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ABSTRACT

This paper discusses a method for predicting the
frequency bands in which the energy in an acoustic
wave created by a test specimen in an open-test-
section wind tunnel will be dissipated by the shear
layer which forms at the “wall” of the open-test sec-
tion. For high Reynolds number, subsonic flows the
fluid motion inside the tunnel can be modeled as
inviscid and a linear analysis of the system can be
developed in which the shear layer is modeled as
a vortex sheet. Energy absorption occurs at fre-
quencies for which the motion of the vortex sheet
is negatively damped. The calculations have been
carried out for reduced frequencies from 0 to 10 and
Mach numbers from 0 to 0.4. Additionally, the ef-
fect of the test section’s streamwise length has been
examined. The reduced frequency bands in which
the acoustic wave created by the test specimen will
be damped do not vary for Mach numbers less than
0.2. Above Mach 0.2, the bands begin to spread.
The frequency bands also shift as the test section
length varies. This shift is correlated to the total
time it takes vorticity to convect downstream and
the acoustic pulse to travel back upstream.

INTRODUCTION

In this paper, a method is presented for predict-
ing the frequencies at which sound generated by a
test specimen 1n an open-test-section wind tunnel
sufficiently perturbs the shear layer, which forms
at the boundaries of the test section, such that the
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acoustic energy is modified. It is known that a shear
layer lying between a source of sound and an acous-
tic measurement device will affect the measurement.
Previous studies by Amiet [1, 2] defined a correction
for the shear layer refraction of acoustic emissions
from an object located within an open-jet wind tun-
nel. In addition to refracting the sound, the shear
layer can absorb or add energy to the acoustic sig-
nals. It is the prediction of this energy modulation
which is the focus of the current research.

The geometric set up under consideration con-
sists of an inlet nozzle and an exit nozzle both with
cylindrical cross-sections located on either end of an
open-test section as shown in Figure 1. An axisym-
metric jet of air exiting from a cylindrical nozzle into
an open-test section will be influenced by dominant
disturbance modes existing in the region around the
jet such that the jet shear layer will roll up at this
dominant frequency [3]. For unsteady aerodynamic
and acoustic experiments performed in an open-test
section facility, the test specimen provides the dom-
inant disturbance mode. The response of the jet
shear layer to this dominant mode is then two-fold.
First, the main shedding of vorticity from the wall
edge at the inlet occurs at the dominant frequency.
Then, further shedding occurs because of a feedback
due to the interaction of the shear layer with the
wall edge at the exit.

Physically, the shear layer, and thus the shed
vorticity, results from viscosity; however, for high
Reynolds number flows, the shear layer can be invis-
cidly approximated as a vortex sheet. In an inviscid
model, vortex shedding from a wall edge is insti-
gated by unsteady disturbances in the flow and can
be modeled by imposing the Kutta condition at the
wall edge. This vorticity is convected downstream
at a speed on the order of the mean flow speed and
interacts with the edge of the downstream diffuser
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Figure 1: Open-test-section wind tunnel with circular cross section.

wall. Upon interaction, an acoustic pulse is gener-
ated which in turn travels back upstream at a speed
comparable to the speed of sound. This feedback
either enhances the shedding at the upstream wall
edge or dampens the shedding. Hence, it affects the
motion of the vortex sheet.

The open-test section problem is similar to the
problem of grazing flow past a wall aperture; and
therefore, the method described in [4] for analyzing
the response of a wall aperture in grazing flow to
a periodic applied load can be used to perform the
current analysis. The method hinges upon analyz-
ing a frequency dependent parameter known as the
Rayleigh conductivity Kg(w) which is defined as

oQ(t)
Peo 5
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where Q(t) is the volume flux through the “wall” of
the open-test section and p;(w) is the Fourier com-
ponent with frequency w of the acoustic pressure dis-
turbance generated by the test specimen. The net
volume flux through the boundaries of the test sec-
tion is proportional to the total displacement of the
vortex sheet in the normal direction to the sheet, so

that D
Q:/deA:/idA
Dt

where v, 1s the radial velocity, (, is the normal dis-
placement, and A is the surface area of the cylindri-
cal “wall” of the open-test section.

