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ABSTRACT

The inverse aeroacoustic problem associated with a
gust impinging on a 
at-plate airfoil is formulated in
terms of a Fredholm integral equation of the �rst kind.
The feasibility of determining the unsteady pressure
along the airfoil surface from the radiated acoustic sig-
nal is demonstrated. It is shown that the Hadamard
conditions of existence and uniqueness of the inverse so-
lution are satis�ed, if the radiated sound is due to the
gust interacting with the body. The third Hadamard
condition for the continuous dependence of the solu-
tion on the input acoustic data shows the problem to
be ill-posed. The singular value decomposition method
with regularization is used to treat the associated ill-
conditioned algebraic problem. Discretization and col-
location techniques are used to represent the unsteady
pressure on the airfoil. Both methods give very ac-
curate reconstructions when \perfect" input data are
used. The collocation method requires input from very
few far-�eld locations, thus making it more suitable for
applications. A sensitivity analysis based on the input
data shows that the magni�cation of input error inher-
ent in the inversion process can be controlled by the
choice of the regularization parameter. A similar sen-
sitivity analysis of the e�ect of mean-
ow parameters,
Mach number and reduced frequency, shows strong de-
pendence of the inversion process on these parameters,
suggesting the use of mid-�eld data for the inversion.

1. INTRODUCTION

The control and abatement of sound and vibration cre-
ated by the interaction of nonuniform 
ows and solid
bodies require a fundamental understanding of the in-
teraction mechanism. One situation which has de-
manded much attention is the interaction of a stream-
lined body and a 
ow with vorticity. This situation is
present in propellers, turbofans and guide vanes which
often operate in the wake of other structural compo-
nents. It occurs also in aircraft wings encountering
atmospheric turbulence.

The traditional approach to quantifying the sound and
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vibration induced during such interactions has been to
describe the upstream vortical 
ow and then to calcu-
late the unsteady pressure induced on the blades and
the far-�eld radiated sound. This is called the direct
problem.

Whereas much has been learned about this interac-
tion noise from the direct approach, an inverse ap-
proach is more applicable to the control of noise and
vibration. In order to control noise and vibration, the
origin of the phenomenon must be determined. One
possible method for determining the origin of inter-
action noise is to calculate it from measurements of
the sound created. This is called the inverse problem.
For interaction noise, the inverse problem splits into
two parts. The �rst part, the inverse aeroacoustic
problem, consists of determining the unsteady pressure
along the body from the far-�eld sound. In the second
part, the inverse aerodynamic problem, the vortical
disturbances in the 
ow are calculated using the un-
steady pressure along the surface of the body . This
paper focuses on the inverse aeroacoustic problem.

In the inverse aeroacoustic problem, the far-�eld un-
steady pressure, or radiated sound, and the shape of
the streamlined body are known. From this informa-
tion, the unsteady pressure on the body must be calcu-
lated. If this calculation is possible, it could serve as a
means for sensing in a control system and also it could
be used to obtain unsteady surface pressure informa-
tion which may be di�cult to measure using standard
measurement devices.

For most applications such as in aeronautics or propul-
sion systems, the structural components are designed
to be streamlined bodies. The classical direct unsteady-
aerodynamic treatments for such bodies uses linearized
theory with the airfoil approximated by a 
at plate.
The classical treatment, in e�ect, uncouples the un-
steady part of the solution from the mean 
ow, and
brings about a signi�cant simpli�cation for the treat-
ment of unsteady 
ows since the governing equation is
reduced to a constant-coe�cient convective wave equa-
tion. Although, more elaborate analytical and numer-
ical methods have been developed to account for non-
linear e�ects associated with lifting airfoils, the linear
theory gives good results for the gust problem of thin
airfoils. [1]. In a similar fashion, it is believed that the
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basic features of the inverse problem can be well under-
stood by �rst examining the case of a 
at-plate airfoil
with its relatively simple mathematical formulation.

