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Running Python for the Tutorial

 If you have an SCC account, log on and use Python 

there.

 Run:

 Note that the spyder program takes a while to load!

module load python/3.6.2

spyder & 

unzip /projectnb/scv/python/NumSciPythonCode_v0.1.zip



Links on the Rm 107 Terminals

 On the Desktop open the folder:

Tutorial Files  RCS_Tutorials  Tutorial Files 

 Copy the whole Numerical and Scientific Computing in Python folder to 

the desktop or to a flash drive.
 When you log out the desktop copy will be deleted!



Run Spyder

 Click on the Start Menu in 

the bottom left corner and 

type:    spyder

 After a second or two it will 

be found.  Click to run it.

 Be patient…it takes a while 

to start.
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Python’s strengths

 Python is a general purpose language.  
 Unlike R or Matlab which started out as specialized languages

 Python lends itself to implementing complex or specialized algorithms for 

solving computational problems.

 It is a highly productive language to work with that’s been applied to 

hundreds of subject areas.



Extending its Capabilities

 However…for number crunching some aspects of the language are not 

optimal:
 Runtime type checks

 No compiler to analyze a whole program for optimizations

 General purpose built-in data structures are not optimal for numeric calculations

 “regular” Python code is not competitive with compiled languages (C, C++, 

Fortran) for numeric computing.

 The solution: specialized libraries that extend Python with data structures 

and algorithms for numeric computing.
 Keep the good stuff, speed up the parts that are slow!
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NumPy

 NumPy provides optimized data structures and basic routines for 

manipulating multidimensional numerical data.

 Mostly implemented in compiled C code.

 Can be used with high-speed numeric libraries like Intel’s MKL

 NumPy underlies many other numeric and algorithm libraries available for 

Python, such as:
 SciPy, matplotlib, pandas, OpenCV’s Python API, and more



Ndarray – the basic NumPy data type

 NumPy ndarray’s are:

 Typed

 Fixed size (usually)

 Fixed dimensionality

 An ndarray can be constructed from:

 Conversion from a Python list, set, tuple, or similar data structure

 NumPy initialization routines

 Copies or computations with other ndarray’s

 NumPy-based functions as a return value



ndarray vs list

 List:

 General purpose

 Untyped

 1 dimension

 Resizable

 Add/remove elements anywhere

 Accessed with [ ] notation and 

integer indices

 Ndarray:

 Intended to store and process 

(mostly) numeric data

 Typed

 N-dimensions

 Chosen at creation time

 Fixed size

 Chosen at creation time

 Accessed with [ ] notation and 

integer indices



List Review

 The list is the most common data structure in Python.

 Lists can:
 Have elements added or removed

 Hold any type of thing in Python – variables, functions, objects, etc.

 Be sorted or reversed

 Hold duplicate members

 Be accessed by an index number, starting from 0.

 Lists are easy to create and manipulate in Python.

# Make a list

x = []

# Add something to it

x.append(1)

x.append([2,3,4])

print(x)

--> [1, [2, 3, 4]]



List Review

Operation Syntax Notes

Indexing – starting from 0 x[0]  ‘a’

x[1]  ‘b’

Indexing backwards from -1 x[-1]  3.14

x[-3]  ‘a’

Slicing x[start:end:incr]

x[0:2]  [‘a’,’b’]

x[-1:-3:-1]  [3.14,’b’]

x[:]  [‘a’,’b’,3.14]

Slicing produces a COPY of 

the original list!

Sorting x.sort()   in-place sort

sorted(x)  returns a new sorted list

Depending on list contents a 

sorting function might be req’d

Size of a list len(x)

x = ['a','b',3.14]



List Implementation

 A Python list mimics a linked list data structure 
 It’s implemented as a resizable array of pointers to Python objects for performance reasons.

 x[1]  get the pointer at index 1  resolve pointer to the Python object 

in memory  get the value from the object



x

x = ['a','b',3.14]

Pointer to a 

Python object

Pointer to a 

Python object

Pointer to a 

Python object

'a'

'b'

3.14

Allocated 

anywhere in 

memory

https://en.wikipedia.org/wiki/Linked_list


 The basic data type is a class called ndarray.

 The object has:
 a data that describes the array (data type, number of dimensions, number of elements, memory 

format, etc.) 

 contiguous array in memory containing the data.

 y[1] check the ndarray data type  retrieve the value at offset 1 in the 

data array

NumPy ndarray

import numpy as np

# Initialize a NumPy array

# from a Python list

y = np.array([1,2,3])

https://docs.scipy.org/doc/numpy/reference/arrays.html

y

Data description

(integer, 3 elements, 1-D)

1 2 3

Values are 

physically 

adjacent in 

memory



dtype

 Every ndarray has a dtype, the type 

of data that it holds.