(2)

If the applied load p; is periodic in time with fre-
quency w, and a linearized model of the fluid motion
is valid, Eq. (1) can be written as

Wwpeo QW)

Rrlw)= pi(w)

(3)

In areal fluid, K p(w) is generally a complex function
of the frequency w, and the energy of an acoustic
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sound wave is dissipated by the vortex sheet at a
rate

Im{Kg(w)}
2pcow

=~ Re(Q” pi) = bl @
where the asterisk denotes complex conjugate [5].
From this, one notes that if Im(Kg(w)) > 0 the vor-
tex sheet motion is negatively damped. In this case,
the vortex sheet motion grows as it extracts energy
from the surrounding flow perturbations. Therefore
the acoustic energy of a sound wave generated by a
test specimen is damped while the vortex sheet itself
may use the energy gained from the original acoustic
wave to create another narrow band tone.

In this research, the Rayleigh conductivity is cal-
culated as a function of the reduced frequency, o =
wa/U, where a is the radius of the test section and
U 1s the velocity of the fluid in the cylindrical tun-
nel. Comparisons are made of the conductivity for
varying Mach number and for different ratios of test
section length to test section diameter.

It is shown that between the reduced frequen-
cies of 0 and 10, there are discrete frequency bands
in which acoustic energy would be dissipated by the
shear layer. Variations in the Mach number between
0 and 0.2 do not affect the frequency bands, but
the magnitude of the conductivity increases with in-
creasing Mach number. As the length to diameter
ratio changes, the frequency bands shift accordingly.
Because the model is linear, only the reduced fre-
quency bands in which acoustic energy 1s absorbed
can be calculated. To calculate the amplitude of
both the energy absorption and the shear layer mo-
tion, nonlinear analysis is required. As the length
to diameter ratio changes, the frequency bands shift
accordingly.

Most of the calculations only use the range of re-
duced frequency from 0 to 10, i.e. for a wind tunnel
operating at Mach .2 or about 200 ft/s, with a ra-
tio of test section lengths of 1.0 the highest reduced
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frequency corresponds to a frequency of about 160
Hz. For some anechoic chambers this is at the very
low end of the spectrum of measurable frequencies.
As such, a method for analyzing the higher reduced
frequencies is currently being considered.

MATHEMATICAL FORMULATION

In order to use the Rayleigh conductivity given in
Eq. (3) to determine the frequency bands in which
energy is absorbed from an acoustic wave, first the
normal displacement of the vortex sheet, (,, and the
volume flux ) must be calculated. An inviscid, lin-
ear model of the fluid dynamics leads to a Helmholtz
equation for the velocity potential inside and outside
of the cylinder. These velocity potentials are rewrit-
ten using Green’s theorem in terms of the vortex
sheet displacement in the radial direction. The po-
tentials are then linked through the condition of con-
tinuity of pressure along the vortex sheet which lies
at the “walls” of the open-test section. This leads to
a differential-integral equation for the vortex sheet
displacement which is solved semi-analytically. Once
(r 18 known, the volume flux @) is easily calculated
and thus the Rayleigh conductivity is known. Some
of the details of these calculations are included in
this section.

The linearized continuity and Euler equations are

Doy ~
Dt + poo VU =0 (5)
Do ,
o0 = - 6
T vp (6)

The convective wave equation with constant co-
efficients can be transformed into the Helmholtz equa-
tion in cylindrical coordinates by using the Prandtl-
Glauert transformation 7 = ﬁiyor,é =0,Z = z, and
the Reissner transformation P = ple'@ietMiofio?

where M is the Mach number, 3 = V1 - M2 K =

——, and the subscripts ¢, 0 represent inside and
Ceo
outside the cylinder respectively. Additionally, if one

notes that D@
P22 = _p

Di (7)

where & = ¢e“!e!ME# the Helmholtz equation can

be written for the transformed velocity potential &
as
(8)

For this problem, the fluid outside the cylinder
i1s not moving and therefore U, = 0,U; = U, M, =
0,M; = M, 3, =1.0,5; = 3. Because the z variable

(V' +K2)® =0
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is not affected by the Prandtl-Glauert transforma-
tion the "notation has been dropped in reference to
z.

We solve the Helmholtz equation outside and in-
side the cylinder separately. To do so the Green’s
function for the cylinder is introduced such that

oG = ié(f—d)é(z—zo) (9)

=7

(V' +K2,)G =0,

In general a Fourier transform of the Helmholtz equa-
tion in the z direction using

oQ

/ (V2 + KHGe**dz = 0

— 00

(10)

i 6G ikz _ i 1 ~ ~ ikz
W@ dz = / ?6(r—a)6(z—zo)e dz (11)

— 00 — 00

results in wave number components of the trans-
formed Green’s function G satisfying

LD (0N A e
oG
or

Therefore the Green’s functions inside and outside
the cylinder of radius a respectively are

i Io(\/B? = K2 7) eiheo
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where [,,K, are the modified Bessel functions of
order v. In order to transform the Green’s functions
back to z space, one must calculate

