
Introduction to
Shell Scripting with Bash

Charles Jahnke
Research Computing Services

Information Services & Technology

Topics for Today

● Introductions
● Basic Terminology
● How to get help
● Command-line vs. Scripting
● Variables
● Handling Arguments
● Standard I/O, Pipes, and Redirection
● Control Structures (loops and If statements)
● SCC Job Submission Example

Research Computing Services

Research Computing Services (RCS)

A group within Information Services & Technology at Boston University provides
computing, storage, and visualization resources and services to support research
that has specialized or highly intensive computation, storage, bandwidth, or
graphics requirements.

Three Primary Services:

● Research Computation
● Research Visualization
● Research Consulting and Training

Breadth of Research on the Shared Computing Cluster (SCC)

Me

● Research Facilitator and Administrator

● Background in biomedical engineering, bioinformatics, and IT systems

● Offices on both CRC and BUMC
○ Most of our staff on the Charles River Campus, some dedicated to BUMC

● Contact: help@scc.bu.edu

mailto:help@scc.bu.edu

You

● Who has experience programming?

● Using Linux?

● Using the Shared Computing Cluster (SCC)?

Basic Terminology

The Command-line

[username@scc1 ~]$

Username Hostname Current Directory

Prompt Command Line
(input)

The line on which commands are typed and passed to the shell.

The Shell

● The interface between the user and the operating system

● Program that interprets and executes input

● Provides:

○ Built-in commands

○ Programming control structures

○ Environment variables

Script

● A text file containing a series of commands that an interpreter (like shell) can
read and run.

Interpreter

● A program that runs commands without compiling (directly from text)

Bash

The name of the most common shell interpreter, it’s language, and syntax.

The default shell on SCC and

What we are going to use today

Teach a Programmer to Fish
How to Get Help

Manuals (“man”) and Info (“info”)

File: bash.info, Node: Top, Next: Introduction, Prev: (dir), Up: dir

Bash Features

This text is a brief description of the features that are present in the

Bash shell (version 4.2, 28 December 2010).

 This is Edition 4.2, last updated 28 December 2010, of 'The GNU Bash

Reference Manual', for 'Bash', Version 4.2.

 Bash contains features that appear in other popular shells, and some

features that only appear in Bash. Some of the shells that Bash has

borrowed concepts from are the Bourne Shell ('sh'), the Korn Shell

('ksh'), and the C-shell ('csh' and its successor, 'tcsh'). The

following menu breaks the features up into categories based upon which

one of these other shells inspired the feature.

 This manual is meant as a brief introduction to features found in

Bash. The Bash manual page should be used as the definitive reference

on shell behavior.

* Menu:

scc1 $ man bash
BASH(1) General Commands Manual BASH(1)

NAME

 bash - GNU Bourne-Again SHell

SYNOPSIS

 bash [options] [file]

COPYRIGHT

 Bash is Copyright (C) 1989-2011 by the Free Software

 Foundation, Inc.

DESCRIPTION

 Bash is an sh-compatible command language interpreter

 that executes commands read from the standard input or

 from a file. Bash also incorporates useful features from

 the Korn and C shells (ksh and csh).

 Bash is intended to be a conformant implementation of the

 Shell and Utilities portion of the IEEE POSIX specifica-

 tion (IEEE Standard 1003.1). Bash can be configured to

 be POSIX-conformant by default.

scc1 $ info bash

Bash “help”
● Bash comes with built in help functionality

○ Just type “help”

● Read deeper into help chapters by
searching specific keywords
○ “help [keyword]”

● “Help help”
● “Help for”

scc1 $ help

GNU bash, version 4.2.46(2)-release (x86_64-redhat-linux-gnu)

These shell commands are defined internally. Type `help' to see this list.

Type `help name' to find out more about the function `name'.

Use `info bash' to find out more about the shell in general.

Use `man -k' or `info' to find out more about commands not in this list.

A star (*) next to a name means that the command is disabled.

 job_spec [&] history [-c] [-d offset] [n] >

 ((expression)) if COMMANDS; then COMMANDS; [>

 . filename [arguments] jobs [-lnprs] [jobspec ...] o>

 : kill [-s sigspec | -n signum >

 [arg...] let arg [arg ...]

