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ABSTRACT

This paper explores the inverse unsteady aerody-
namic problem for a flat-plate airfoil. The goal of the
aerodynamic inversion 1s to calculate the parameters
which describe the nature of the unsteadiness in the
problem from information on the surface of the air-
foil. Interest in the aerodynamic inversion stems from
the fact that it, in conjunction with the much studied
aeroacoustic inversion, offers a method for nonintrusive
and nondestructive measurements. Using a linearized
model, 1t 1s shown that only the component of the ve-
locity disturbance normal to the airfoil can be recov-
ered uniquely from the unsteady surface pressure; in
addition, unique recovery of aeroelastic parameters de-
scribing heaving and pitching of the airfoil 1s feasible
provided some information concerning the rotation axis

1s known.
INTRODUCTION

Until now, most research on inverse problems in
unsteady aerodynamics and aeroacoustics has been fo-
cussed on the inverse aeroacoustic portion of the prob-
lem (Grace, Atassi, & Blake 1997; Patrick & Atassi
1996; Minniti & Mueller 1996). Tt has been shown,
both theoretically and experimentally, that using far-
field acoustic measurements to infer unsteady surface
pressure on a flat-plate airfoil in unsteady subsonic flow
is feasible. Theoretically, the aeroacoustic inversion 1is

valid for several unsteady airfoil problems including: an
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oscillating airfoil; an airfoil in vortical flow; and an air-

foil subject to incident acoustic waves.

The associated inverse acrodynamic problem for these
three problems is discussed in this paper. The goal of
the aerodynamic inversion is to calculate the parame-
ters which describe the unsteady part of the flow from
information about the unsteady pressure on the surface
of the airfoil. If this aerodynamic inversion, along with
the aeroacoustic inversion, can be shown to work effec-
tively in actual measurement situations, together they
offer a very powerful nonintrusive and nondestructive

measurement method.

In 1ts most advanced form, such an inversion method
would be able to use acoustic field measurements to pre-
dict the amplitude of rigid oscillations of a streamlined
body, as well as the magnitude of any flow disturbances
in the vicinity of the body. Thus far, research has shown
that, for very simple streamlined geometries, the acous-
tic field can be used to predict the unsteady surface
pressure on the body. However, to complete this com-
plex acoustic inversion, the inverse aerodynamic prob-
lem must be considered. This paper will describe the
inversion for the flat-plate airfoil geometry and 3 un-

steady disturbance types.

First, the equation which governs the inversion is
briefly described. It is seen that, whereas, the inverse
aeroacoustic problem 1s ill-posed, the inverse aerody-
namic problem can be well-posed, depending on what

quantities are being recovered using the technique. Any



ill-posedness of the inverse aerodynamic problem will
come from the nonuniquess of a solution. This i1s very
different from the ill-posedness of the inverse aeroacous-
tic problem which is very sensitive to noise in the in-
put data. The inversion for each unsteady case is dis-
cussed separately. Finally, a study of the combination
of unsteady phenomenon shows that another issue of
nonuniqueness may arise when both incident vortical
waves and incident acoustic waves impinge on the air-

foil simultaneously.
GOVERNING EQUATION

The governing equation that was developed for anal-
ysis of the direct problem is used to study the inverse
unsteady aerodynamic problem for a flat-plate airfoil
in unsteady compressible flow. A brief formulation of
this equation is included here. After assuming that the
fluid 1s inviscid and isentropic, the Euler’s equations are

linearized about the constant mean flow quantities
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where the asterix denotes dimensional quantities and
p’* and p’* are the unsteady perturbation quantities.