It is the intent of this paper to demonstrate the fea-
sibility of the aeroacoustic inversion when the stream-
lined body is a 
at-plate airfoil. The Hadamard cri-
teria [2] of existence and uniqueness of a solution are
considered �rst. For this problem both of these condi-
tions are satis�ed. Once existence and uniqueness are
established, the challenge is to develop a method for
performing the inversion accurately. We have found
that the aeroacoustic inversion can be carried out us-
ing the method of singular value decomposition (SVD)
with imbedded regularization techniques. The regu-
larization techniques are necessary to handle the ex-
treme sensitivity to errors in the input data. The paper
will examine the level of accuracy associated with these
methods in terms of the accuracy of far-�eld measure-
ments and other input parameters.

2. MATHEMATICAL FORMULATION

Assuming there is an upstream imposed three- dimen-
sional gust convected by a uniform 
ow where the 
uid
is inviscid, non-heat conducting, and compressible, and
linearizing about the mean 
ow quantities, the govern-
ing equations are reduced to the linearized Euler equa-
tions. In the absence of incident acoustic waves, the un-
steady 
ow �eld can be split into a potential or acous-
tic part and a rotational or vortical part which is con-
vected by the mean 
ow [1]. In the linearized approx-
imation, the mathematical problem can be reduced to
a two-dimensional Helmholtz equation in the Prandtl-
Glauert coordinate system [3] for a single Fourier com-
ponent. The coordinate system and gust parameters
are shown in Figure 1. The unsteady pressure is de-
noted as p0. The governing equation is given here in
nondimensional form.
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. Note that in this formula-

tion, lengths are normalized with respect to the half
chord, c=2, velocities with respect to U1, time with
respect to c=2U1, and unsteady pressure with respect
to a2�1U1 where a2 is the amplitude of the vortical
disturbance normal to the airfoil.

The equation relating the transformed unsteady pres-
sure in the far-�eld and the transformed unsteady pres-
sure on the airfoil follows from Green's theorem [3].
The relationship is

P (~~x) =
1

2�

Z 1

�1

4P (~y1) @Gf (~~xj~~y)
@~y2

d~y1 (2)

where

Gf (~~xj~~y) = � i�
2
H

(2)
0 (Kj~~y � ~~xj) (3)

Here ~~x is the observation point and ~~y is the source
point. Solutions to the inverse aeroacoustic problem
will be obtained by solving this Fredholm integral equa-
tion of the �rst kind.

3. EXISTENCE AND UNIQUENESS

The inverse aeroacoustic problem is de�ned as deter-
mining the unsteady pressure on the 
at-plate airfoil
due to a vortical disturbance interacting with the airfoil
from the resulting far-�eld acoustic signal. The exis-
tence criteria for this problem follows directly from the
statement of the problem. The acoustic signal must
be the result of the interaction of the vortical dis-
turbance with the body. If there are spurious acoustics
sensed by the measurement devices in the �eld, a re-
construction of the unsteady pressure on the body may
not re
ect only the response of the airfoil to the aero-
dynamic excitation. If the unsteady pressure on the
airfoil represents an aerodynamic response, some in-
formation regarding its nature is already known from
the direct problem; the unsteady pressure is character-
ized by a square root singularity at the leading edge
and a Kutta condition at the trailing edge.

Once existence is established, uniqueness of the solu-
tion follows from properties of radiating solutions to
the Helmholtz equation [4].

4. METHOD OF SOLUTION

4.1 General Techniques

Several methods for solving the integral equation (2)
were tested. Each of the methods transformed the in-
tegral equation into a matrix equation of the form

2
4 A

3
5 =

2
4 M

3
5
2
4 B

3
5 (4)

For every method used, the matrix M was ill-
conditioned. Solutions to the matrix equation were
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Figure 1: Flat-plate airfoil encountering three-dimensional vortical gust.

then obtained using optimization and regularization
techniques. The optimization technique most com-
monly used to obtain solutions to ill-conditioned ma-
trix equations is the the singular value decomposition
(SVD). The premise for the SVD method is that a ma-
trix M of dimension m � n with m � n can be rep-
resented as

M = U�V
t

(5)

where � is an m � n diagonal matrix with the �rst
n diagonal terms containing the singular values, de-
noted here as �i, and the others containing zero, U is
an m �m matrix containing the left singular vectors
in its columns, and V is an n � n matrix containing
the right singular vectors in its columns. Here the bar
over V denotes the complex conjugate and the super-
script t denotes the transpose. The columns of U , ui,
form a basis for the input space which contains A, and
the columns V , vi, form a basis for the reconstruction
space which contains B. The solution to the matrix
equation (4) then, is formed as follows

2
4 B

3
5 =

X
i

�
A

� � � ui
�

�i

2
4 vi

3
5
(6)

Further details on the SVD method as it applies to this
problem are given in [4, 5].