 [[expression]] local [option] name[=value] .>

 alias [-p] [name[=value] ...]> logout [n]

 bg [job_spec ...] mapfile [-n count] [-O origin>

 bind [-lpvsPVS] [-m keymap] [-> popd [-n] [+N | -N]

 ...

 ..

 .

 function name { COMMANDS ; } o> variables - Names and meaning>

 getopts optstring name [arg] wait [id]

 hash [-lr] [-p pathname] [-dt]> while COMMANDS; do COMMANDS; >

 help [-dms] [pattern ...] { COMMANDS ; }?

scc1 $ help help

help: help [-dms] [pattern ...]

 Display information about builtin commands.

 Displays brief summaries of builtin commands. If PATTERN is

 specified, gives detailed help on all commands matching PATTERN,

 otherwise the list of help topics is printed.

 Options:

 -d output short description for each topic

 -m display usage in pseudo-manpage format

 -s output only a short usage synopsis for each topic matching

 PATTERN

 Arguments:

 PATTERN Pattern specifiying a help topic

 Exit Status:

 Returns success unless PATTERN is not found or an invalid option is

given.

scc1 $ help for

for: for NAME [in WORDS ...] ; do COMMANDS; done

 Execute commands for each member in a list.

 The `for' loop executes a sequence of commands for each member in a

 list of items. If `in WORDS ...;' is not present, then `in "$@"' is

 assumed. For each element in WORDS, NAME is set to that element, and

 the COMMANDS are executed.

 Exit Status:

 Returns the status of the last command executed.

for ((: for ((exp1; exp2; exp3)); do COMMANDS; done

 Arithmetic for loop.

 Equivalent to

 ((EXP1))

 while ((EXP2)); do

 COMMANDS

 ((EXP3))

 done

 EXP1, EXP2, and EXP3 are arithmetic expressions. If any expression is

 omitted, it behaves as if it evaluates to 1.

 Exit Status:

 Returns the status of the last command executed.

Documentation

The official documentation is very good!

So good, you might even see some examples
copied directly into this tutorial.

https://www.gnu.org/software/bash

https://www.gnu.org/software/bash

Command-line vs. Scripting

Recap of Command Line vs Script Definitions

Command-line

● Has a prompt
● Not saved
● One line at a time
● The text based way to interact with a computer

Script

● No prompt
● Is a file
● Still runs one line at a time
● Runs all the lines in file without interaction

Example CLI Task: Organize some downloaded data
[username@scc1 ~]$ cd /projectnb/scv/jpessin/introToBashScripting_sampleScripts/cli_script

[username@scc1 cli_script]$ ls data

LICENSE sample1.chr1.bam sample1.chr4.bam sample2.chr1.bam sample2.chr4.bam sample3.chr1.bam sample3.chr4.bam

README sample1.chr2.bam sample1.chr5.bam sample2.chr2.bam sample2.chr5.bam sample3.chr2.bam sample3.chr5.bam

report.html sample1.chr3.bam sample1.log sample2.chr3.bam sample2.log sample3.chr3.bam sample3.log

[username@scc1 cli_script]$ cd data

[username@scc1 data]$ mkdir sample1

[username@scc1 data]$ mv sample1.chr*.bam > sample1

-bash: sample1: Is a directory

[username@scc1 data]$ mv sample1.chr*.bam sample1/

[username@scc1 data]$ cd sample1/

[username@scc1 sample1]$ ls sample1.* > sample1.fileset.txt

[username@scc1 sample1]$ less sample1.fileset.txt

[username@scc1 sample1]$ mv sample1.fileset.txt ../

[username@scc1 sample1]$ cd ..

