/(2*uu[,01)))*(uul:,1]/uul:,0])
return ff
import numpy as np
import openpyxl
import matplotlib.pyplot as pyplot
#Constants
xmin = -5
xmax = 5
ne = 1000
nn = ne +1
xsteps = np.linspace (xmin, xmax,nn)
dx = (xmax-xmin) /ne
sigma = 0.4 #CFL
gamma = 1.4 #Taken from the book
c = 374.17 #m/s : Initial wave speed
epi = 0.04
dt = sigma*dx/c
T = 0.007
nt = int(T/dt) + 1
#INITIAL CONDITIONS
rho L =1
ul =0
p L = 100000
rho R = 0.125
uR =0
p R = 10000
#Intial Flux and basic vectors
uu = np.zeros((nn,3)) # uu is the basic vector which is eugal to

rho*u ; rho*e t]
ff = np.zeros((nn,3))
#Initializaition

[rho;

for i in range(nn):

uuli, 0] _
uu(i,1l] = rho L*u L
uuli,2] = rho L * (p L/((gamma-1)*rho L) + u L*u L*0.5)
f£[i,0] = uuli, 1]
££f[1i,1]1 = ££[1,0]*(uu([i,1]/uul[i,0]) + p L
ff[(i,2] = ££f[1,0]*(uuli,2]/uuli,0] +
(uuli,1]/uvwul(i,0])*(uuli,1]/uuli,0])*0.5)
else:
uu[i, 0] = rho R
uu[i, 1] = rho R*u R
uuli,2] = rho R * (p R/((gamma-1)*rho R) + u R*u R*0.5)
f£[i,0] = uuli, 1]
££[(1,1] = ££[1,0]*(uuli,1]/uuli,0]) + p R
ff[i,2] = ££f[1,0]1*(uuli,2]/uuli,0] +
(uuli,1]/uuli,0])*(uuli,1]/uuli,0])*0.5)
uu t = np.zeros((nn,3))
uu m = np.zeros((nn,3))

for t in range(nt):
uu m[l:-1,:] = uull:-1,:] - de*(££[2:,:]1-£f£[1:-1,:])/dx #+
epi*(uwu(2:,:] -2*uul:-1,:] + uul:-2,:])

uu m[0,:] = uu m[1, :]

uu m[-1,:] = uu m[-2,:]

ff = £ f(uu m,nn)

uu t[l:-1,:] = 0.5*(uu(l:-1,:] + uu m[1l:-1,:]) -dE*0.5* (££[1:-
1,:1-ff[:-2,:])/dx + epi*(uul2:,:] -2*uull:-1,:] + uul:-2,:1])

uu t[0,:] = uu t[1,:]

uu t[-1,:] = uu t[-2,:]

ff = £ f(uu t,nn)
uu = uu_t.copy ()

wb = openpyxl.load workbook ('0.004.xlsx")

p = np.zeros((100,4))
u = np.zeros ((100,4))
T = np.zeros((100,4))
rho = np.zeros((100,4))

for i in range (1,100):
sheet = wb.get sheet by name('0.007 00")

pli,0] = sheet['A' + str(i+l)].value
uli,0] = sheet['A' + str(i+l)].value
T[i,0] = sheet['A' + str(i+l)].value
rho[i,0] = sheet['A' + str(i+l)].value

sheet = wb.get sheet by name('0.007 00"')

pyplot.
.plot(ufl:,0]-5, u

pyplot

pyplot.
pyplot.
pyplot.
pyplot.
pyplot.
pyplot.
pyplot.

pyplot.

pyplot
pyplot

.plot(pl[:,0]-5,
.plot (xsteps, (ff

] = sheet['B

sheet['G!
C
[

[a—

= sheet['C'
,2] = sheet

~
NN N
I

'D

figure (1)

axis([-5,5,-20,3

+ str(i+l)]
+ str(i+l)]
+ str(i+l)]
' 4+ str(i+l

[:,2],1label ="rhoCentralFoam")
plot (xsteps,uul:,1]/uul:,0],label = 'MacCormack')

501)

.value
.value
.value
)] .value

title('Velocity after 0.007 seconds')

xlabel ('X (m) ')
ylabel ('Velocity
grid (True)
legend ()

figure (2)
p
[

'MacCormack"')

pyplot.
.title ('Pressure after 0.007 seconds')

pyplot

pyplot.
pyplot.
pyplot.
pyplot.
pyplot.

pyplot.
.plot(rho[:,0]-5,
pyplot.
pyplot.
pyplot.
pyplot.
pyplot.
pyplot.
pyplot.
pyplot.

pyplot

axis([-5,5,-20,1

xlabel ('X (m) ')
ylabel ('Pressure
grid(True)
legend ()

show ()

figure (3)

plot (xsteps,uul:,0],label =

axis([-5,5,0,1.1

(m/s) ")

[

107)

(kN/m”2) ")

rho[:,2],label ="rhoCentralFoam")

1)

:,21/1000, label ="rhoCentralFoam")
:,1] — uwul:,11*uul:,1]/uul:,0]1)/1000, label

'MacCormack')

title('Density after 0.007 seconds')

xlabel ('X (m) ')
ylabel ('Density
grid(True)
legend ()

show ()

(kg/m”3) ")