When a matrix is ill-conditioned, the singular values
decay to zero. In order to avoid dividing by these small
values, regularization techniques are imbedded in the
SVD method. One possible regularization technique is
the spectral cut-o� method where,, only a �nite num-
ber of basis functions are used in the reconstruction.
The number of basis functions used depends on how
many singular values are greater than a certain cut-
o� value. Another regularization method, known as
Tikhonov regularization [6] introduces a parameter �
in Eq. (6). The solution is then modi�ed to the form,

2
4B

3
5 =

nX
i=1

�i
�+ �2i

(
�

A
� � � ui

�
)

2
4vi

3
5

(7)

4.2 Methods for Testing Solution Schemes

Several di�erent methods for obtaining the matrixM
from Eq. (2) have been considered. All of these meth-
ods are �rst tested with \perfect" input data. To gen-
erate this \perfect" input data, the direct problem is
solved using known semianalytic solutions [3]. These
solutions are based on solving Possio's integral equa-
tion for the pressure jump along a 
at-plate airfoil in
response to a three-dimensional gust. Equation (2) is
then used to calculate the radiated sound. The far
�eld is described on 79 equally space points on a cir-
cular arc, at r = 100, from 0 to � but not including
the endpoints. r is given in nondimensional units. The
data are written out with eight decimal point precision.

4.3 Quadrature Method

Amethod commonly used for discretizing integral equa-
tions is to apply a simple quadrature rule. Hence, the
�rst method tested, uses the trapezoidal quadrature
rule to discretize Eq. (2). A reconstruction of the un-
steady pressure jump on the airfoil is obtained by using
the SVD method with imbedded Tikhonov regulariza-
tion where � = 10�7. The regularization method and
parameter are chosen by running calibration cases for
di�erent Mach numbers and reduced frequencies. For a
given solution scheme, once the choice is made, it must
remain �xed for all other cases considered.

The dotted line in Figure 2, denoted Case A, shows the
reconstruction for a case with M = :4 and k1 = 5:0
when \perfect" input data are used. The �gure in-
cludes the real and imaginary parts of the nondimen-
sional unsteady pressure jump, C�p0 . In the �gure the
leading edge of the airfoil is located at -1.0 on the air-
foil axis and the trailing edge is located at 1.0. The
reconstructions are not prefect even though \perfect"
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Figure 2: Comparison of reconstructions using the

quadrature methods. M = 0:4; k1 = 5:0

input data have been used. The reconstructions be-
comes worse as K = k1M=�2 decreases.

Most of the error in the reconstruction comes from the
leading edge singularity behavior. Although this be-
havior is inherent in the problem, i.e., the information
characterizes the kernel, computationally it is di�cult
to capture. Usually, computers do not handle singu-
larities well; and, computations will damp out such
behavior. In Figure 2, it can be seen that the solution
grows as it progresses towards the leading edge but,
it suddenly decreases right at the leading edge. This
adds unwanted oscillations in the result.

To aid the numerics in capturing the leading edge sin-
gularity, the transformation y1 = �cos
 is used. With
this transformation, equation (2) becomes

P (~~x) =
�iK~x2

4
X

Z �

0

�P (
)sin

H

(2)
1 (Kj~~x+ cos
îj)
j~~x+ cos 
îj d
 (8)

Solving the matrix equation for the quantity
�P (
)sin
 ensures that the computed quantity is �-
nite at the leading edge. However, this might not yield
�P = 0 at the trailing edge which violates the Kutta
condition. This is not a real hindrance, however, since
the reconstructions are very good except in a small re-
gion around the airfoil. This method is used for the
case M = :4, k1 = 5:0. The results are shown by the
dashed line in Figure 2 and denoted Case B. Calibra-
tion for this method gives the Tikhonov parameter as
� = 10�6.