[username@scc1 data]$ ls

LICENSE sample1 sample2.chr1.bam sample2.chr4.bam sample3.chr1.bam sample3.chr4.bam

README sample1.fileset.txt sample2.chr2.bam sample2.chr5.bam sample3.chr2.bam sample3.chr5.bam

report.html sample1.log sample2.chr3.bam sample2.log sample3.chr3.bam sample3.log

Example CLI Task (cont.)
[username@scc1 data]$ ls

LICENSE sample1 sample2.chr1.bam sample2.chr4.bam sample3.chr1.bam sample3.chr4.bam

README sample1.fileset.txt sample2.chr2.bam sample2.chr5.bam sample3.chr2.bam sample3.chr5.bam

report.html sample1.log sample2.chr3.bam sample2.log sample3.chr3.bam sample3.log

[username@scc1 data]$ mkdir sample2

[username@scc1 data]$ mv sample2.chr*.bam sample2

[username@scc1 data]$ mkdir sample3

[username@scc1 data]$ mv sample3.chr*.bam sample3

[username@scc1 data]$ ls

LICENSE report.html sample1.fileset.txt sample2 sample2.log sample3.fileset.txt sample4 sample4.log

README sample1 sample1.log sample2.fileset.txt sample3 sample3.log sample4.fileset.txt

[username@scc1 data]$ mkdir logs

[username@scc1 data]$ mv sample*.log logs/

[username@scc1 data]$ rm LICENSE

rm: remove regular empty file 'LICENSE'? y

[username@scc1 data]$ rm README

rm: remove regular empty file 'README'? y

[username@scc1 data]$ ls

logs sample1 sample2 sample3 sample4

report.html sample1.fileset.txt sample2.fileset.txt sample3.fileset.txt sample4.fileset.txt

Command-line Interface

● Difficult to read

● One-directional / Non-reproducible

○ What did I do last time?

○ What should someone do next time?

● Manual

● Potentially error-prone

● Wasn’t really that fast

Write a Script Instead

#!/bin/bash

Take datadir from input
datadir=$1

cd $datadir

Detect number of samples
numSamples=$(ls sample*.bam | cut -d. -f1 | uniq | wc -l)

Reorg sample files into sample dirs
for sampleNum in $(seq 1 $numSamples); do

mkdir sample$sampleNum
mv sample$sampleNum*.chr*.bam sample$sampleNum/
ls sample$sampleNum > sample$sampleNum.filelist.txt

done

Organize Logs
mkdir logs
mv sample*.log logs/

Remove extra files
rm -f LICENSE

rm -f README

scc1 $ ls data

LICENSE sample1.chr5.bam sample2.log

README sample1.log sample3.chr1.bam

report.html sample2.chr1.bam sample3.chr2.bam

sample1.chr1.bam sample2.chr2.bam sample3.chr3.bam

sample1.chr2.bam sample2.chr3.bam sample3.chr4.bam

sample1.chr3.bam sample2.chr4.bam sample3.chr5.bam

sample1.chr4.bam sample2.chr5.bam sample3.log

scc1 $ bash reorgData.sh data/

scc1 $ ls data

logs sample1 sample2 sample3

report.html sample1.files sample2.files sample3.files

reorgData.sh

Running Scripts: Interpreter

● Simply call the “bash” interpreter
and provide the script.

● It will read line by line as if on the
command line

This is what we did previously.

scc1 $ ls data

LICENSE sample1.chr5.bam sample2.log

README sample1.log sample3.chr1.bam

report.html sample2.chr1.bam sample3.chr2.bam

sample1.chr1.bam sample2.chr2.bam sample3.chr3.bam

sample1.chr2.bam sample2.chr3.bam sample3.chr4.bam

sample1.chr3.bam sample2.chr4.bam sample3.chr5.bam

sample1.chr4.bam sample2.chr5.bam sample3.log

scc1 $ bash reorgData.sh data/

scc1 $ ls data

logs sample1 sample2 sample3

report.html sample1.files sample2.files sample3.files

Running Scripts: Executable

Files can be made “executable” on their own.

To do this, we need to:

● Provide interpreter information in script
● Set executable permission
● Run the script directly ./script

scc1 $ head -n 1 reorgData.sh

#!/bin/bash

scc1 $ ls -l

drwxr-sr-x 6 cjahnke scv 32768 Jun 1 2:36 data

-rw-r--r-- 1 cjahnke scv 453 Jun 1 2:37 reorgData.sh

scc1 $ chmod +x reorgData.sh

scc1 $ ls -l

drwxr-sr-x 6 cjahnke scv 32768 Jun 1 2:36 data

-rwxr-xr-x 1 cjahnke scv 453 Jun 1 2:37 reorgData.sh

scc1 $./reorgData.sh

scc1 $

Variables

Environment Variables

● Contain environment configuration

○ Typically for the shell, but other programs can
set their own.