The linearized Euler’s equations are then given as
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where a 1s a quantity associated with the unsteady dis-
turbance in the problem. The nondimensional quanti-
ties will be denoted with no asterix. Combining equa-
tions (5) and (6), and using the isentropic relationship,
M?p' = p/, one obtains a convective wave equation for
the unsteady pressure. (Note that M = UZX /coo, where
Coo 18 the speed of sound in the fluid, is the Mach num-

ber.) In nondimensional form, this gives
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The boundary conditions which complete this bound-
ary value problem arise from the impermeability con-
dition on the airfoil surface, and from the continuity
of pressure in the fluid. The impermeability condition
on the flat plate states that « -7 = 0 where 7 is the
unit normal to the flat plate. The normal is (0, 1,0)
on the top surface and (0,—1,0) on the bottom surface
and the flat plate in nondimensional coordinates lies
between —1 and 1, so that in nondimensional form the

boundary condition becomes

ua(21,0,23) =0 for — 1<z <1 (8)

Also, the pressure must be continuous upstream and

downstream of the flat-plate airfoil, which leads to

Ap'=0 z;>1 or 2y<—1; and z2=0 (9)

where A signifies a jump, i.e. Ap' = ply —p’.



The convective wave equation reduces to the Helmholtz

equation in the Prandtl-Glauert coordinate system by

defining

o= Py, e IR k5 (1)
with 8 = +/1 — M2, and ~ is the nondimensional angu-
lar frequency: v = w*c¢/2U% , and the Prandtl-Glauert
coordinates are defined by 1 = #1, &5 = frs, T3 = Brs.

The governing equation is then written as

(v'+K2) P=0 (11)
where K2 = (M~y/3%)? — Z—g and %2 = 66—;? + (’?_;3'

In two-dimensions, the appropriate separable solu-
tion to the Helmholtz equation for the flat-plate ge-
ometry includes an infinite series of Mathieu functions.
In lieu of this solution method, an integral equation
solution was derived by Possio (1938) for cases when
K? > 0. Later, Graham (1970) extended the solution

to include all possible values of K2

The method of Possio and Graham uses a plane
wave expansion for the transformed pressure, P, to ex-

press the solution to the Helmholtz equation (11) as

P(i;) — / f(a)e—iailii\/Wf:gda (12)

Now, by using the momentum equation, Eq. (6),
and the boundary conditions with the addition of a far-
field radiation condition for the scattered sound field,
the unsteady pressure on the airfoil surface can be re-

lated to the unsteady velocity. The relationship 1s

w(i) = [ AveKE-mde  (3)

where
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BOUNDARY CONDITIONS

In the last section, a general equation which relates

the unsteady surface pressure jump along a flat-plate

airfoil and the unsteady velocity along the airfoil was
derived. This section will describe the surface velocity
condition for the cases of an oscillating airfoil and an

airfoil interacting with either vortical or acoustic waves.
Oscillating Airfoil

For an oscillating airfoil, the airfoil position is usu-
ally expressed in terms of the magnitude of the rota-
tional oscillation, a; the magnitude of the plunging os-
cillation, h, and the center of rotation, zq. If the rota-
tional and plunging oscillations occur at the same fre-
quency, w, the % position of the airfoil can be expressed

as

vy = o (] —ag) + h7] e (15)

Recall that the asterix indicates physical variables. The
surface normal velocity then, which is given by D/ Di* 2%

1s

wy(e}) = (lwa* (2} — 28) + *UZ +iw*h)e™™t (16)
—c/2 < af <ef2

In nondimensional form the normal velocity is given

by

us(21) = aliya(er — wo) + o+ iyh] e (17)
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In this description of the normal velocity, the mag-
nitude of the rotational oscillation, which is nondimen-
sional originally, remains unchanged. For the direct
problem, us 18 thus prescribed and is used as the left
hand side of Equation (13). The integral equation is
then solved for the corresponding unsteady surface pres-
sure jump.

Vortical Disturbance

For the case of an airfoil interacting with a vortical
disturbance, arriving at the boundary condition along
the airfoil is a bit different than for the case of the oscil-
lating airfoil. First, the unsteady velocity field is split
into two parts: rotational and irotational. It was shown

that for the uniform flow case, the rotational component



of the unsteady velocity, which is associated with the
incoming vorticity disturbance, is pressure free (Atassi
& Grzedzinski 1989). Moreover, the only place where
the acoustic and vortical velocities couple is at the air-
foil surface. If the acoustic velocity is denoted d,, and
the vortical velocity is denoted #,, the impermeability

condition on the airfoil states

uay (21,0, 23) = —ug, (21,0, 23) (18)
—c/2 < af <ef2
Since all of the pressure is associated with the acous-
tic velocity, it is appropriate that the left hand side of
Equation (13) be replaced by u}_.
In the gust problem, it is common to treat distinct