Overall, this method gives much better reconstructions
but still they are not perfect. In particular, for small

K, they are very poor. The reason for this di�culty
can be traced to the relatively small dependence of the

kernel phase on ~y1. Indeed, for large j~~xj, Kj~~x � ~~yj
shows small variation as ~y1 varies from -1 to 1. These
variations become even smaller as K decreases. This is
consistent with the fact that, as K becomes small, the
far �eld does not depend on the details of the unsteady
pressure which is well known from the compact source
approximation.

The alternative, is to use the asymptotic behavior of
the Hankel function to factor out the dependence on

j~~xj. Using the asymptotic form of the Hankel function,
equation (2) can be written as

P (~~x) �
r

K

8�

e�i(Kj~~xj��=4)

j~~xj1=2 sin~� X

Z 1

�1

�P (~y1)e
iK~y1cos~�d~y1 +O(

1

j~~xj3=2 ) (9)

The integral equation to solve then, is

f(~�) = P (~~x)

r
8�

K
ei(Kj~~xj��=4) j~~xj

1

2

sin~�

=

Z 1

�1

4P (~y1)eiK cos~�~y1d~y1 (10)

Again, we use the trapezoidal rule to discretize the ma-
trix, and the transformation y1 = �cos
 to avoid the
di�culty associated with the leading edge singularity.
Figure 3 shows the solution obtained from the SVD
method with imbedded Tikhonov regularization when
\perfect" input data are supplied. The regularization
parameter for this method is � = 10�6. These recon-
structions are perfect and cannot even be detected on
the plots since they lie directly on the solid curve for the
exact solution. This method gives perfect reconstruc-
tions at all values of K that have been tested. These
values range from .01 to 20. Because this method uses
the asymptotic form of the kernel, it only works when
the input data are taken in the far �eld.

In all of the reconstructions shown above, 79 far-�eld
points lying between 0 and � were used. For smaller
K cases, fewer points can be used. For instance, in the
case shown here as few as 19 points can be used, cor-
responding to data locations eight degrees apart. This
still may be too restrictive for application. Therefore
either a higher order quadrature scheme or a colloca-
tion method must be used to transform the integral
equation. Since a collocation series can be easily chosen
to include the basic features of the unsteady pressure,
this is the preferred method.

4.4 Collocation Method

The collocation series is chosen to include the square
root singularity at the leading edge and the Kutta con-
dition at the trailing edge, which are inherent in the
problem. The collocation series is
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Figure 3: Reconstruction using the quadrature

method with expanded kernel. M = 0:4; k1 = 5:0
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2
) +

1X
n=1

Ansinn
 (11)

where ~y1 = �cos
. This series can be used with the
Hankel function kernel or with the expanded kernel,
which adds 
exibility in the sense that the input data
can be obtained either in the mid �eld or in the far
�eld. Substituting (11) into (10) and integrating gives

f(~�) = A0�(J0(Kcos~�)� iJ1(Kcos~�))

+
1X
n=1

An�(�i)n�1nJn(Kcos~�)

Kcos~�
(12)

where Jn is the Bessel function of order n. The Bessel
functions have the property that

Jn(z) � 1p
2�z

� ez
2n

�n
as n!1 (13)

Therefore, the values of the elements in the columns
of M decrease as the column number increases. This
leads to ill-conditioning again. However, the number of
terms in the series can be limited such that the condi-
tion number of the matrix is closer to 1. This a priori
regularization allows for direct inversion of the matrix.
If the series is limited, however, most likely the sys-
tem of equations will be overdetermined, which again
hinders direct inversion. The system may be overde-
termined since, even for large K cases, only about
eight terms are needed in the series and most prob-
ably data will be available in the far �eld at more than

eight locations. The SVD method can be used to solve
the overdetermined system. Since the regularization is
done a priori an imbedded technique is not necessary.