1 7 Io(/FZ= K7 7) eit(o=2)d
2w

G; = 12
a/k? — K? Ii(\/k?— K? @) (12)

T —Ko(\/FZ = K2 r) ¢i*Go=) g
G = 1 Kol 2 r)e (13)

o

ar/kZ— K2 K1(\/k% — K2 a)

We are interested in the Green’s function for the case
of r — a and z close to zg. When one considers the
near field of z, the largest contribution to the inte-
grals in (12) and (13) corresponds to large k where
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Bessel functions have the property that

. In(Vk? — K?%a)
lim ~
k—co I (Vk? — K2a)

7 025
lim Ko(Vk? — K2%a) N
k—co K1 (V% — K2a)

where Héz) = Jg— 1Yy and J and Y are the Bessel
functions of order zero [6]. When z is close to zy this
1s further simplified to

1

[7]. Similarly it can be shown that

1
Go~+—1In(K,|zg — 2 15
oA In(K —c)(19)
Using these Green’s functions one can solve for
the potential field inside and outside of the cylinder
and take the limit as » — a. For the inner Green’s
function this gives

i(@, z0) //G N,oaq)a(~ )Ndﬁdz
:QTa/Gi(El,Z,El,ZO) % dz (16)
7

and from the definition of ® it can be shown that

%g,z):(_mu )a( )

where £, is the displacement of the vortex sheet in
the radial direction (with no g factor taken out and

e~ suppressed).

(17)

By substituting these relations into (16), inte-
grating by parts, and rearranging, one can show that

Qe—iMK,zD

pi(a, z) = — 5 (—zw —iIMK; U—|—Uaa70)

X /ln(Ki|z0 — 2)&, (@, 2)etMEi7 42(18)

$ola,z) =2 (iw)/ln(KO|z0 —z))ér, (a,2)dz  (19)
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Across the vortex sheet the pressure must be con-
tinuous. Inside the cylinder there is pressure associ-
ated with both the sound from the test specimen (p;)
and the potential flow disturbance from the motion
of the vortex sheet as described by Eq. (7). Outside
the cylinder there is only pressure associated with
the motion of the vortex sheet. Hence the boundary
condition can be written as
b _ (—iw + Ua%) $:(a, 70)

Poo

iwdo(a, zg) =

or

P (o200 + (—zwwa%) o1l z0) (20)

The matching must occur at the same radial lo-
cation in physical space. Hence the value of ¢; at a
is used and value of ¢, at a is used. At this point
in the field, &,(a, z) = &-_(a, z) and therefore when
Eqgs. (18) and (19) are substituted into (20), the
governing equation becomes

21;; —wz/ln(K0|z0 — z|)ér, dz
e tMKizo w a1\’
I (oI §

()

X /ln(Ki|z0 —2)&, e MBizd, (21)

In order to combine the two integrals on the right
hand side of Eq. (21) a particular solution to the
differential equation

0? wlU 0 w?
2 .
— 22— - — =
(U 92~ B 0z 64) f(z0)
— wlpetMEKizo /ln(KO|z0 — z|)érdz (22)
must be calculated. When o = % the particular

solution can be written as

f(z0) = —025/6« [

eiMK,zD

(14 In(K,|z0 — 2]))
+ g(z0 — z)e_wz-l_ié%zo(z 20 — —) dz (23)

where ¢ 1s a function whose derivative with respect
e—ia(zg—z)

to zg I8 ———— , 1.e.

—io(zg — 2)
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g9(z0 —2) =
Si(0(z0 — 2)) 4 iCi (0(z0 — 2)) =2 >0
Si(0(z0 — 2)) + iCi (o(z — 20)) o2 <0

o

where Si(x) and Ci(z) are the sine and cosine inte-
gral functions

Si(z) = / Siiﬁdt

— 00

xr

Ci(z) = / %dt

— 00

All together then the differential integral equa-
tion can be written as

Bpi

_ MKz 0_2 2ic O 52
2p00

N P

/fr Ker(zg, z)dz (24)

where the kernel is

GAME 20
Ker(zg, z) = —o?p [7(1 + In(K,|z0 — 2]))
+ g(z0 — z)e_wz-l_ié%zo(z — 29 — g)
+In(K;|z0 — z|)et MKz (25)

The differential equation part of the expression
can be solved to obtain an integral equation for the
displacement of the vortex sheet in the radial direc-
tion:

