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ABSTRACT

This paper explores the inverse unsteady aerody-

namic problem for a 
at-plate airfoil. The goal of the

aerodynamic inversion is to calculate the parameters

which describe the nature of the unsteadiness in the

problem from information on the surface of the air-

foil. Interest in the aerodynamic inversion stems from

the fact that it, in conjunction with the much studied

aeroacoustic inversion, o�ers a method for nonintrusive

and nondestructive measurements. Using a linearized

model, it is shown that only the component of the ve-

locity disturbance normal to the airfoil can be recov-

ered uniquely from the unsteady surface pressure; in

addition, unique recovery of aeroelastic parameters de-

scribing heaving and pitching of the airfoil is feasible

provided some information concerning the rotation axis

is known.

INTRODUCTION

Until now, most research on inverse problems in

unsteady aerodynamics and aeroacoustics has been fo-

cussed on the inverse aeroacoustic portion of the prob-

lem (Grace, Atassi, & Blake 1997; Patrick & Atassi

1996; Minniti & Mueller 1996). It has been shown,

both theoretically and experimentally, that using far-

�eld acoustic measurements to infer unsteady surface

pressure on a 
at-plate airfoil in unsteady subsonic 
ow

is feasible. Theoretically, the aeroacoustic inversion is

valid for several unsteady airfoil problems including: an

y
Assistant Professor

oscillating airfoil; an airfoil in vortical 
ow; and an air-

foil subject to incident acoustic waves.

The associated inverse aerodynamic problem for these

three problems is discussed in this paper. The goal of

the aerodynamic inversion is to calculate the parame-

ters which describe the unsteady part of the 
ow from

information about the unsteady pressure on the surface

of the airfoil. If this aerodynamic inversion, along with

the aeroacoustic inversion, can be shown to work e�ec-

tively in actual measurement situations, together they

o�er a very powerful nonintrusive and nondestructive

measurement method.

In its most advanced form, such an inversion method

would be able to use acoustic �eld measurements to pre-

dict the amplitude of rigid oscillations of a streamlined

body, as well as the magnitude of any 
ow disturbances

in the vicinity of the body. Thus far, research has shown

that, for very simple streamlined geometries, the acous-

tic �eld can be used to predict the unsteady surface

pressure on the body. However, to complete this com-

plex acoustic inversion, the inverse aerodynamic prob-

lem must be considered. This paper will describe the

inversion for the 
at-plate airfoil geometry and 3 un-

steady disturbance types.

First, the equation which governs the inversion is

brie
y described. It is seen that, whereas, the inverse

aeroacoustic problem is ill-posed, the inverse aerody-

namic problem can be well-posed, depending on what

quantities are being recovered using the technique. Any
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ill-posedness of the inverse aerodynamic problem will

come from the nonuniquess of a solution. This is very

di�erent from the ill-posedness of the inverse aeroacous-

tic problem which is very sensitive to noise in the in-

put data. The inversion for each unsteady case is dis-

cussed separately. Finally, a study of the combination

of unsteady phenomenon shows that another issue of

nonuniqueness may arise when both incident vortical

waves and incident acoustic waves impinge on the air-

foil simultaneously.

GOVERNING EQUATION

The governing equation that was developed for anal-

ysis of the direct problem is used to study the inverse

unsteady aerodynamic problem for a 
at-plate airfoil

in unsteady compressible 
ow. A brief formulation of

this equation is included here. After assuming that the


uid is inviscid and isentropic, the Euler's equations are

linearized about the constant mean 
ow quantities

~V �(~x�; t�) = U�
1 + ~u�(~x�; t�) (1)

p�(~x�; t�) = p�1 + p0�(~x�; t�) (2)

��(~x�; t�) = ��1 + �0�(~x�; t�) (3)

(4)

where the asterix denotes dimensional quantities and

p0� and �0� are the unsteady perturbation quantities.

The linearized Euler's equations are then given as

D1�0�

Dt�
+ �1 ~5 � ~u� = 0 (5)

��1
D1~u�

Dt�
= �~5p0� (6)

where D1
Dt = @

@t� + U�
1

@
@x�

1

. The equations are nondi-

mensionalized using

x�1; x
�
2; x

�
3 by c=2

U�
1; c�1 by U�

1

��1 by ��1

�0� by ��1a=U�
1

p0� by �1U�
1a

t by c=(2U�
1)

~u� by a

where a is a quantity associated with the unsteady dis-

turbance in the problem. The nondimensional quanti-

ties will be denoted with no asterix. Combining equa-

tions (5) and (6), and using the isentropic relationship,

M2p0 = �0, one obtains a convective wave equation for

the unsteady pressure. (Note that M = U�
1=c1, where

c1 is the speed of sound in the 
uid, is the Mach num-

ber.) In nondimensional form, this gives

�
M2D

2
1

Dt2
�52

�
p0 = 0 (7)

where 52 = @2

@x2
1

+ @2

@x2
2

+ @2

@x2
3

.

