BOSTON

UNIVERSITY

MATLAB Parallel Computing Toolbox

Shaohao Chen
Research Computing Services
Information Services and Technology

Boston University

Why using Matlab Parallel Computing Toolbox (PCT)?

& To accelerate a MATLAB program, it 1s necessary to parallelize 1.

& Take advantages of high-performance computing (HPC) resources, such as multi-core
CPUs, GPUs, and computer clusters.

& Boston University (BU) Shared Computing Cluster (SCC) 1s an HPC cluster with over
11,000 CPU processors and over 250 GPUs.

& MATLAB site license 1s available to all BU users. (Unlimited on SCC).
& The PCT can be used not only on HPC clusters or but also on regular laptops/desktops.

& The skills you learn today should enable you to solve bigger problems faster using
MATLAB.

Outline

& Start up MATALB on BU SCC
¢ Parallelize Matlab codes

v Implicit parallelism

v Explicit parallelism
v Using GPU

Protected by U.S. patents. See vuwaw.mathwo
‘\ The MathWorks

Access to BU SCC resources

¢ Log in:

$ ssh -X username(@scc2.bu.edu

& Interactive session (for working interactively on compute nodes):
$ qrsh # Start an interactive session

$ qrsh -pe omp 4 # Request 4 CPU cores

$ qrsh -1 gpus=1 # Request one GPU and one CPU core

¢ Use module to load Matlab:
$ moduleavail | grep matlab # See all available versions

$ module load matlab # Set up environment variables

Graphic platform

L2 S U [grindries (] (S} Preferen
Open Variable w un and Time
Mew New Open |- Compare Import yout [Set Path equest Support
Script - hd Data Workspace [77 ClearWorkspace ~ |7 Clear Commands = -
FILE LE CODE ENV MENT

)} v home »

Workspace

O] B [

0 Use VNC to speed up .
graphical interface. Sy

https://www.bu.edu/tech/support/research/system-usage/getting-started/remote-desktop-vnc/

M-file

& An m-file 1s a simple text file where you can place MATLAB commands.
& Save your works
& Convenient for debugging

& Run directly. Pre-compiling 1s unnecessary.

Editor - untitled*

PUELISH

c— [=] [GlFindFiles i < = [~ I =l -
L) lDJ (LE ' Lil Run Section
[1=] Compare + Comme A G
MNew Open Save Run Runand Runand |5, Advance
- - v [(FFrint ~ Indent |=| 5 _{ Fin ~ Time Advance
EDIT NAWISATE EREAKFOINTS RUN

untitled™ =

a root of the polynomial %3 - 2% - 5,

nf;

Text platform

$ matlab -nodisplay % Work 1n text interface. Does not display any graph.

$ matlab -nodesktop % Program in text interface. Pop out graphs when necessary.
« Many Linux commands (prefix an exclamation mark) are available within Matlab

platform, such as:
cd, Is, pwd, lcp, Irm, Imyv, !cat, Ivim, !diff, and !grep

s Edit M-file and run the program:

>> lvim mfilename.m % edit in text window
create a new or open an existing m-file in graphical window

>> edit mfilename.m %
>> open mfilename.m % open an existing m-file in graphical window
>> run mfilename.m % run the program

>> mfilename % run the program

Parallelize Matlab codes

& Parallel computing:

run multiple tasks by different workers simultaneously.

& Matlab parallel computing toolbox (PCT)
v Implicit parallelism: automatic multi-threaded vector operations
v Explicit parallelism: parpool, parfor, spmd

v Using GPU: gpuArray, arrayfun

Parallel Computing

Amdahl’s Law

a Parallel computing 1s a type of

computation in which many calculations!Eii_.....
. _ LA

. ‘ Parallel Portion
- 500
BEERVEREE
X — 0%
EEEEN AR
| il

are carried out

Q of a parallel program,

p: number of processors/cores,

a: fraction of the program that 1s serial.

* Figure from: https://en.wikipedia.org/wiki/Parallel_computing

Two types of Parallel Computers

Non-Cache-Coherent Interconnect

Shared Memory

Cache-Coherent} Interconnect

& Implicit (multithreaded) parallelism 1n Matlab 1s only for multiple cores on one node.

& Explicit parallelism in Matlab can be implemented on either single node or multiple nodes.

Graphic Processing Unit (GPU)

¢ GPU 1s a device attached to a CPU-based system.

