Introduction to Python
Part 2

v0.4

Research Computing Services
Information Services & Technology

BOSTON
UNIVERSITY

Tutorial Outline — Part 2

[- Lists]

= Tuples and dictionaries

= Modules

= numpy and matplotlib modules
= Script setup

= Classes

= Development notes

BOSTON
UNIVERSITY

Lists

= A Python list is a general purpose 1-dimensional container for variables.
= l.e.Itis arow, column, or vector of things

= Lots of things in Python act like lists or use list-style notation.
= Variables in a list can be of any type at any location, including other lists.

= Lists can change in size: elements can be added or removed

BOSTON
UNIVERSITY

Making a list and checking it twice...

i ' list_ 1 =
= Make a list with [] brackets. ist 1=1]
list_1.append(1)
list 1.append('A string!")

= Append with the append() function list 1.append([])

Create a list with some Initial elements

list 2 = [4, 5, -23.8+4.15, 'cat']

Create a list with N repeated elements .
list 3

10 * [42]

Try these out yourself!
Edit the file in Spyder and run it.
Add some print() calls to see the lists.

BOSTON
UNIVERSITY

List functions

"append”,
‘clear’,
‘copy
‘count’,
"extend’,
"index”,
‘insert’,
‘pop’,
= Let’s try out a few... ‘remove’,
reverse’,
"sort’]

= Try dir(list_1)

= Like strings, lists have a number of
built-in functions

= Also try the len() function to see how
many things are in the list: len(list_1)

BOSTON
UNIVERSITY

List Indexing

= Elements in a list are accessed by an index number.

= |ndex #'s start at 0.

= LISt X=['a'l 'b'l 'C'I 'd' I'e']
= Firstelement: x[0] =2 'a'
= Nth element: x[2] =2 'c'
= Lastelement: x[-1]=2> 'e'
= Next-to-last: x[-2]1=2> 'd4d’

BOSTON
UNIVERSITY

List Slicing

= Slice syntax:

BOSTON
UNIVERSITY

X[start:end:step]

x=['a', 'b', 'c¢', 'd" ,'e']
x[0:1] = ['a']

x[0:2] = ['a','b']

x[-3:1 =2 ['c¢', 'd', 'e']

Third from the end to the end
x[2:5:2] =2 ['c', 'e']

The start value is inclusive, the end value is exclusive.

Start is optional and defaults to O.
Step Is optional and defaults to 1.

Leaving out the end value means “go to the end”
Slicing always returns a new list copied from the existing list

List assignments and deletions

= Lists can have their elements overwritten or deleted (with the del) command.
X=['a', lbl, 'C', ldl ,lel]

x[0] = =3.14 > x is now [-3.14, 'b', 'c', 'd', 'e']

del x[-1] 2 x is now [-3.14, 'b', 'c', 'd']

BOSTON
UNIVERSITY

* Go to the menu File->New File
] « Enter your list commands there
DIY Lists Give the file a name when you save it
» Use print() to print out results

= |n the Spyder editor try the following things:

= Assign some lists to some variables. a=[1,2,3] b =3*xyz]
= Try an empty list, repeated elements, initial set of elements

= Addtwo lists: a+ b What happens?

Try list indexing, deletion, functions from dir(my_list)

= Try assigning the result of a list slice to a new variable

BOSTON
UNIVERSITY

More on Lists and Variables

X = [Ialj[]JI:IJ—j"i‘i]

= Open the sample file list_variables.py y = x
but don'’t run it yet!

print(‘x: ¥s addr of x: %s' % (x,id(x)))

= What do you think will be printed? prant(Ty: ks addr of y: Bt & (y,1d(y)))

x[8] = -100

print("x: ¥s® ¥ x)
print(‘y: %s' ¥ y)

BOSTON
UNIVERSITY

Variables and Memory Locations

. : X = [Ialj[]JI:IJ—j"i‘ﬂ']

= Variables refer to a value stored in memory.
= y = x does not mean “make a copy of the y o= x

list x and assign it to y” it means “make a

copy of the memory location in x and assign

ittoy” —

y X >l rar | 1 | e | 3.14

= xis not the list it’s just a reference to it. y /

= This is how all objects in Python are
handled.

BOSTON
UNIVERSITY

z=x[:]
: : z[8] = "frog’
COpylng Lists print(x: ¥s addr of x: %s" % (x,id(x)))
print{‘z: ¥s addr of z: %s" % (z,id(z)))

= How to copy (2 ways...there are more!):
=y = x[:] OF y=1list (x)

= |n list_variables.py uncomment the code at the bottom and run it.