The boundary conditions which complete this bound-

ary value problem arise from the impermeability con-

dition on the airfoil surface, and from the continuity

of pressure in the 
uid. The impermeability condition

on the 
at plate states that ~u � ~n = 0 where ~n is the

unit normal to the 
at plate. The normal is (0; 1; 0)

on the top surface and (0;�1; 0) on the bottom surface

and the 
at plate in nondimensional coordinates lies

between �1 and 1, so that in nondimensional form the

boundary condition becomes

u2(x1; 0; x3) = 0 for � 1 < x1 < 1: (8)

Also, the pressure must be continuous upstream and

downstream of the 
at-plate airfoil, which leads to

4 p0 = 0 x1 > 1 or x1 < �1; and x2 = 0 (9)

where 4 signi�es a jump, i.e. 4p0 = p0+ � p0�.
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The convective wave equation reduces to the Helmholtz

equation in the Prandtl-Glauert coordinate system by

de�ning

p0 = P (~x1; ~x2)e
i(
t+M2
~x1=�

2�k3~x3=�) (10)

with � =
p
1�M2, and 
 is the nondimensional angu-

lar frequency: 
 = !�c=2U�
1, and the Prandtl-Glauert

coordinates are de�ned by ~x1 = x1; ~x2 = �x2; ~x3 = �x3.

The governing equation is then written as

�
~52

+K2
�
P = 0 (11)

where K2 = (M
=�2)2 � k2
3

�2 and ~52
= @2

@~x2
1

+ @2

@~x2
2

.

In two-dimensions, the appropriate separable solu-

tion to the Helmholtz equation for the 
at-plate ge-

ometry includes an in�nite series of Mathieu functions.

In lieu of this solution method, an integral equation

solution was derived by Possio (1938) for cases when

K2 > 0. Later, Graham (1970) extended the solution

to include all possible values of K2

The method of Possio and Graham uses a plane

wave expansion for the transformed pressure, P , to ex-

press the solution to the Helmholtz equation (11) as

P (~~x) =

Z 1

�1
f(�)e�i�~x1�i

p
K2��2~x2d� (12)

Now, by using the momentum equation, Eq. (6),

and the boundary conditions with the addition of a far-

�eld radiation condition for the scattered sound �eld,

the unsteady pressure on the airfoil surface can be re-

lated to the unsteady velocity. The relationship is

u2(~x1) =
�

4�

Z 1

�1
�p0(�)K(� � ~x1)d� (13)

where

K(�� ~x1) =

Z 1

�1

p
K2 � �2

(� + 
=�2)
e�i(�+
=�

2)(��~x1)d� (14)

BOUNDARY CONDITIONS

In the last section, a general equation which relates

the unsteady surface pressure jump along a 
at-plate

airfoil and the unsteady velocity along the airfoil was

derived. This section will describe the surface velocity

condition for the cases of an oscillating airfoil and an

airfoil interacting with either vortical or acoustic waves.

Oscillating Airfoil

For an oscillating airfoil, the airfoil position is usu-

ally expressed in terms of the magnitude of the rota-

tional oscillation, �, the magnitude of the plunging os-

cillation, h, and the center of rotation, x0. If the rota-

tional and plunging oscillations occur at the same fre-

quency, !, the x�2 position of the airfoil can be expressed
as

x�2 = [��(x�1 � x�0) + h�] ei!
�t� (15)

Recall that the asterix indicates physical variables. The

surface normal velocity then, which is given byD=Dt�x�2,
is

u�2(x
�
1) = (i!���(x�1 � x�0) + ��U�

1 + i!�h)ei!
�t (16)

�c=2 � x�1 � c=2

In nondimensional form the normal velocity is given

by

u2(x1) = a [i
�(x1 � x0) + �+ i
h] ei
t (17)

�1 � x1 � 1

In this description of the normal velocity, the mag-

nitude of the rotational oscillation, which is nondimen-

sional originally, remains unchanged. For the direct

problem, u2 is thus prescribed and is used as the left

hand side of Equation (13). The integral equation is

then solved for the corresponding unsteady surface pres-

sure jump.