 This is used to interpret the block of 

data stored in the ndarray.

 Can be assigned at creation time:  

 Conversion from one type to 

another is done with the astype() 

method:

a = np.array([1,2,3])

a.dtype  dtype('int64')

b = a.astype('float')

b.dtype  dtype('float64')

c = np.array([-1,4,124],

dtype='int8')

c.dtype --> dtype('int8')

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.types.html


Ndarray memory notes

 The memory allocated by an ndarray:

 Storage for the data:  N elements  *  bytes-per-element 

 4 bytes for 32-bit integers, 8 bytes for 64-bit floats (doubles), 1 byte for 8-bit characters etc.

 A small amount of memory is used to store info about the ndarray (~few dozen bytes)

 Data storage is compatible with external libraries
 C, C++, Fortran, or other external libraries can use the data allocated in an ndarray directly without 

any conversion or copying.



ndarray from numpy initialization

 There are a number of initialization routines.  They are mostly copies of 

similar routines in Matlab. 

 These share a similar syntax: 

 zeros – everything initialized to zero.

 ones – initialize elements to one.

 empty – do not initialize elements

 identity – create a 2D array with ones on the diagonal and zeros elsewhere

 full – create an array and initialize all elements to a specified value

 Read the docs for a complete list and descriptions.

function([size of dimensions list], opt. dtype…)

https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html


ndarray from a list

 The numpy function array creates a new array from any data structure 

with array like behavior (other ndarrays, lists, sets, etc.)

 Read the docs!  

 Creating an ndarray from a list does not change the list.

 Often combined with a reshape() call to create a multi-dimensional array.

 Open the file ndarray_basics.py in Spyder so we can check out some 

examples.

x = [1,2,3]

y = np.array(x)

https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html


ndarray memory layout

 The memory layout (C or Fortran 

order) can be set:
 This can be important when dealing with 

external libraries written in R, Matlab, etc.

 Row-major order: C, C++, Java, C#, 

and others 

 Column-major order: Fortran, R, 

Matlab, and others

X = np.ones([3,5],order='F')

# OR...

# Y is C-ordered by default

Y = np.ones([3,5])

# Z is a F-ordered copy of Y

Z = np.asfortranarray(Y)

https://en.wikipedia.org/wiki/Row-_and_column-major_order



ndarray indexing

 ndarray indexing is similar to 

Python lists, strings, tuples, etc. 

 Index with integers, starting from 

zero.

 Indexing N-dimensional arrays, 

just use commas:
array[i,j,k,l] = 42

oneD = np.array([1,2,3,4])

twoD = oneD.reshape([2,2])

twoD  array([[1, 2],

[3, 4]])

# index from 0

oneD[0]  1

oneD[3]  4

# -index starts from the end

oneD[-1]  4

oneD[-2]  3

# For multiple dimensions use a comma

# matrix[row,column]

twoD[0,0]  1

twoD[1,0]  3



ndarray slicing

 Syntax for each dimension (same 

rules as lists):
 start:end:step

 start:    from starting index to end

 :end   start from 0 to end (exclusive of 

end)

 :  all elements.

 Slicing an ndarray does not make 

a copy, it creates a view to the 

original data.

 Slicing a Python list creates a 

copy.

Look at the file slicing.py

y = np.arange(50,300,50)

y --> array([ 50, 100, 150, 200, 250])

y[0:3] --> array([ 50, 100, 150])

y[-1:-3:-1] --> array([250, 200])

x = np.arange(10,130,10).reshape(4,3)

x --> array([[ 10, 20, 30],

[ 40, 50, 60],

[ 70, 80, 90],

[100, 110, 120]])

# 1-D returned!

x[:,0] --> array([ 10, 40, 70, 100])

# 2-D returned!

x[2:4,1:3] --> array([[ 80, 90],

[110, 120]])



ndarray math

 By default operators work 

element-by-element

 These are executed in 

compiled C code.

a = np.array([1,2,3,4])

b = np.array([4,5,6,7])

c = a / b

# c is an ndarray

print(type(c))  <class 'numpy.ndarray'>

a * b  array([ 4, 10, 18, 28])

a + b  array([ 5, 7, 9, 11])

a - b  array([-3, -3, -3, -3])

a / b  array([0.25, 0.4, 0.5, 0.57142857])

-2 * a + b  array([ 2, 1, 0, -1])



 Vectors are applied 

row-by-row to matrices

 The length of the vector 

must match the width of 

the row.

a = np.array([2,2,2,2])

c = np.array([[1,2,3,4],

[4,5,6,7],

[1,1,1,1],

[2,2,2,2]])  array([[1, 2, 3, 4],

[4, 5, 6, 7],

[1, 1, 1, 1],

[2, 2, 2, 2]])

a + c  array([[3, 4, 5, 6],

[6, 7, 8, 9],

[3, 3, 3, 3],

[4, 4, 4, 4]])



Linear algebra multiplication 

 Vector/matrix multiplication can 

be done using the dot() and 

cross() functions.