& Computer program can be parallelized and accelerated on GPU.

& CPU and GPU has separated memory. Data transfer between CPU and GPU i1s required.
¢ Many Matlab functions are enabled on GPU.

Implicit parallelism: multithreaded operations

¢ Many built-in operators or functions are implicitly multi-threaded, such as,

Basic: +, -, .*, ./, ., * 7~ MAX, MIN, SUM, SORT, ABS

Elementary math: ATAN2, COS, CSC, SEC, SIN, TAN, EXP, POW2, SQRT, ABS, LOG, LOG10
Linear algebra: INV, LINSOLVE, \, LU, QR, EIG, SVD

Data analysis: FFT, CONV2

v

¢ By default on BU SCC, these operations automatically use the requested number of CPU cores
in a batch job.

¢ Use function maxNumCompThreads(n) to limit the number of cores to be used.

Multithreaded Matrix Multiplication

n=7000;
A=randn(n); B=randn(n); % initialize data

C=zeros(n); D=zeros(n);

tic % start measuring time
C=A*B; % multithreaded by default

toc % end measuring time

maxNumCompThreads(1); % enforce using 1 thread
tic
D=A*B; % single thread

toc

parpool

& parpool enables the full functionality of the parallel language features (e.g. parfor and spmd)
by creating a special job on a pool of workers, and connecting the MATLAB client to the
parallel pool.

v Client/master: runs serial work. Interactive with users (e.g. for input, output, serial parts).

v Workers/labs: run parallel work. Typically each worker uses one CPU core.

¢ Syntax
parpool(n) % n 1s the number of workers (a user-defined variable).
% parallel codes
delete(gcp)
v On SCC, the default number of workers equals the number of CPU cores on the node.

v gcp (get current parpool) is a built-in variable.

parfor (1): Basics

& A simple implementation of parallel for-loop.
& Work load is distributed evenly and automatically based on loop index.

& Data starts on client (base workspace), automatically copy input data to workers’ workspaces,
and copy output data back to client when necessary calculation is done.

& Details are intentionally opaque to user. There are many additional restrictions as to what can
and cannot be done in a parfor loop — this is the price of simplicity.

¢ Syntax ¢ An example:
parfor 1i=1:n
% code block

end

x=zeros(1,12);

parfor i=1:12
t = getCurrentTask(); disp(t.ID); % Dispaly worker 1D
x(1)=10%*1; % Computation is done by workers simutaneously

end

parfor (2): Rules for variables

& For the parfor loop to work, variables inside the loop must all fall into one of these
categories:

Loop
Sliced
Broadcast

Reduction

Temporary

A loop index variable for arrays
An array whose segments are manipulated on different loop iterations
A variable defined before the loop and is used inside the loop but never modified

Accumulates a value across loop iterations, regardless of iteration order

Variable created inside the loop, but not used outside the loop

parfor (3): Modify variables

n=12; s=0;
a=100; b=50;
X = rand(1,n);
parfork=1:n
a = 2%k; % k - loop index; a - temporary var: the value 1s not carried out of the loop
Y(k) = X(k) + a*n; % X, Y -sliced var; n - broadcast var
b=5; %Db-broadcast var:
s=s+a; % s-reduction var: : the value 1s carried out of the loop

end

& Question: what are the values of variables a, b and s after the parfor loop is done?

parfor (4): Reduction

& Reduction variables appear on both sides of an assignment statement, such as:
X = X op expr
X = expr op X (except subtraction)

v The operation op could be +, -, *, .* &, |

® A failed case: not a reduction: ® A successful case: a reduction:
x=1;
parfor 1= 1:10

X=1-X;

parfor (5): Data dependency

¢ Data dependency: loop iterations must be independent

» A failed case: * A successful case:
n=10; n=10;
a=l:m; a= 1l
parfor 1= 2:n parfor 1= 1:n
a(1) = a(i-1)*2; a(1) = a(1)*2;
end end
% This may return unexpected results. % Each a(i) is read and modified by a

worker. Different indexes are
independent.

parfor (6): Loop index

¢ Loop index must be consecutive integers.

parfori=1:100 % OK
parfori=-20:20 % OK
parfori=1:2:25 % No
parfori=-7.5:7.5 % No
A=[37-264-49 37]; parfori1=find(A >0) % No

parfor (7): Nested loops and functions

& The body of a parfor-loop

v

v

v

v

can contain for-loops, including further nested for-loops.
can not contain another parfor-loop.
can make reference to a regular function but not a nested function.

can call a function that contains another parfor-loop, which runs in parallel
only if the outer parfor-loop runs serially (e.g. specifying one worker).