Vortical Disturbance

For the case of an airfoil interacting with a vortical

disturbance, arriving at the boundary condition along

the airfoil is a bit di�erent than for the case of the oscil-

lating airfoil. First, the unsteady velocity �eld is split

into two parts: rotational and irotational. It was shown

that for the uniform
ow case, the rotational component
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of the unsteady velocity, which is associated with the

incoming vorticity disturbance, is pressure free (Atassi

& Grzedzinski 1989). Moreover, the only place where

the acoustic and vortical velocities couple is at the air-

foil surface. If the acoustic velocity is denoted ~ua, and

the vortical velocity is denoted ~ug, the impermeability

condition on the airfoil states

ua�
2
(x�1; 0; x

�
3) = �u�g2(x�1; 0; x�3) (18)

�c=2 � x�1 � c=2

Since all of the pressure is associated with the acous-

tic velocity, it is appropriate that the left hand side of

Equation (13) be replaced by u�a2 .

In the gust problem, it is common to treat distinct

Fourier components of the gust, i.e. the disturbance

can be written in dimensional form as

~̂u
�
g(!;

~k�)ei(!
�t��~k��~x�) (19)

Further, since the vorticity can be shown to be purely

convected by the mean 
ow, the disturbance becomes

~̂u
�
g(!

�; k�2; k
�
3)e

i(!�t��!�=U�
1
x�
1
�k�

2
x�
2
�k�

3
x�
3
) (20)

In nondimensional form, the second component of this

along the airfoil is given as

ûg2 (
; k2; k3) = ei(
t�
x1�k3x3) (21)

�1 � x1 � 1

Here, we can identify 
 with the reduced frequency

which is usually denoted as k1.

In the direct problem, ~ug is speci�ed and the left

hand side of Equation (13) is set equal to �ug2 . One

then obtains the unsteady surface pressure response to

the vortical disturbance by solving the integral equa-

tion.

Acoustic Disturbance

For the case when acoustic waves are incident on

the airfoil, the unsteady velocity �eld is again split.

Here however, the velocity is made up of an incident

velocity �eld, ~ui and a scattered velocity �eld, ~us. Un-

like the splitting for the gust problem, now both �elds

have pressure associated with them. Since a far-�eld

radiating boundary condition was used to develop the

integral equation, Eq. (13), the left hand side, must

coincide with ~us; and, the associated �p0 must coin-

cide with the scattered pressure �eld. There is again a

coupling of the two unsteady velocity �elds along the

airfoil such that in nondimensional form

ui2(x1; 0; x3) = �us2(x1; 0; x3) (22)

As in the case of the incident vortical gust, a sin-

gle Fourier component of the incident acoustic wave is

considered, i.e.

~̂u
i
(
; k1; k2; k3)e

i(
t�~k�~x) (23)

There is no explicit relation between !� and k�1 in the

case of acoustic scattering; still, the direct problem fol-

lows the exact methodology as explained for the gust

problem.

INVERSION

As the last section showed, one obtains solutions to

the direct unsteady aerodynamic problem by solving an

integral equation. Hence, to obtain solutions to the in-

verse problem, one must simply compute an integral. It

seems then, that for unsteady aerodynamic problems, it

is actually easier to consider the inverse rather than the

direct problem. To analyze this statement further, the

inverse problem is considered in terms of the Hadamard

criteria for well-posedness. In order to analyze the ex-

istence, uniqueness and sensitivity of solutions to noise,

the de�nition of what constitutes an acceptable solution

to the inverse aerodynamic problem must be given.

If the inverse aerodynamic problem is de�ned as

determining the normal velocity component associated

with a given unsteady pressure jump on the 
at-plate

airfoil, then the problem is well posed. A solution will

exist, since it is always possible to integrate the right

hand side of Equation (13). The solution will be unique,

since again, the integration is unique. And �nally, slight

variations in the unsteady surface pressure will trans-

late to slight variations in the normal velocity, since

there is no means by which to amplify these variations.

The well-posedness of the inverse aerodynamic prob-

lem just discussed, rests on the facts that a satisfac-
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tory solution to the inverse problem is the total normal

velocity and that the unsteady surface pressure is de-

scribed along the entire airfoil. In practice, however,

the unsteady pressure may not be known on the entire

airfoil surface. Moreover, it is of more interest to deter-

mine the amplitude of the disturbances, i.e. � and h;

or the total velocity �elds ~ug(
;~k); or ~us(
;~k), rather

than simply the total normal velocity.

For the case of an oscillating airfoil, it is noted that

if the rotation axis, x0, is known, then the problem re-

mains well-posed. In this instance, knowing the normal

velocity at any two points along the airfoil is su�cient

to calculate both � and h. If however, x0 is not known,

the solution for �, h, and x0 may not be unique. For the

cases of incident vortical or acoustic waves, it is noted

that while the normal component of the disturbance

can be determined, the other two components remain

completely unknown. This again can be considered a

nonuniqueness in the inversion.