/fr(a, z) Ker(zg,z) dz =
BeiMKizop,

1%z 1% 20
e 8 + agzge B + YN
2p0U%0

(26)
where a7 » are unknown and the integration can be
restricted to the length of the open-test section 27
as shown in Fig. 1 because & = 0 along the solid
walls. If the lengths are nondimensionalized with
respect to the radius of the cylindrical-test section
a and denoted with an overbar, then the reduced
frequency becomes

g=— (27)

@.|N

and the integration is from —Z = —= to Z =
a
For convenience &, can be nondimensionalized by
- &ra2p.,U%07
g = el O
Bpi

to obtain

&(2) Ker(zg — 2) dz =

Ny

. . F M2 -

@62&120 + 50@162&120 + elﬂ—zazu (28)

The integral equation has been solved for &, and
@12 by imposing the Kutta condition at the leading
edge of the test section and using a simple quadra-
ture technique. The interval from —Z to Z is divided
into N equal parts of width dz;; the Kutta condition
in this discrete setting dictates that & = 0 on the
two cells nearest the leading edge. Having &, spec-
ified on two cells allows &; 2 to be inserted into the
list of unknowns in place of the two &, values. Once
&, is known along the length of the test section, the
Rayleigh conductivity is calculated by numerical in-
tegration

wpeo Q(w)

o

Kgr=
p;
Z
:waﬁ/zér(i)dé

N
=raf» & dz (29)

ji=3

RESULTS

The results of the solution to Equations (28) and
(29) are described in this section. Typically, the
real and negative imaginary parts of the Rayleigh
conductivity are plotted as a function of the reduced
frequency (or Strouhal number) (i.e.,, vs. o and A

Here, the Rayleigh

conductivity has been nondimensionalized by 2a.

\p .
vs. o, where — = | —{A ).

Figure 2 shows the conductivity for a fixed length-
to-diameter ratio of 1.0 and increasing Mach num-
bers from 0.001 to 4.0. The negative imaginary part
of the Rayleigh conductivity is shown as the solid
line. Figures 2a - 2d confirm that for Mach numbers
less than 0.2 the vortex sheet will absorb energy from
an acoustic wave for the same set of reduced frequen-
cies. That 1s, the solid curve dips below zero for ap-
proximately the same reduced frequencies. These re-
duced frequency bands are approximately (1.3,2.0),
(3.55,4.2), (5.0,5.65), (6.65,7.5), (8.25,8.9).
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For a Mach number of 0.3, the first four regimes
are similar but the behavior differs past a reduced
frequency of eight. Finally, for a Mach number of
0.4, only the first two regimes are similar and the
behavior varies past reduced frequencies of about
five.

While the frequency regions which correspond to
energy absorption of the acoustic wave remain the
same for Mach numbers below 0.2, the magnitude
of the conductivity differs greatly as the Mach num-
ber changes. The change in the magnitude of the
conductivity reflects the physically possible vortex
sheet motion for the different Mach number cases.
When the Mach number approaches zero, as it does
for case (a) in Figure 2, this can represent two phys-
ical situations. First, the mean flow speed inside the
tunnel can be decreasing, (U — 0). In this case, the
Rayleigh conductivity which measures the ratio of
the rate of volume flux, based on the vortex sheet
motion, to the applied load should vanish. Second, a
small Mach number can represent a fixed freestream
speed but a very high sound speed. For this case one
would again assume that the Rayleigh conductivity
would vanish. The test section and the shear layers
at the edges of the test section have been modeled
using an axisymmetric assumption. Under this as-
sumption if the average motion of the vortex sheet
representing the shear layer i1s inward, the fluid in-
side the test section must compress. If the speed
of sound if very large, the fluid is basically incom-
pressible and therefore the vortex sheet cannot move
inward.

The plots in Figure 3 show the effect of the ratio
of test section length-to-diameter on the Rayleigh
conductivity. At a fixed Mach number of 0.2, the
Rayleigh conductivity was calculated for test section
length ratios of 0.5,1.0, and 1.5. The conductivity
for these three cases can be explained heuristically.
The vortex shedding from the edge of the inlet is
producted by the unsteady forcing supplied by the
acoustic wave created by the test specimen. The
vorticity is convected downstream with a speed on
the order of the speed of the fluid inside the tunnel.
When the vorticity interacts with the edge of the
exit nozzle, another acoustic pulse is generated with
travels back upstream at a speed related to the speed
of sound. When this pulse interacts with the inlet
edge additional vorticity is produced. The frequen-
cies at which the motion of the vortex sheet grows
correspond to the frequencies at which the acoustic
pulse from downstream produces additional vortic-
ity in phase with the initial shedding.