BOSTON
UNIVERSITY

While Loops
_ o while True:
= While loops have a condition and a print(“looping!™)
code block.
= the indentation indicates what's in the while loop. a=10
= The loop runs until the condition is false. while a > @:
_ _ print(a)
= The break keyword will stop a while a =1
|OOp running. my list=['a’,'b",'c",'d","e"]
1=0
_ _ while i < len(my list):
= |n the Spyder edit enter in some print(my_list[i])
loops like these. Save and run them AN
one at a time. What happens with break

the 1St loop?

BOSTON
UNIVERSITY

For loops

= for loops are a little different. They
loop through a collection of things.

= The for loop syntax has a collection

and a code block.

= Each element in the collection is accessed in
order by a reference variable

= Each element can be used in the code block.

= The break keyword can be used in for
loops too.

BOSTON
UNIVERSITY

collection

In-loop reference
variable for each
collection element

for x in [1,2,3]:
print(x)

\

The code block

Processing lists element-by-element

= A for loop Is a convenient way to process every element in a list.

= There are several ways:

= Loop over the list elements

= Loop over a list of index values and access the list by index
= Do both at the same time

= Use a shorthand syntax called a list comprehension

= Open the file looping_lists.py
= Let's look at code samples for each of these.

BOSTON
UNIVERSITY

The range() function

= The range() function auto-generates sequences of numbers that can be
used for indexing into lists.

= Syntax: range(start, exclusive end, increment)
= range(0,4) - produces the sequence of numbers 0,1,2,3
= range(-3,15,3) - -3,0,3,6,9,12

= range(4,-3,2) =2 4,2,0,-2

= Try this: print(range(4))

BOSTON
UNIVERSITY

numbers.txt

Lists With Loops 38,83,37,21,98
50,53,55,37,97
39,7,81,87,82
18,83,066,82,47
56,64,9,39,83
= This is an example of reading a file ..etc..

Into a list. The file is shown to the

right, numbers.txt

= Open the file read_a file.py

« Let’s walk through this line-by-
line using Spyder

= We want to read the lines in the file
Into a list of strings (1 string for each
line), then extract separate lists of e read a file low mem.pyis a
the odd and even numbers. modification that uses less memory.

BOSTON
UNIVERSITY

Tutorial Outline — Part 2

= Lists
[- Tuples and dictionaries]
= Modules
= numpy and matplotlib modules
= Script setup
= Classes
= Development notes

BOSTON
UNIVERSITY

Tuples

ok
Il

108,20, 30

= Tuples are lists whose elements can't
b = (10,20,30)

be changed.
= Like strings they are immutable c = [1@,20,30]
= Indexing (i i i ion) | d = tuple(c)
g (including slice notation) is
the same as with lists.
e = list(d)

BOSTON
UNIVERSITY

Return multiple values from a function

= Tuples are more useful than they
might seem at first glance.

= They can be easily used to return
multiple values from a function.

= Python syntax can automatically

unpack a tuple return value. \

BOSTON
UNIVERSITY

def min_max(x):
" Return the maximum and minimum
values of x "'°
minval = min(x)
maxval = max(x)

return minval,maxval

a = [18,4,-2,32.1,11]

val = min_max(a)
min_a = val[@]
max_a = val[l]

min_a, max_a = min_max(a)

Dictionaries

= Dictionaries are another basic Python data type that are tremendously
useful.

Create a dictionary with a pair of curly braces:
x = {}
= Dictionaries store values and are indexed with keys

Create a dictionary with some initial values:

x ={'a key':55, 100:"a value', 4.1:[5,6,7]}

BOSTON
UNIVERSITY

Dictionaries

= Values can be any Python thing

= Keys can be primitive types (hnumbers), strings, tuples, and some custom
data types

= Basically, any data type that is immutable
= Lists and dictionaries cannot be keys but they can stored as values.

= [ndex dictionaries via keys:
x['a key'] = 55
x[100] =2 'a value'

BOSTON
UNIVERSITY

Try Out Dictionaries

= Create a dictionary in the Python console or

Spyder editor. i[;]{i 3 3
x[18.2] = []
= Add some values to it just by using a new key as _
an index. Can you overwrite a value? print(x)

= Try x.keys() and x.values()

= Try: del x[valid key] -> deletes a key/value
pair from the dictionary.