Finally, the fact that �p0 may not be known at every

point on the airfoil must be addressed. If �p0 is known
discretely, the above discussion of the Hadamard crite-

ria remains unchanged, although the solution method

must obviously be modi�ed.

The proposed modi�cation to the inversion method

will allow �p0 to be known at only discrete points along
the airfoil. First, for each measurement of �p0 along the
airfoil, denoted here �pmeasured(x1i), i = 1; 2; � � � ; n, n
equations are constructed by using solutions to the inte-

gral Equation (13) for unit amplitude disturbances. For

instance, the solutions �p� and �ph can be determined

by solving the integral equations:

x1e
i(k1t�k3x3) =

�

4�

Z 1

�1
�p0�(�)K(� � ~x1)d� (24)

and

ei(k1t�k3x3) =
�

4�

Z 1

�1
�p0h(�)K(� � ~x1)d� (25)

Then, by using the x1i, i = 1; 2; � � � ; n locations where

the measured pressure jump is available, one can de-

rive n equations valid for an oscillating airfoil. The n

equation are

�pmeasured(x1i) = i
��p�(x1i)

�i
�x0�ph(x1i)

+ �U1�ph(x1i) + i
h�ph(x1i) (26)

i = 1; 2; � � � ; n

To recover the values of �; h and x0, at least 3 mea-

surement locations, are needed. Another requirement is

that �pmeasured(xi) must contain phase information.

Still however, this equation does not lead to a linear

system. Hence, a technique like Newton's method for

several variables must be used to �nd the quantities �,

h and x0. As mentioned before, there is no guarantee

that the solution obtained for �; h and x0 is unique. In

application, it is possible that x0 is �xed by geometrical

constraints. When this is the case, � and h can be

uniquely determined.

The technique for determining the normal compo-

nent of an incident vortical or acoustic wave from a

discrete set of unsteady pressure measurements follows

readily. In these cases, the integral equation

ei(
t�
x1�k3x3) =
�

4�

Z 1

�1
�p0g(�)K(� � ~x1)d� (27)

or

ei(
t�
~k�~x) =

�

4�

Z 1

�1
�p0a(�)K(� � ~x1)d� (28)

are solved a priori for �p0g or �p0a respectively.

Using the measured pressure jump then, it seems

that only one measurement point is needed to determine

the component of the disturbance normal to the airfoil,

i.e.

�pmeasured(x1i) = ûg2(
; k3)�pg(x1i) (29)

�pmeasured(x1i) = ûa2(
;~k)�pa(x1i) (30)

(31)

Finally, if all three of the unsteady phenomena are

present, the following system of equations must be solved
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�pmeasured(x1i) = i
��p�(x1i)� i
�x0�ph(x1i)

+ �U1�ph(x1i) + i
h�ph(x1i) (32)

+ûg2 (
; k3)�pg(x1i)+ûa2 (
;
~k)�pa(x1i) i = 1; 2; � � �; n

It is noted that if the reduced frequencies of the vor-

tical and acoustic disturbances coincide, �pg and �pa

will be identical. In this case, the values of ûg2 and

ûa2 cannot be resolved independently. This creates an

additional nonuniqueness in the inversion.

CONCLUSIONS

This paper has shown that the most important is-

sue for the inverse unsteady aerodynamic problem is

uniqueness of the solution. The other Hadamard cri-

teria for well-posed problems are easily satis�ed. It is

shown that the normal velocity of an unsteady distur-

bance responsible for creating an unsteady surface pres-

sure on a 
at-plate airfoil in subsonic 
ow, can always

be determined uniquely.

If however, all of the parameters characterizing the

unsteady disturbance must be recovered, then the solu-

tions may be nonunique. For instance, if one would like

to recover an entire vortical disturbance, which consti-

tutes unsteady velocities in 3 directions, the inversion is

nonunique. One can only uniquely determine the nor-

mal component.

The conclusion must be then, that if other informa-

tion concerning the disturbances is known, perhaps the

full inversion is possible and unique. Moreover, if the

desired parameter set is not full, the inversion may be

unique.

The steps to perform the aerodynamic inversion which

are outlined in this paper, may seem quite extensive

especially for the case of an oscillating airfoil. For

instance, accelerometers on the 
at-plate airfoil could

easily determine the magnitude of the rotational and

plunging oscillations as well as the center of rotation.

However, if the aerodynamic inversion is just one part of

a complex acoustic inversion, in which far-�eld acoustic

measurements are used to de�ne airfoil excitation pa-

rameters, the methods developed in this paper are es-

sential. At this point, when certain combinations of un-

steady parameters must be recovered, the total complex

acoustic inversion is feasible. For the other cases, only

certain properties of the unsteady parameters can be

determined uniquely from the scattered acoustic �eld.
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