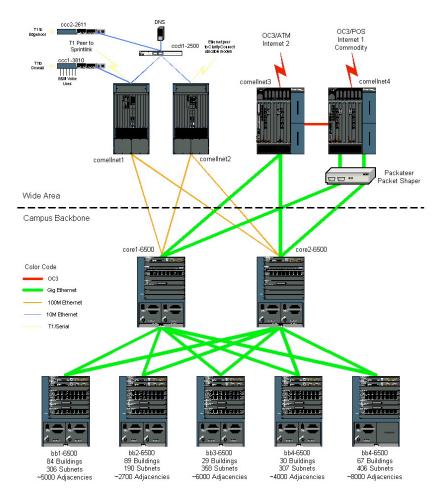
How to Create Firewall Service on the Cheap

Daniel Adinolfi, CISSP Senior Security Engineer Cornell University March 12, 2004


Objectives

- Outline the Cornell IT environment
- Describe the ACL deployment architecture, processes, and details
- Discuss the costs of program design, rollout, and up-keep

Cornell Environment

- 40,000 nodes
- Three Class B networks with about 750 subnets
- 110 residential networks with about 6500 nodes
- Each subnet is a unique VLAN and insolated to a single router interface
- Diverse user base: students, faculty, staff, researchers, public library users, visitors, etc.

Cornell Network

Network Administration

- Local (departmental and program-wide) support providers administer the majority of campus subnets
 - Varying degrees of technical skills
 - Some small departments (a few systems), some large departments (hundreds of systems)
- Few departments run own network infrastructure
- Handful of firewalls deployed by departments

Security Challenges

- Around 40,000 components on the network
 - Infrastructure components
 - Faculty, staff, student, and public systems
 - Any and every type of OS imaginable
 - Some systems supported better than others
- Most common vulnerabilities
 - Weak or no account passwords
 - Un-patched and exploitable systems
 - Open file sharing
 - Virus infection

Security Challenges, cont.

- Daily observances
 - Several virus infections
 - Several compromised systems (mostly used for file sharing, spamming, or scanning)
 - Abuse cases (spam, harassment, etc.)
 - Hundreds of (observed) scans from offcampus
 - On-campus scans? Dunno.

ACL Deployment Architecture

- Use of existing packet filtering capabilities in routers
- Homegrown scripts to automate implementation
- Complement to other hardware or software firewall implementations
- Does not interfere with existing anti-spoofing, routing, and multicast ACL rules
- No special budget allocated for this project.

Program Traits

- Not for ad hoc blocks
 - Intended for static environments
 - Not intended for incident response
 - One to two business day turn around
- Limited filtering
 - IP, TCP/UDP port, ICMP message type
 - More complex rules discouraged and rare

Scripts

- One script to generate "database"
- Additional script to upload configuration to router
 - ACLs created by hand in a text file in standard IOS format
 - Separate configuration file that tells the script which router, VLAN, and ACL files (configlets) to use

How an ACL is made

- 1. Initial query by registered net admin
- 2. Consultation with technical staff, in person, preferably (very important!)
- 3. ACL design
- 4. Implement, test, and document
- 5. Follow-up with customer

Issues

- No logging available to customers
- Does not scale when changes needs to be instantaneous or often
- "Outbound" filters only
- UDP protocols can be tricky

Census

- Approx. 275 subnets with Edge ACLs
- 45 campus departments plus ResNet
- Majority are blocking Windows Networking from off-campus
- Less than 10% involve complex requirements

Futures

- Higher percentage of networks with Edge ACLs (GLBA audits, other regulations, wider acceptance of best practices)
- Web-based interface for net admins
 - Access limited to net admins and only for their own subnets
 - Template-based configurations
 - Queries for existing ACLs
- Access to router logs (?)

syslog and ACL "hits"

Costs

- Development Time
 - One week for script development and database population
 - One day for testing and staff training
 - One day for documentation and marketing
- On-going Costs
 - Consumed staff time
 - Existing router maintenance costs
 - No significant financial impact on infrastructure
- We offer this for free! No cost recovery.

For more information

- http://www.cit.cornell.edu/computer/security/edgeacls/
- Email: security@cornell.edu

Thank You