& Refer to:

https://www.mathworks.com/help/distcomp/nesting-and-flow-in-parfor-loops.html

Compute the value of P1

¢ Compute the value of P1 using the integral formula

® The serial code

n=2000000000; dx=1/n; pi1=0;
fori=1:n
x = (1-0.5) * dx;
p1 = p1 + 4./(1.+x*x);
end
format long

pi=p1*dx

4.0/(1+x3?)

F(x)

4.0 1=

2.0}

0.0

1.0

Exercise 1

© Compute the value of P1 using parfor

1) Parallelize the code using parfor . Check whether all variables 1n
the parfor region fall into one of the valid categories.

11) Compare the performances of the serial and the parallel codes.

spmd (1): Basics

¢ spmd = Single Program Multiple Data
Explicitly and/or automatically...
v divide work and data between workers/labs

v communicate between workers/labs

¢ Syntax
% execute on client/master out of spmd region
spmd

% execute on all workers within spmd region
end

% execute on client/master out of spmd region

spmd (2): Number and index of workers

U Get an array chunk on each worker using built-in variables numlabs and labindex

parpool(4)
spmd

disp(numlabs); % numlabs — total number of workers

disp(labindex); % labindex — index of workers

N=24;

A=1:2:N;

I = find(A > N*(labindex-1)/numlabs & A <= N*labindex/numlabs)
end

delete(gcp)

Pmode: Interactive Parallel Command Window

O Workers receive commands entered in the Parallel Command Window, process them,
and send the command output back to the Parallel Command Window.

O Launch pmode

>>pmode start4 % Request for 4 workers

d Execute commands in pmode (at prompt P>>)

P>> x = 2 * labindex

P>> y = numlabs

P>> if labindex ==
z=x*10+y

end

spmd (3): Send and receive data

O labSendReceive(ID_send_to, ID_receive_from, send_data) - Send data to one worker and
receive data from another worker.

O Example: circularly shift data between neighbor workers

spmd
DataSent=labindex;
right = mod(labindex, numlabs) + 1; % the worker on the right
left = mod(labindex - 2, numlabs) + 1; % the worker on the left

% Send data to the right and receive another data from left
DataRcv = labSendReceive(right, left, DataSent)

end

spmd (4): Broadcast data

] labBroadcast - Broadcast data from one worker to all other workers.

spmd
source=1;
if labindex == source
data=1:12;
% send data from the source worker to other workers, and save it in shared_data on the source worker.
shared_data = labBroadcast(source, data)
else
% receive data on other workers and save it in share_data
shared_data = labBroadcast(source)
end

end

spmd (5): Composite variable and distributed array

0 Use Composite, distributed out of spmd region

a=>5; % Create a normal variable on client
b=Composite(); c=Composite(); % Create composite variables b and ¢ on client
A=ones(4,4); A=distributed(A); % Create a matrix A on client and distribute it to workers
spmd
X=a % Variable a 1s copied to workers and assigned to x. The local variable x 1s not accessible from client.
y = labindex % Variable y is a local variable and is not accessible from client.
b = labindex; % Composite variable b is modified by workers and is accessible from client
¢ = magic(labindex+2); % Composite variable can be a matrix too.
B=A%*2; % Computation is distributed to workers. The result matrix B is accessible from client.
end

b{:} % Output composite variable on client
c{:} % Output composite variable on client

B % Output distributed matrix on client

Distributed Matrix multiplication

O The distributed function can be used for parallel computing without using spmd.

A=randn(n); B=randn(n);

a=zeros(n); b=zeros(n); c=zeros(n);

parpool(4)

a = distributed(A); % Distributes A, B. a, b are distributed

b = distributed(B);

tic

c=a*b; % Run the multiplication in parallel by workers. c 1s distributed.
toc

delete(gcp)

spmd (6): Codistributed matrices

U Use codistributed within spmd region

n=1000; A =rand(n); B =rand(n); % create matrices A and B on client
spmd
u = codistributed(A, codistributorld(1)); % distribute A by row
v = codistributed(B, codistributor1d(2)); % distribute B by column, so that A and B are codistributed.
w=u*v; % run in parallel by workers; the result w is distributed.
p = rand(n, codistributor1d(1)); % create distributed matrix p on workers
q = codistributed.rand(n); % create distributed matrix q on workers; p and q are codistributed

s=p*q; % run in parallel by workers; the result s is distributed

end
x=3+w % use w directly on client

y=2%s % use s directly on client

Exercise 2

& Compute the value of P1 (using spmd)
1) Write a parallel code for computing the value of P1 using spmd .