BOSTON
UNIVERSITY

Tutorial Outline — Part 2

= Lists
= Tuples and dictionaries
[- Modules]
= numpy and matplotlib modules
= Script setup
= Classes
= Development notes

BOSTON
UNIVERSITY

Modules

= Python modules, aka libraries or packages, add functionality to the core
Python language.

= The Python Standard Library provides a very wide assortment of functions

and data structures.
= Check out their Brief Tour for a quick intro.

= Distributions like Anaconda provides dozens or hundreds more

= You can write your own libraries or install your own.

BOSTON
UNIVERSITY

https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/stdlib.html

-
PyP|

= The Python Package Index is a central repository for Python software.
= Mostly but not always written in Python.

= A tool, pip, can be used to install packages from it into your Python setup.
= Anaconda provides a similar tool called conda

Number of projects (as of January 2019): 164,947

You should always do your due diligence when using software from a
place like PyPIl. Make sure it does what you think it's doing!

BOSTON
UNIVERSITY

https://pypi.org/

N
Python Modules on the SCC

= Python modules should not be confused with the SCC module command.

For the SCC there are instructions on how to install Python software for
your account or project.

= Many SCC modules provide Python packages as well.
= Example: tensorflow, pycuda, others.

Need help on the SCC? Send us an email: help@scv.bu.edu

BOSTON
UNIVERSITY

http://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/install-packages/
mailto:help@scv.bu.edu

Importing modules import math

. . —math.sin(@.1
= The import command is used to load a z-math.sin(@.1)

module. print(z)
dir{math)
= The name of the module is prepended to _
function names and data structures in the help(math.ceil)
module.

= The preserves the module namespace

= This allows different modules to have the Try these out!
same function names — when loaded the
module name keeps them separate.

BOSTON
UNIVERSITY

Fun with import

= The import command can strip away the module name:

from math import *

= Or it can import select functions:

from math import cos
from math import cos, sqrt

= Or rename on the import:

from math import sin as pySin

BOSTON
UNIVERSITY

. . myfuncs.py
Fun with import Gt oo i Gen)
= The import command can also load
your own Python files.
odds = []
for elem in lst:
= The Python file to the right can be P 0dd 1f there's a remainder when
: i # dividing by 2.
used in another Python script: if elem % 2 !'= O:
odds.append (elem)
return odds

Don't use the .py ending
import myfuncs

x = [1,2,3,4]

y = myfuncs.get odds (x)

BOSTON
UNIVERSITY

myfuncs.py

ImpOrt detalls def get odds(lst):
= Python reads and executes a file
when the file e = 1]
= is opened directly: python somefile.py for elem in lst:

Odd 1f there's a remainder when
dividing by 2.
if elem % 2 '= 0:
odds.append (elem)
return odds

= |simported: import somefile

= Lines that create variables, call

functions, etc. are all executed. x = [1,2,3,4]
y = get odds (x)

print(y)
= Here these lines will run when it’s
Imported into another script!

BOSTON
UNIVERSITY

The name_ attribute

= Python stores object information in = Every file has one called __name___
hidden fields called attributes whose value depends on how the
file Is used.

in another Python
script
import myfuncs

__name__ > myfuncs
(1.e. the file name)

myfuncs.py

called directly . }
—>‘ name > main
python myfuncs.py — — —

BOSTON
UNIVERSITY

The name_ attribute

__nhame__ can be used to make a
Python scripts usable as a
standalone program and as
Imported code.

Now:

= python myfuncs.py =2 ___nhame__ has the
value of ° _main__’ and the code in the if
statement is executed.

= import myfuncs =2 ___hame__ is ‘myfuncs’
and the If statement does not run.

BOSTON
UNIVERSITY

myfuncs.py

def get odds(lst):

odds = []
for elem in 1st:
0dd if there's a remainder when
dividing by 2.
if elem % 2 '= 0:
odds.append (elem)
return odds

if name ==' main ':

[1,2,3,4]
y = get odds(x)
print(y)

X =

Tutorial Outline — Part 2

= Lists
= Tuples and dictionaries
= Modules
[* numpy and matplotlib modules|
= Script setup
= Classes
= Development notes

BOSTON
UNIVERSITY

A brief into to numpy and matplotlib

= numpy is a Python library that provides efficient multidimensional matrix
and basic linear algrebra
= The syntax is very similar to Matlab or Fortran

= matplotlib is a popular plotting library
= Remarkably similar to Matlab plotting commands!