Fourier components of the gust, i.e. the disturbance

can be written in dimensional form as

@, (w, k7)ellT v =R (19)
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Further, since the vorticity can be shown to be purely

convected by the mean flow, the disturbance becomes

a»;(w*’kz’k;)ei(w*t*—w*/U;x’l‘—k;‘x;—k;‘x;) (20)

In nondimensional form, the second component of this

along the airfoil is given as

iy, (% ko, kS) — pilyt=yz1—ksws) (21)
-1 S sl S 1
Here, we can identify ~ with the reduced frequency
which is usually denoted as k.

In the direct problem, %, is specified and the left
One

then obtains the unsteady surface pressure response to

hand side of Equation (13) is set equal to —ug,.
the vortical disturbance by solving the integral equa-

tion.
Acoustic Disturbance

For the case when acoustic waves are incident on
the airfoil, the unsteady velocity field is again split.
Here however, the velocity is made up of an incident
velocity field, @ and a scattered velocity field, @*. Un-

like the splitting for the gust problem, now both fields

have pressure associated with them. Since a far-field
radiating boundary condition was used to develop the
integral equation, Eq. (13), the left hand side, must
coincide with #*; and, the associated Ap’ must coin-
cide with the scattered pressure field. There is again a
coupling of the two unsteady velocity fields along the

airfoil such that in nondimensional form

ué(xl,O,xg) = —u(x1,0,23) (22)

As in the case of the incident vortical gust, a sin-
gle Fourier component of the incident acoustic wave is

considered, 1.e.

T (7, by, ko, kgl VD) (23)

There is no explicit relation between w* and &7 in the
case of acoustic scattering; still, the direct problem fol-
lows the exact methodology as explained for the gust

problem.
INVERSION

As the last section showed, one obtains solutions to
the direct unsteady aerodynamic problem by solving an
integral equation. Hence, to obtain solutions to the in-
verse problem, one must simply compute an integral. It
seems then, that for unsteady aerodynamic problems, it
is actually easier to consider the inverse rather than the
direct problem. To analyze this statement further, the
inverse problem is considered in terms of the Hadamard
criteria for well-posedness. In order to analyze the ex-
istence, uniqueness and sensitivity of solutions to noise,
the definition of what constitutes an acceptable solution

to the inverse aerodynamic problem must be given.

If the inverse aerodynamic problem is defined as
determining the normal velocity component associated
with a given unsteady pressure jump on the flat-plate
airfoil, then the problem is well posed. A solution will
exist, since it 1s always possible to integrate the right
hand side of Equation (13). The solution will be unique,
since again, the integration is unique. And finally, slight
variations in the unsteady surface pressure will trans-
late to slight variations in the normal velocity, since

there is no means by which to amplify these variations.

The well-posedness of the inverse aerodynamic prob-

lem just discussed, rests on the facts that a satisfac-



tory solution to the inverse problem is the total normal
velocity and that the unsteady surface pressure is de-
scribed along the entire airfoil. In practice, however,
the unsteady pressure may not be known on the entire
airfoil surface. Moreover, it is of more interest to deter-
mine the amplitude of the disturbances, i.e. « and h;

or the total velocity fields (v, k); or @*(v, k), rather

than simply the total normal velocity.

For the case of an oscillating airfoil, it is noted that
if the rotation axis, xg, 1s known, then the problem re-
mains well-posed. In this instance, knowing the normal
velocity at any two points along the airfoil is sufficient
to calculate both « and A. If however, g is not known,
the solution for «, h, and zg may not be unique. For the
cases of incident vortical or acoustic waves, it is noted
that while the normal component of the disturbance
can be determined, the other two components remain
completely unknown. This again can be considered a

nonuniqueness in the inversion.

Finally, the fact that Ap’ may not be known at every
point on the airfoil must be addressed. If Ap’ is known
discretely, the above discussion of the Hadamard crite-
ria remains unchanged, although the solution method

must obviously be modified.