● Created automatically when logged in.

● Scope is global

○ Other programs can read/use them to know
how to behave.

● Type “env” to see the full list.

scc1 $ echo $USER

cjahnke

scc1 $ echo $PWD

/usr3/bustaff/cjahnke

scc1 $ echo $HOSTNAME

scc1

scc1 $ env
MODULE_VERSION_STACK=3.2.10

XDG_SESSION_ID=c8601

HOSTNAME=scc1

TERM=xterm

SHELL=/bin/bash

HISTSIZE=1000

TMPDIR=/scratch

SSH_CLIENT=128.197.161.56 55982 22

...

Shell Variables

● A character string to which a user
assigns a value.

● Not real data, but could point to
data (lists, file, device, etc)

● Shell variables have limited scope

○ only current shell

● Can create, assign, and delete.

scc1 $ myvar=foo

scc1 $ echo $myvar

foo

scc1 $ myvar=bar

scc1 $ echo $myvar

bar

scc1 $ unset myvar

scc1 $ echo $myvar

scc1 $

scc1 $ myvar=foo

scc1 $ bash

scc1 $ echo $myvar

scc1 $ exit

exit

scc1 $ echo $myvar

foo

Choosing a Variable Name and Style
Variable names cannot have spaces. Pick and try to stick to a style.

● CAPITALS
○ Environment variables and OS shell variables are usually capitalized.

● lowercase
○ Effective for simple scripts, hard to read if names are complicated (e.g. $mynewvar).

● Under_scores
○ Common alternative to spaces (e.g. $my_new_var). Bash does not accept hyphens.

● camelCase
○ Capitalization patterns are concise and easy enough to read (e.g $myNewVar).

Using variables: The dollar sign and quotes

● No quote

○ Simple. Bash shell interprets variable

● Escape Special Character (“\”)

○ The “$” is special and indicates a variable in
Bash. The “\” escapes special behavior and
instructs bash to treat it as a character.

● Single Quote

○ Literal. Exactly the contents.

● Double Quote

○ Interpreted. Allows variable expansion.

scc1 $ hi=Hello

scc1 $ echo $hi

Hello

scc1 $ echo \$hi

$hi

scc1 $ echo '$hi'

$hi

scc1 $ echo "$hi"

Hello

Using Variables: Strings, spaces, and quotes

Spaces are special too
● We can escape (“\”) the special behavior
● Or we can quote the string.

○ Single or double quotes are effectively the
same if there is nothing to be interpreted.

scc1 $ hello0=Hello World

-bash: World: command not found

scc1 $ echo $hello0

Hello

scc1 $ hello1=Hello\ World

scc1 $ echo $hello1

Hello World

scc1 $ hello2='Hello World'

scc1 $ echo $hello2

Hello World

scc1 $ hello3="Hello World"

scc1 $ echo $hello3

Hello World

Build up simple script

echo Hello World

myScriptVar=bar

echo “My working directory \$PWD

prints $PWD”

echo $myScriptVar

scc1 $ bash myscript.sh

Hello World

My working directory $PWD prints

/usr3/bustaff/cjahnke/bash

bar

scc1 $ echo $myScriptVar

scc1 $

myscript.sh

Handling Arguments

Command-line Arguments in Bash

The command used to start a bash script passes the command information to the
script as variables when it runs. This information is accessed through numbered
variables where the “#” is the index of the information.

● $0 → The script name
● $1 → The first argument following the script name
● $2 → The second argument following the script name
● ...

Note: only 9 arguments are captured; after that, you need to be creative.