The number of columns, i.e., terms used in the collo-
cation series, is chosen based on the singular values.
The restriction is that the singular values of the ma-
trix must all be greater than the cut-o� parameter :01.
This parameter is chosen from calibration using \per-
fect" input data. It allows for perfect reconstruction
for all cases of K, where :01 < K < 20. No �gures
are shown here, since the exact and reconstructed so-
lutions coincide perfectly.

Although quadrature methods give good results, they
require numerous far-�eld measurements. The col-
location method has the advantage of requiring only
a small number of input data which can be obtained
from either the far �eld or the mid �eld. Depending
on where the measurements are made, the correspond-
ing kernel is used and the results are good for both
kernels.

5. SENSITIVITY

We now examine the sensitivity of inverse methods to
errors that exist in the measurements. Up until now,
all of the discussion has assumed that the input data
would be \perfect". In addition, the kernel used in cal-
culating the input data is always identical to the kernel
used for the inversion. We also note that, the far-�eld
data have been generated numerically with great pre-
cision. It is no surprise, then, that in the end, methods
which give perfect reconstructions are obtained. For
application however, the far-�eld data will be obtained
experimentally. This means that the data will con-
tain nonlinear e�ects inherent to the acoustic propa-
gation, noise from the surroundings, and measurement
uncertainty due to the mechanical and electrical sys-
tems used to take the data. Therefore, it is important
to show the robustness of the inversion method when
the input is not \perfect". There are two sources of
error in the current problem. One source is noise in
the far-�eld data. This only a�ects the left hand side
of (4). The second type of error comes from measure-
ment errors of M and k1. These parameters a�ect the
kernel itself, and therefore the matrixM. The two dif-
ferent types of errors will be treated separately. First
the sensitivity to input-data changes is treated.

5.1 The Third Hadamard Criteria

The third Hadamard criteria [2] for well-posedness of a
problem, requires that the solution be continuously de-
pendent on the data. This condition fails for the inverse
aeroacoustic problem. In two dimensions, the relation-
ship between the far-�eld pressure and the near-�eld
pressure contains a factor of 1=

p
rf , where rf is the

distance to the far �eld. Because of this dependence,
errors on the order of �p0 in the far-�eld input data
becomes errors on the order of

p
rf�p

0 in the solution.
Hence, small changes in the input data can create large
changes in the solution, violating the third Hadamard
criteria.

The ill-posedness of the inverse problem, manifests it-
self in the ill-conditioning of the matrix equation. The
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Figure 4: Reconstruction using the collocation

method with truncated input data. Value of smallest

singular value di�ers.M = 0:4; k1 = 5:0

sensitivity to errors in the input data and methods of
controlling the sensitivity are discussed in the next few
sections.

It is easy to see how this inherent magni�cation of error
is produced by the solution method. Considering the
singular value decomposition method shown in Equa-
tion (6), any errors in the input, A, will be magni�ed
when dividing by small singular values. From this it
is also clear how to control the sensitivity. A change
in the choice of the regularization parameter must be
considered. For the collocation method, the number of
columns will be reduced so that the smallest singular
value is 1.0. The new, a priori, cut-o� parameter will
not lead to perfect solutions when \perfect" input data
are used, but the solutions are still very accurate.

To illustrate this point, input data, which have a max-
imum value of .3, are truncated to two decimal places.
This essentially adds noise to the data. The recon-
struction using the truncated input data is shown in
Figure 4. The di�erence between the curves in Figure
4 is the number of terms used in the collocation series.
A 5-term collocation series coincides with a cut-o� pa-
rameter of .01. The reconstruction is not good. A
3-term collocation series coincides with a cut-o� pa-
rameter of 1.0 and the reconstruction is much better.
It is not perfect but it is the same reconstruction that
is obtained when only 3 terms are used in the series
and \perfect" data are available. This indicates that
the scheme with a priori cut-o� 1.0 is not as sensitive
to errors in the input.