From a simplified view then, the vorticity in the

6

wake can be written as a convected disturbance with
assoclated variation

ei(wt—wa?/U)

The first reduced frequency region in which acoustic
energy is absorbed would be centered at

27U
w = —
a2z

such that the length from inlet edge to exit edge
is spanned by one wavelength of the vortex sheet
variation. The nth region would be centered at the
frequency

_ 2nrwU
T a2z

This is an overly simplified description because the
vortex is not convected with the speed U, and the
acoustic pulse takes a finite time to travel and couple
with the inlet edge. However, for understanding Fig.
3 the simplified view is helpful. For a shorter-length
open-test section the reduced frequency regimes as-
sociate with acoustic energy absorption will occur at
larger frequencies, i.e. in the simplified explanation
Zl < Zz — W1 > Wy

Indeed in Figure 3 as the length-to-diameter ratio
increases, the first frequency regime of interest is
centered about a smaller reduced frequency and the
total number of such regimes located between the
reduced frequencies of 0 and 10 increases.

The final result presented helps to explain the
sharp change in the conductivity seen in Figure 3(c)
near a reduced frequency of eight. This same be-
havior is seen for the case of test section length-
to-diameter ratio of 1.0, at a reduced frequency of
12.0 as shown in Figure 4 (Top) which is an ex-
tended version of Fig. 2(d). This sharp change is
predicted by calculating the poles of the Rayleigh
conductivity. From Equation (1) it is clear that the
poles of the conductivity signify frequencies at which
the rate of volume flux will be nonzero and physi-
cally these frequencies represent the possible self-
oscillation frequencies of the system (i.e., the feed-
back loop does not have to be forced but will occur
naturally). When the imaginary part of the pole is
in the upper half of the complex plane the system
is unstable and the vortex sheet motion will grow,
when the imaginary part of the pole is in the lower
half of the complex plane, the system 1s conditionally
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unstable and would have to be forced at a reduced
frequency corresponding to the real part of the pole
in order for the vortex sheet motion to grow.

The quantity |1/Kgr(w)|, has been plotted in Fig.
4 (Bottom) for a set of complex reduced frequen-
cies with real part ranging from 0 to 14 and imagi-
nary part ranging from —4 to 10. The poles of the
conductivity coincide with the frequencies for which
|1/Kr(wp)| = 0. Fig. 4 (Bottom) shows many dark
regions which indicate possible poles. However, in
reality only those regions which have larger areas of
dark around them are true poles. The figure shows
four poles: at roughly 2.4—0.2¢,5.840.51, 9.0+ 1.0z,
and 11.04 1.57. The real part of these poles are close
to the reduced frequencies at which the real part of
the Rayleigh conductivity possesses minima. The
first pole is stable and the next three are unstable.
For the reduced frequencies greater than 12.0, the
poles cross back into the stable half of the complex
plane, although they are not so obvious in Fig. 4.
The peak in the top graph occurs when a pole in the
top half plane is very close to the real axis.

The real part of the unstable poles represent the
reduced frequencies at which the shear layer span-
ning from the inlet to the exit may produce tones
when the test specimen is not creating an unsteady
disturbance [8]. In such circumstances, the initial
vortex shedding occurs because of unsteady distur-
bances in the wall boundary layer upstream of the
inlet edge.

CONCLUSIONS

The Rayleigh conductivity for a subsonic open-
test-section wind tunnel has been calculated for use
in predicting the frequencies at which sound gen-
erated by a test specimen located within the test
section would be absorbed by the shear layer. It
was shown that there are discrete reduced frequency
bands for which the shear layer will absorb energy
from an acoustic wave, and within these same bands
the shear layer motion itself may produce further
sound. It was shown that Mach numbers under 0.2
have little affect on the reduced frequency bands in
which absorption will occur, but that for Mach num-
bers of 0.3 and 0.4, the distance between the absorp-
tion frequency bands begins to increase. The ra-
tio of test section length-to-diameter also affects the
Rayleigh conductivity and the effect further verifies
that the dynamics of the vortex sheet is governed by
the time 1t takes a shed vortex to travel from the
inlet to the exit plus the time for an acoustic pulse
to travel from the exit back to the inlet.

The results shown here correspond to only low

7

frequency disturbances. However, in practice the
frequencies of interest are usually greater than 150
Hz. As such, a method to extend the current anal-
ysis to include higher frequencies is under develop-
ment.
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Figure 3: Kg/2a: real part (dashed), negative imag-
inary part (solid). (a) Z = 0.5, (b) Z = 1.0, (c)

Z =15.
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