 There are many other linear 

algebra routines!

x = [1, 2, 3]

y = [4, 5, 6]

np.cross(x, y)  array([-3, 6, -3])

a = [[1, 0], [0, 1]]

b = np.array([[4, 1], [2, 2]])

np.dot(a, b)  array([[4, 1],

[2, 2]])

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html


NumPy I/O

 When reading files you can use standard Python, use lists, allocate 

ndarrays and fill them.

 Or use any of NumPy’s I/O routines that will directly generate ndarrays.

 The best way depends on the structure of your data. 

 If dealing with structured numeric data (tables of numbers, etc.) NumPy is 

easier and faster.  

 Docs:  https://docs.scipy.org/doc/numpy/reference/routines.io.html

https://docs.scipy.org/doc/numpy/reference/routines.io.html


A numpy and matplotlib example

 numpy_matplotlib_fft.py is a short example on using numpy and matplotlib

together.

 Open numpy_matplotlib_fft.py

 Let’s walk through this…



Numpy docs

 As numpy is a large library we can only cover the basic usage here

 Let’s look that the official docs:

https://docs.scipy.org/doc/numpy/reference/index.html

 As an example, computing an average:

https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean

https://docs.scipy.org/doc/numpy/reference/index.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean


Some numpy file reading options

 .npz and .npy file formats (cross-platform 

compatible) :
 .npy files store a single NumPY variable in a binary 

format.

 .npz files store multiple NumPy Variables in a file.

 h5py is a library that reads HDF5 files into 

ndarrays

 The I/O routines allow for flexible reading from 

a variety of text file formats

numpy.save # save .npy

numpy.savez # save .npz

# ditto, with compression

numpy.savez_compressed

numpy.load # load .npy

numpy.loadz # load .npz

Tutorial: 
https://docs.scipy.org/doc/nu
mpy/user/basics.io.html

https://docs.scipy.org/doc/numpy/user/basics.io.html
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SciPy

 SciPy builds on top of 

NumPy.

 Ndarrays are the basic data 

structure used.

 Libraries are provided for:

 Comparable to Matlab

toolboxes.

• physical constants and conversion factors
• hierarchical clustering, vector quantization, K-

means
• Discrete Fourier Transform algorithms
• numerical integration routines
• interpolation tools
• data input and output
• Python wrappers to external libraries
• linear algebra routines
• miscellaneous utilities (e.g. image reading/writing)
• various functions for multi-dimensional image 

processing
• optimization algorithms including linear 

programming
• signal processing tools
• sparse matrix and related algorithms
• KD-trees, nearest neighbors, distance functions
• special functions
• statistical functions



scipy.io

 I/O routines support a wide variety of file formats:

Software Format 

name

Read? Write?

Matlab .mat Yes Yes

IDL .sav Yes No

Matrix Market .mm Yes Yes

Netcdf .nc Yes Yes

Harwell-Boeing

(sparse matrices)

.hb Yes Yes

Unformatted Fortran files .anything Yes Yes

Wav (sound) .wav Yes Yes

Arff

(Attribute-Relation File Format) 

.arff Yes No

https://docs.scipy.org/doc/scipy/reference/io.html


scipy.integrate

 Routines for numerical integration

 With a function object:
 quad: uses the Fortran QUADPACK algorithm

 romberg:  Romberg algorithm

 newton_cotes: Newton-Cotes algorithm

 And more…

 With fixed samples:
 trapz: Trapezoidal rule

 simps: Simpson’s rule

https://en.wikipedia.org/wiki/Trapezoidal_rule

න
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https://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate


scipy.integrate

 Open integrate.py and let’s look at examples of fixed samples and 

function object integration.

 trapz docs: 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.tra

pz.html#scipy.integrate.trapz

 romberg docs.  Passing functions as arguments is a common pattern in 

SciPy: 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ro

mberg.html#scipy.integrate.romberg

https://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.trapz.html#scipy.integrate.trapz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romberg.html#scipy.integrate.romberg


Using SciPy

 Think about your code and what sort of algorithms you’re using:
 Integration, linear algebra, image processing, etc.

 See if an appropriate algorithm exists in SciPy before trying to write 

your own.

 Read the docs – many functions have large numbers of optional 

arguments.

 Understand the algorithms!