Truncating the data, helps to set the new cut-o� pa-
rameter. For a more realistic study of the sensitivity of
solutions to the far-�eld data sensitivity we now inves-
tigate how the reconstructions depend on the level of
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error in the input data. To this end, it is assumed that
k1 andM are known accurately. For every error analy-
sis both the perfect input data and the noisy input data
are shown as well as their respective reconstructions.
Several methods for perturbing the input data will be
used and the corresponding reconstructions shown.

5.1.1 Relative Error

The �rst type of error considered is a relative error.
The magnitude and phase of the far-�eld data are both
perturbed by �20% at every measurement location.
Using the collocation method with a priori regulariza-
tion, the reconstructions are performed. The results
are shown in Figures 5 - 6. In Figure 5, the solid line
represents the\perfect" input data and the dotted line
shows the erroneous input data. Both the magnitude
and phase of the input are included. The reconstruc-
tions are shown in Figure 6. The results are not per-
fect, but for the amount of error in the input data, the
reconstructions are reasonable.

5.1.2 Uniform Error

Rather than the error being a percentage of the data at
a given location, often, the error is more uniform at all
locations. Thus we consider errors made by uniformly
perturbing the data. In this case, random numbers
less that or equal to .1 are added or subtracted to the
real and imaginary parts of the far-�eld data at every
measurement location. The perturbed input data are
shown in Figure 7 and the reconstruction can be found
in Figure 8.

This reconstruction can be improved. The improve-
ment is based on the fact that any error in the data at
measurement locations directly upstream and directly
downstream of the 
at-plate airfoil will be ampli�ed

due to the division by sin~�. Instead of using data
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changes less than .1. Top: magnitude. Bottom: phase.

M = 0:4; k1 = 5:0.
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Figure 8: Reconstruction using the collocation

method with \uniformly perturbed" input data,

changes less than .1. M = 0:4; k1 = 5:0.

locations on an arc from 0 to �, the arc is restricted
from �=8 to 7�=8. The reconstruction is shown in Fig.
9 and the improvement is signi�cant. Neglecting the
measurements upstream and downstream is consistent
with experiments, since often a 
ow inlet and outlet
are located directly upstream and downstream respec-
tively.

5.1.3 General Bias

A general bias error is the last type of error considered.
Here the magnitude of the input data is increased by
.05 everywhere. This type of error simulates a possible
calibration bias in an experimental setup. The recon-
structions seen in Figure 11 are poor when all the data
are used. On the other hand, when the upstream and
downstream data are removed, these reconstructions
are improved. Figure 12 shows the improved results.

5.2 Sensitivity to Frequency and Mach Number

The far-�eld pressure is not the only input for the in-
verse problem. Other inputs include k1; k3, and the
Mach number. These parameters combine to give the

value of K =
q

k2
1
M2

�4 � k2
3

�2 which is a parameter in

the kernel. These parameters are also used in the Reiss-
ner transformation, P = p0eiMK1~x, which helps to
transform the governing equations into the Helmholtz
equation.

The sensitivity of reconstructions to errors in these pa-
rameters is �rst demonstrated by increasing the Mach
number 5%. Figure 13 shows the far-�eld data for the
cases M = :4; k1 = 5:0 and M = :42; k1 = 5:0.
The reconstruction is found using the input data cor-
responding to M = :42; k1 = 5:0 but the input pa-
rameters of M = :4; k1 = 5:0. the results are given
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Figure 9: Reconstruction using the collocation

method with \uniformly perturbed" input data,

changes less than .1. Neglecting upstream and down-

stream data. M = 0:4; k1 = 5:0.
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Figure 10: Input data when the magnitude is uni-

formly increased by .05. Top: magnitude. Bottom:

phase. M = 0:4; k1 = 5:0.
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Figure 11: Reconstruction using the collocation

method with input data with magnitude .05 larger than

it should be. M = 0:4; k1 = 5:0.
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Figure 12: Reconstruction using the collocation

method with input data with magnitude .05 larger than

it should be. Neglecting data upstream and down-

stream. M = 0:4; k1 = 5:0.
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Figure 13: Magnitude and phase of far-�eld data for

M = 0:4; k1 = 5:0 and M = 0:42; k1 = 5:0.

by the dotted line in Figure 14.