The proposed modification to the inversion method
will allow Ap’ to be known at only discrete points along
the airfoil. First, for each measurement of Ap’ along the
airfoil, denoted here Appmegsureda(21i), i =1,2,--,n, n
equations are constructed by using solutions to the inte-
gral Equation (13) for unit amplitude disturbances. For
instance, the solutions Ap, and Apj can be determined

by solving the integral equations:

1
pyeilri=kans) _ g /_1 APL(OK(E = F1)dE (24)

and

1
ittt - / AOKE—Tde (25)

Then, by using the zq;, ¢ = 1,2,---,n locations where
the measured pressure jump is available, one can de-
rive n equations valid for an oscillating airfoil. The n

equation are

Apmeasured(xli) = i’YOfAPa(l’li)

—iyargApy(x1;)
+ aUcc App(1;) + ivhApp(215) (26)
i=1,2,-n

To recover the values of o, h and zg, at least 3 mea-
surement locations, are needed. Another requirement is

that Apmeasured(#;) must contain phase information.

Still however, this equation does not lead to a linear
system. Hence, a technique like Newton’s method for
several variables must be used to find the quantities «,
h and zy. As mentioned before, there is no guarantee
that the solution obtained for «, h and zq is unique. In
application, it is possible that z¢ is fixed by geometrical
constraints. When this i1s the case, a and h can be

uniquely determined.

The technique for determining the normal compo-
nent of an incident vortical or acoustic wave from a
discrete set of unsteady pressure measurements follows

readily. In these cases, the integral equation

1
vt =re1—ksws) — g /_1 Ap;(f)]C(f - i’l)dg (27)

or

. 1
pilyt—Re) _ g /_ AROKE - (28)

are solved a priori for Ap;] or Ap!, respectively.

Using the measured pressure jump then, it seems
that only one measurement point is needed to determine
the component of the disturbance normal to the airfoil,

1.e.

Apmeasured(xli) = agz(’)/a kS)Apg(xli) (29)

Apmeasured(xli) — aaz(’)/a k)Apa(xli) (30)
(31)

Finally, if all three of the unsteady phenomena are

present, the following system of equations must be solved



Apmeasured(xli) = i’YOZAPa(l‘M) - i’YOél‘OAPh(l‘li)

+ alUco App(x1i) + ivhApp(214) (32)
+ag2 (Pya k3)Apg(xli)+aa2 (Pya ];)Apa(xlz) t = 1a 2a e, N
It is noted that if the reduced frequencies of the vor-
tical and acoustic disturbances coincide, Ap, and Ap,
will be identical. In this case, the values of u,, and
Ugq, cannot be resolved independently. This creates an

additional nonuniqueness in the inversion.
CONCLUSIONS

This paper has shown that the most important is-
sue for the inverse unsteady aerodynamic problem is
uniqueness of the solution. The other Hadamard cri-
teria for well-posed problems are easily satisfied. It 1s
shown that the normal velocity of an unsteady distur-
bance responsible for creating an unsteady surface pres-
sure on a flat-plate airfoil in subsonic flow, can always

be determined uniquely.

If however, all of the parameters characterizing the
unsteady disturbance must be recovered, then the solu-
tions may be nonunique. For instance, if one would like
to recover an entire vortical disturbance, which consti-
tutes unsteady velocities in 3 directions, the inversion is
nonunique. One can only uniquely determine the nor-

mal component.

The conclusion must be then, that if other informa-
tion concerning the disturbances is known, perhaps the
full inversion is possible and unique. Moreover, if the
desired parameter set 1s not full, the inversion may be

unique.

The steps to perform the aerodynamic inversion which

are outlined in this paper, may seem quite extensive
especially for the case of an oscillating airfoil. For
instance, accelerometers on the flat-plate airfoil could
easily determine the magnitude of the rotational and
plunging oscillations as well as the center of rotation.
However, if the aerodynamic inversion is just one part of
a complex acoustic inversion, in which far-field acoustic
measurements are used to define airfoil excitation pa-
rameters, the methods developed in this paper are es-
sential. At this point, when certain combinations of un-

steady parameters must be recovered, the total complex

acoustic inversion is feasible. For the other cases, only
certain properties of the unsteady parameters can be

determined uniquely from the scattered acoustic field.
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