Simple Command Line Argument Example

#!/bin/bash

$0 is the script itself

echo '$0' is "$0"

$1 is the first argument

echo '$1' is "$1"

$2 is the second argument

echo '$2' is "$2"

scc1 $

scc1 $./cli_arg.sh arg1 “2 items” 3rd

$0 is ./cli_arg.sh

$1 is arg1

$2 is 2 items

cli_arg.sh Terminal

Standard I/O, Pipes, and Redirection

Jumping into Standard I/O

There are 3 standard methods of communicating with a program

* What they are actually used for is entirely dependent on the program

Name Shorthand Purpose * Stream ID

Standard In Stdin Command line inputs 0

Standard Out Stdout Normal output 1

Standard Error Stderr Error or other information 2

written files

Process

 Keyboard

Display

0

1

2

TERMINAL

STDOUT

STDERR

Terminal

Standard Out & Standard Error
scc1 $ man

What manual page do you want?

scc1 $ man 1> man.stdout 2> man.stderr

scc1 $ cat man.stdout

scc1 $ cat man.stderr

What manual page do you want?

scc1 $ man

What manual page do you want?

stdout

stderr

Pipes

● Pipes (“|”) redirect the standard output of a command to the standard input of
another command.

● Example:

[cjahnke@scc1 ~]$ cat sample.vcf | cut -f1,2,7 | sort -k3

 cat sample.vcf | cut -f1,2,7 | sort -k3

#CHROM POS ID REF ... #CHROM POS FILTER #CHROM POS FILTER
3 14370 rs6054257 G ... 3 14370 PASS 1 1110696 PASS
2 17330 . T ... 2 17330 q10 3 1230237 PASS
1 1110696 rs6040355 A ... 1 1110696 PASS 3 14370 PASS
3 1230237 . T ... 3 1230237 PASS 6 1234567 PASS
6 1234567 microsat1 GTCT ... 6 1234567 PASS 2 17330 q10

Redirection

● The “>” symbol redirects the standard output (default) of a command to a file.

● Example:

[cjahnke@scc1 ~]$ cat sample.vcf | cut -f1,2,7 | sort -k3 > sorted.txt

Redirection Description

COMMAND < filename Input - Directs a file

COMMAND << stream Input - Directs a stream literal

COMMAND <<< string Input - Directs a string

COMMAND > filename Output - Writes output to file (will “clobber”)

COMMAND >> filename Output - Appends output to file

● A < file Use the contents of file as input for A
● B > file Create a new file and write the standard out of B there (overwrites)
● C >> file If file exists append standard out of C to file, if file does not exist create it
● D 2> file Create a new file and write the standard err of D there
● E &> file Combined the standard error and standard out and write to file
● F | G Use the standard out of F as the standard in of G
● H |& K Combine the standard out and err of H and use as the standard in of K
● M | tee file Write the standard out of M to both the terminal and to file

Many characters use or modify this behavior

scc1 $ module -t avail |& tee allmodules | grep python

Control Structures
Loops, Conditionals, and Tests

Loops

● for
○ Expand expr and execute commands once for each member in

the resultant list, with name bound to the current member.

● while
○ Execute consequent-commands as long as test-commands has

an exit status of zero.

● until
○ Execute consequent-commands as long as test-commands has

an exit status which is not zero.

for ((expr)) ; do

commands

done

while test-commands; do

consequent-commands

done

until test-commands; do

consequent-commands

done

For Loop (Simple)
● A simple countdown

● Components:
○ The “i” becomes our iterating variable “$i”
○ List expansion of {5..1} is 5 4 3 2 1
○ “echo” command prints line
○ “sleep” command waits for 1 second

● Take each item, one at a time, perform
operation in loop. Advance until end of list

scc1 $ \

for i in {5..1}; do

 echo "$i seconds left"

 sleep 1s

done

5 seconds left

4 seconds left

3 seconds left

2 seconds left

1 seconds left

scc1 $

For Loop (In Practice)
Let’s iterate on something more interesting

● Input Items can be called with $@
scc1 $ bash forloop1.sh a b c

a

b

c

scc1 $ bash forloop1.sh a "b c" d

a

b c

d

#!/bin/bash

This loop iterates over input items

for input in "$@"; do
 echo "$input"
done

For Loop (In Practice)
#!/bin/bash

This script takes one argument, a
directory, and prints the basename of
contents.

echo $0
echo ""
echo $1

for doc in "$1"/*; do
 shortname=$(basename $doc)
 # now that we have the name, we
 # could do something interesting
 echo " $shortname"
done

scc1 $ bash forloop2.sh ~/bash

forloop2.sh

/usr3/bustaff/cjahnke/bash

 forloop1.sh

 forloop2.sh

 myscript.sh

Syntax - Best Practice

for content in *

do

echo “$content”

done

For content in *

do echo “$content”

done

for content in *; do

echo “$content”

done

For content in *; do echo “$content” ; done

https://google.github.io/styleguide/shell.xml#Loops

https://google.github.io/styleguide/shell.xml#Loops

Conditional Constructs

● test “[[..]]”
○ Evaluates expression inside brackets and returns 0 (TRUE) or 1 (FALSE)

● if
○ Executes commands following conditional logic.