In a second example, the reduced frequency is increased
by 5%. Figure 15 shows the far-�eld data for the cases
M = :4; k1 = 5:0 andM = :4; k1 = 5:25. The recon-
struction determined from input data corresponding to
k1 = 5:25 but input parameter k1 = 5:0 is found in
Figure 16. Again the reconstruction is not accurate.
Changing the regularization parameter, or using the
quadrature methods do not improve the reconstruc-
tions.

5.2.1 Far Field vs. Mid Field

At large distances the asymptotic form of the kernel in-
cludes the term eiK~r. Therefore, when ~r is very large,
any error in K is signi�cantly ampli�ed. Since magni-
�cation of the errors in K is due to the location of the
measurement surface in the far �eld, such large recon-
struction errors should not occur if the measurements
are made in the mid �eld. This corresponds to r on
the order of 10. The reconstructions when r = 10
and r = 5 for the previous two examples are shown
in Figures 14 and 16. Some improvement can be seen.
In other cases tested, errors in the input parameters
on the order of 1%, when the input data are taken
at r = 10, do not a�ect the reconstruction signi�-
cantly. Errors larger than 1% however, do alter the
reconstructions. There is a possibility that the opti-
mization scheme could be extended to �nd an optimal
value of K, but at this point this is an open problem.
So if this method is to be used in application, the mea-
surement of these quantities needs to quite accurate.

7. CONCLUSION

The inverse aeroacoustic problem associated with a
gust impinging on a 
at-plate airfoil is formulated in
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Figure 14: Reconstruction using input parameters,

M = 0:4; k1 = 5:0 but input data corresponding to

M = 0:42; k1 = 5:0 at r = 100, r = 10 and r = 5:0

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3 3.5

M = .4, k1 = 5.0

M = .4, k1 = 5.25

r
|C

p'
|

(radians)

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5

(  
   

 C
p')

r
ph

as
e 

of

(radians)

Figure 15: Magnitude and phase of far-�eld data for

M = 0:4; k1 = 5:0 and M = 0:4; k1 = 5:25.
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Figure 16: Reconstruction using input parameters

M = 0:4; k1 = 5:0 but input data corresponding to

M = 0:4; k1 = 5:25 at r = 100, r = 10 and r = 5:0

terms of a Fredholm integral equation of the �rst kind.
The feasibility of determining the unsteady pressure
along the airfoil surface from the radiated acoustic sig-
nal is demonstrated. The ill-posedness associated with
the third Hadamard condition, results in an ill-
conditioned algebraic system of equations. This sys-
tem of equations is solved using the method of singular
value decomposition with regularization. Discretiza-
tion and collocation techniques were used to represent
the unsteady pressure on the airfoil surface. In the
discretization method, the accuracy of the inversion
process is improved by a transformation which helps
capture the leading edge singularity in the unsteady
pressure on the airfoil surface. Moreover, to avoid the
di�culties associated with the large phase variation of
the acoustic signal, the kernel of the Fredholm inte-
gral equation is expanded and the term causing the
large phase variation is factored out. This approach,
in conjunction with the transformation, gives very ac-
curate reconstructions when \perfect" input data are
used. Alternatively, a collocation technique was de-
veloped, which embodies the characteristics of the un-
steady pressure along the airfoil surface such as the
leading edge singularity and the Kutta condition at the
trailing edge. The collocation technique also gives very
accurate reconstructions when \perfect" input data are
used. The collocation technique has the added 
exibil-
ity of working well with either the regular kernel form
or its far-�eld asymptotic expansion. As a result, both
far-�eld and mid-�eld input data can be used. The
most attractive feature of the collocation technique is
that it requires input data from very few far-�eld loca-
tions.

Various sensitivity analyses are implemented to de-
termine the practical feasibility of the reconstruction.
These included: relative, uniform, and biased errors in

the input data. The results show that the sensitivity of
the inverse solution to errors in the input data can be
controlled by an optimal choice of the regularization
parameter. A similar sensitivity analysis of the e�ect of
mean-
ow parameters, M and k1, shows that the use
of mid-�eld data produces a signi�cant improvement
in the reconstructions.
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