OpenCV

 The Open Source Computer 

Vision Library

 Highly optimized and mature C++ 

library usable from C++, Java, and 

Python.

 Cross platform: Windows, Linux, 

Mac OSX, iOS, Android

• Image Processing 
• Image file reading and writing 
• Video I/O 
• High-level GUI 
• Video Analysis 
• Camera Calibration and 3D Reconstruction 
• 2D Features Framework 
• Object Detection 
• Deep Neural Network module 
• Machine Learning 
• Clustering and Search in Multi-Dimensional Spaces 
• Computational Photography 
• Image stitching 

https://www.opencv.org/


OpenCV vs SciPy

 For imaging-related operations and many linear algebra functions there is a 

lot of overlap between these two libraries.

 OpenCV is frequently faster, sometimes significantly so.

 The OpenCV Python API uses NumPy ndarrays, making OpenCV algorithms 

compatible with SciPy and other libraries. 

https://docs.opencv.org/4.0.1/d6/d00/tutorial_py_root.html


OpenCV vs SciPy

 A simple benchmark: Gaussian and median 

filtering a 1024x671 pixel image of the CAS 

building.

 Gaussian: radius 5, median: radius 9.

 Timing: 2.4 GHz Xeon E5-2680  (Sandybridge)

Operation Function Time (msec) OpenCV speedup

Gaussian
scipy.ndimage.gaussian_filter

cv2.GaussianBlur

85.7

23.2

3.7x

Median
scipy.ndimage.median_filter

cv2.medianBlur

1,780

79.2 

22.5x

See: image_bench.py

https://commons.wikimedia.org/wiki/File:Boston_University_College_of_Arts_and_Sciences.jpg


When NumPy and SciPy aren’t fast enough

 Auto-compile your Python code with the numba and numexpr libraries

 Use the Intel Python distribution

 Re-code critical paths with Cython

 Combine your own C++ or Fortran code with SWIG and call from Python



numba

 The numba library can translate portions of your Python code and compile 

it into machine code on demand.

 Achieves a significant speedup compared with regular Python.

 Compatible with numpy ndarrays.

 Can generate code to execute automatically on GPUs.

http://numba.pydata.org/


numba

 The @jit decorator is used to 

indicate which functions are 

compiled.

 Options:
 GPU code generation

 Parallelization

 Caching of compiled code

 Can produce faster array code 

than pure NumPy statements.

from numba import jit

# This will get compiled when it's 

first executed

@jit

def average(x, y, z):

return (x + y + z) / 3.0

# With type information this one gets

# compiled when the file is read.

@jit (float64(float64,float64,float64))

def average_eager(x, y, z):

return (x + y + z) / 3.0



numexpr

 Another acceleration library for 

Python. 

 Useful for speeding up specific 

ndarray expressions.
 Typically 2-4x faster than plain NumPy

 Code needs to be edited to move 

ndarray expressions into the 

numexpr.evaluate function:

import numpy as np

import numexpr as ne

a = np.arange(10)

b = np.arange(0, 20, 2)

# Plain NumPy

c = 2 * a + 3 * b

# Numexpr

d = ne.evaluate("2*a+3*b")

https://github.com/pydata/numexpr


Intel Python

 Intel now releases a customized build of Python 2.7 and 3.6 based on 

their optimized libraries.

 Can be installed stand-alone or inside of Anaconda: 

https://software.intel.com/en-us/distribution-for-python

 Available on the SCC:  module avail python2-intel  (or python3-intel)

https://software.intel.com/en-us/distribution-for-python


Intel Python

 In RCS testing on various projects the Intel Python build is always at least 

as fast as the regular Python and Anaconda modules on the SCC.
 In one case involving processing several GB’s of XML code it was 20x faster!

 Easy to try: change environments in Anaconda or load the SCC module.

 Can use the Intel Thread Building Blocks library to improve multithreaded 

Python programs:

python -m tbb parallel_script.py



Cython

 Cython is a superset of the Python language.

 The additional syntax allows for C code to be auto-generated and 

compiled from Python code.

 This can make mixing Python, Cython, and C code (or libraries) very 

straightforward.

 A mature library that is widely used.

https://cython.org/


You feel the need for speed…

 Auto-compilation systems like numba, numexpr, and Cython:
 all provide access to higher speed code 

 minimal to significant code changes 

 You’re still working in Python or Python-like code

 Faster than NumPy which is also much faster than plain Python for numeric calculation

 For the fastest implementation of algorithms, optimized and well-written C, 

C++, and Fortran codes cannot be beat 
 In most cases.

 You can write your own compiled code and link it into Python via Cython

or the SWIG tool.  Contact RCS for help!

http://www.swig.org/