● case
○ Selectively execute commands corresponding to pattern matching.
○ Like if/then statements, but usually used for parsing inputs and determining flow.

● select
○ Used for creating user input/selectable menus, executes commands on selection.

● Arithmetic “((..))”
○ Will perform arithmetic. Use caution, precision can be tricky.

Tests “[[..]]”
Double square brackets return an exit status of
0 (true) or 1* (false) depending on the
evaluation of the conditional expression inside.

● Standard Test
○ [[expression]]

● Negative Test
○ [[! expression]]

● AND Test
○ [[expression1 && expression2]]

● OR Test
○ [[expression1 || expression2]]

scc1 $ [[1 == 1]] ; echo $?

0

scc1 $ [[1 == 2]] ; echo $?

1

scc1 $ [[! cow == dog]]; echo $?

0

scc1 $ [[1 == 2 && cow == cow]]; echo $?

1

scc1 $ [[1 == 1 || cow == dog]]; echo $?

0

* Anything >=1 is considered false. Programs may have many possible exit codes. 0 is success, everything else is a descriptive error.

If Statement (Simple)
● An “if“ statement executes commands

based on conditional tests.

● The “then” keyword begins commands to
execute if conditional is true.

● An “elif” keyword can extend an if
statement for multiple conditions.

○ The tests are performed in order.
Only the first true test is run.

● A catch-all “else” keyword is used to
execute commands if no conditions are met.

● The “fi” keyword closes the statement

if test-commands; then

consequent-commands;

elif more-test-commands; then

more-consequents;

else

alternate-consequents;

fi

If-Then in Practice
Let’s say we are in a directory with the following
objects:

● TheJungleBook.txt
● d
● newfile.sh
● test.qsub

I can iterate through all the files.

If it is a file, echo that it is a file

If it is a directory, echo that it is a directory

scc1 $ ls

TheJungleBook.txt d newfile.sh test.qsub

scc1 $ \

for contents in *; do

 if [[-f "$contents"]] ; then

 echo "$contents" is a file

 elif [[-d "$contents"]]; then

 echo $contents is a dir

 else

 echo "not identified"

 fi

done

TheJungleBook.txt is a file

d is a dir

newfile.sh is a file

test.qsub is a file

practice some loops

First get the sample files

$ cp /projectnb/scv/bash_examples.tar .

$ tar xf bash_examples.tar

$ cd bash_examples

$ ls

answer_scripts numbers rebuildSentence

Each file has a word from a sentence, try to
reconstruct the sentence

Each file has a word from a sentence, try to
reconstruct the sentence
for task in {0..13}; do

cat "$task".txt >> file

done

tr '\n' ' ' < file

Each file has a word from a sentence, try to
reconstruct the sentence
for task in {0..13}; do

cat “$task”.txt >> file

done

tr '\n' ' ' < file

returns:
Scripting in bash makes many many things much easier, like putting this
sentence together.

SCC Job Submission Example

using a loop to submit jobs on SCC with names.
step 1 create a file with the names $ for file in *_1.txt; do echo "$file" >>

filenames.txt; done
$ cat filenames.txt
AG_1.txt
aA_1.txt
ab_1.txt
ac_1.txt
ad_1.txt
af_1.txt
ag_1.txt
ah_1.txt
ai_1.txt
aj_1.txt
order_1.txt
outof_1.txt

using a loop to submit jobs on SCC with names.
step 1 create a file with the names

step 2 get the number of filenames

$ for file in *_1.txt; do echo "$file" >>
filenames.txt; done
$ cat filenames.txt
AG_1.txt
aA_1.txt
ab_1.txt
ac_1.txt
ad_1.txt
af_1.txt
ag_1.txt
ah_1.txt
ai_1.txt
aj_1.txt
order_1.txt
outof_1.txt