11) Compare the performances of the serial, the parfor parallel and the spmd
parallel codes.

(Hints: Distribute the grid to workers and compute local sum on all workers,
then use the function gplus to compute the total sum.)

A Solution to Exercise 2

n=5000000000; dx=1/n; total sum=Composite(); % total_sum will be modified in and used out of spmd region
tic % start measuring time
spmd % start spmd region
m=n/numlabs; % number of grid points on each worker
length=1/numlabs; % grid length on each worker
startx = (labindex -1)*length; 9% starting x of the current worker
endx = labindex*length; % ending x of the current worker
x = startx : dx : endx; % the portion of x held by the current worker
local_sum=0; % set 0 before accumulating
local_sum =sum(4. /(1. +x.*x)); % compute local sum on the current lab
total_sum = gplus(local_sum, 1); % add up all local sums and store it on lab 1
end % end spmd region
toc % end measuring time
format long

pi=total_sum{1}*dx % get the value of total_sum from worker 1 and output the result on client

Using Matlab on GPU (1)

& For many problems, GPUs achieve better performance than CPUs.
¢ MATLAB GPU utilities are growing.

¢ Matrix operations on GPU:

n = 6400; % matrix size, better to be multiple of GPU warp-size (i.e. 32).
a = rand(n); % cerate n * n random matrix a on base workspace (host)

A = gpuArray(a); % A 1s created on GPU. The value of a 1s copied to A.

B = gpuArray.rand(n); % Create random matrix directly on GPU

C=A*B; % Matrix multiplication i1s computed on GPU

c = gather(C); % bring result back to base workspace on CPU/host

Using Matlab on GPU (2)

¢ Run built-In functions on a GPU.

&

¢ Examples: Run fast-fourier-transform on GPU:

Ga = rand(1000,'single','gpuArray");
Gftt = fft(Ga);

Gb = (real(Gfft) + Ga) * 6;

G = gather(Gb);

whos

https://www.mathworks.com/help/distcomp/run-built-in-functions-on-a-gpu.html

Using Matlab on GPU (3)

& arrayfun: Apply function to each element of array on GPU.

n=10;

a = rand(n,1,'gpuArray'); % create random arrays on GPU

b = rand(n,1,'gpuArray');

¢ = rand(n,1,'gpuArray');

R = arrayfun(@(x,y,z)(x.*y+z), a, b, ¢); % compute arrayfun on GPU
results = gather(R) % bring result back to base workspace on CPU /host

Using Matlab on GPU (4)

& Use CUDA functions in Matlab.
& A CUDA C function for adding two vectors.

__global__ void add2(double * v1, const double * v2) {
int 1dx = threadIdx.x;
vl[1dx] += v2[1dx];

& Compile the CUDA code to get an assembly-level ptx file
$ module load cuda/9.1

$ nvce -ptx vecadd.cu

Using Matlab on GPU (5)

® A Matlab code to call the CUDA function.

% Create GPU CUDA kernel object from PTX and CU code

k = parallel.gpu. CUDAKernel('addvec.ptx','addvec.cu','add?2");

N = 128;

k. ThreadBlockSize = N; % Array size: better to be multiple of 32.

inl = ones(N,1,'gpuArray'); % A GPU array with all elements equal to one.

in2 = rand(N,1,'gpuArray'); % A GPU array with random values between 0 and 1.
result = feval(k,in1,1n2); % Run the kernel function on GPU and return the result.

disp(result) % Display the result.

Further Information

¢ MathWorks Web:
v MATLAB Parallel Computing Toolbox documentation:

¢ BU Research Computing Services (RCS) Web:
v MATLAB Parallel Computing Toolbox:

& A book: Accelerating MATLAB Performance: 1001 tips to speed up MATLAB programs by Yair M. Altman

¢ RCS help: :

http://www.mathworks.com/help/distcomp/index.html
http://www.bu.edu/tech/support/research/software-and-programming/common-languages/matlab/pct/
mailto:help@scc.bu.edu
mailto:shaohao@bu.edu