$ wc -l filenames.txt

12 filenames.txt

using a loop to submit jobs on SCC with names.
step 1 create a file with the names

step 2 get the number of filenames

step 3 create a submission script that
 accepts inputs (remember to chmod +x)

#!/bin/bash -l

#$ -P tutorial

value1=$(cat "$1")
value2=$(cat "$2")

valueNew=$(($value1 + $value2))

echo "$1" Has a value of $value1
echo "$2" Has a value of $value2
echo These sum to $valueNew

using a loop to submit jobs on SCC with names.
step 1 create a file with the names

step 2 get the number of filenames

step 3 create a submission script that
 accepts inputs (remember to chmod +x)

step 3a (if practical) test it locally

step 3b test a single qsub

$./fileadder.qsub aA_1.txt aA_2.num
aA_1.txt Has a value of 30565
aA_2.num Has a value of 16775
These sum to 47340

$ qsub ./fileadder.qsub aA_1.txt aA_2.num
Your job 6853253 ("fileadder.qsub") has been
submitted

using a loop to submit jobs on SCC with names.
step 1 create a file with the names

step 2 get the number of filenames

step 3 create a submission script that
 accepts inputs (remember to chmod +x)

step 3a (if practical) test it locally

step 3b test a single qsub

step 4 Create a file to loop the submission

step 4a set up for a test the loop

#!/bin/bash -l

for i in {1..12}; do

name=$(sed -n -e "$i p" filenames.txt)
base=$(basename "$name" _1.txt)

 #qsub fileadder.qsub "$base"_1.txt "$base"_2.num

fileadder.qsub "$base"_1.txt "$base"_2.num
echo $i "$base"

done

using a loop to submit jobs on SCC with names.
step 1 create a file with the names

step 2 get the number of filenames

step 3 create a submission script that
 accepts inputs (remember to chmod +x)

step 3a (if practical) test it locally

step 3b test a single qsub

step 4 Create a file to loop the submission

step 4a set for a test loop

step 4b reset for submissions

#!/bin/bash -l

for i in {1..12}; do

name=$(sed -n -e "$i p" filenames.txt)
base=$(basename "$name" _1.txt)

 qsub fileadder.qsub "$base"_1.txt "$base"_2.num

fileadder.qsub "$base"_1.txt "$base"_2.num
echo $i "$base"

done

using a loop to submit jobs on SCC with names.
step 1 create a file with the names

step 2 get the number of filenames

step 3 create a submission script that
 accepts inputs (remember to chmod +x)

step 3a (if practical) test it locally

step 3b test a single qsub

step 4 Create a file to loop the submission

step 4a set for a test loop

step 4b reset for submissions

step 5 submit

$./submit_fileadder
Your job 6853078 ("fileadder.qsub") has been submitted
Your job 6853079 ("fileadder.qsub") has been submitted
Your job 6853080 ("fileadder.qsub") has been submitted
Your job 6853081 ("fileadder.qsub") has been submitted
Your job 6853082 ("fileadder.qsub") has been submitted
Your job 6853083 ("fileadder.qsub") has been submitted
Your job 6853084 ("fileadder.qsub") has been submitted
Your job 6853085 ("fileadder.qsub") has been submitted
Your job 6853086 ("fileadder.qsub") has been submitted
Your job 6853087 ("fileadder.qsub") has been submitted
Your job 6853088 ("fileadder.qsub") has been submitted
Your job 6853089 ("fileadder.qsub") has been submitted

Getting Help

How to Get Help

Support Website
● http://rcs.bu.edu (http://www.bu.edu/tech/support/research/)

Upcoming Tutorials:
● http://rcs.bu.edu/tutorials

Email (Submit a Ticket):
● help@scc.bu.edu

Email Direct:
● cjahnke@bu.edu

http://rcs.bu.edu
http://www.bu.edu/tech/support/research/
http://rcs.bu.edu/tutorials
mailto:help@scc.bu.edu
mailto:cjahnke@bu.edu

Questions?

Research Computing Services Website
http://rcs.bu.edu

RCS Tutorial Evaluation

http://rcs.bu.edu/eval

http://rcs.bu.edu
http://scv.bu.edu/survey/tutorial_evaluation.html