= A third library, scipy, provides a wide variety of numerical algorithms:

= Integrations, curve fitting, machine learning, optimization, root finding, etc.
= Built on top of numpy

= |nvesting the time in learning these three libraries is worth the effort!!

BOSTON
UNIVERSITY

http://www.numpy.org/
https://matplotlib.org/
https://www.scipy.org/

numpy

= numpy provides data structures written in compiled C code

= Many of its operations are executed in compiled C or Fortran code, not
Python.

= Check out numpy_basics.py

BOSTON
UNIVERSITY

numpy datatypes

import numpy as np
x = np.array([1, 2])

Unlike Python lists, which are generic print(x.dtype)
containers, numpy arrays are typed. x = np.array([1.0, 2.0])

print(x.dtype)
= |f you don’t specify a type, numpy will assign

) x = np.array([1, 2], dtype=np.uint8)
one automatically.

print(x.dtype)

= A wide variety of numerical types are available.

= Proper assignment of data types can sometimes have a significant effect on
memory usage and performance.

BOSTON
UNIVERSITY

https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html

import numpy as np
Numpy Opera‘tOrS x = np.array([1, 2])
x =x+ 1
= Numpy arrays will do element-wise print(x)
arithmetic: + /-*** y=x / 2.5
print(y.dtype)
= Matrix (or vector/matrix, etc.) print(y)
multiplication needs the .dot() function. print(y * x)

print(Dot product: ¥s® % y.dot(x))

= Numpy has its own sin(), cos(), log(),
etc. functions that will operate element-
by-element on its arrays. Try these out!

BOSTON
UNIVERSITY

N
Indexing
= Numpy arrays are indexed much like Python lists

= Slicing and indexing get a little more complicated when using numpy
arrays.

= Open numpy_indexing.py

BOSTON
UNIVERSITY

Plotting with matplotlib

import matplotlib.pyplot as plt
plt.plot([5,6,7,8])

o 1t.show()
= Matplotlib is probably the most e
" i import numpy as np
popular.Python p|0ttmg Ilbrary plt.plot{np.arange(5)+3, np.arange(3) / 18.1)
= Plotly is another good one plt.show()

= |f you are familiar with Matlab
plotting then matplotlib is very
easy to learn!

Try these out!

= Plots can be made from lists,
tuples, numpy arrays, etc.

BOSTON
UNIVERSITY

https://plot.ly/d3-js-for-python-and-pandas-charts/

A tale of 2 subplots

CT density 1.0 4

=
2
o
= 0.5
3] 1.01
(7]
] 0.79
E 0.0 0.56 .0.?5
E 0.34 - 0.50
7] 0.11
- 0.25
B o5 0.11
. 0.34 - 0.00
0 1 2 3 4 5 -0.56 - —0.25
1.0 -0.79 - —0.50

-1.01 .—U.?E

Undamped
o
(==

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time (s)

= Some sample images from matplotlib.org

= A vast array of plot types in 2D and 3D are available in
this library.

BOSTON
UNIVERSITY

https://matplotlib.org/tutorials/introductory/sample_plots.html

A numpy and matplotlib example

= numpy_matplotlib_fft.py is a short example on using numpy and matplotlib
together.

= Open numpy_matplotlib_fft.py

= Let's walk through this...

BOSTON
UNIVERSITY

Tutorial Outline — Part 2

= Lists

= Tuples and dictionaries

= Modules

= numpy and matplotlib modules
[- Script setup]

= Classes

= Development notes

BOSTON
UNIVERSITY

Writing Quality Pythonic Code

= Cultivating good coding habits pays off in many ways:
= Easier and faster to write
= Easier and faster to edit, change, and update your code
= QOther people can understand your work

= Python lends itself to readable code
= |t's quite hard to write completely obfuscated code in Python.
= Exploit language features where it makes sense
= Contrast that with this sample of obfuscated C code.

= Here we’ll go over some suggestions on how to setup a Python script,
make it readable, reusable, and testable.

BOSTON
UNIVERSITY

https://www.ioccc.org/2018/algmyr/prog.c
https://www.ioccc.org/

Compare some Python scripts

= QOpen up three files and let’'s look at them.

A file that does...something...
= bad_code.py

= Same code, re-organized:
= good_code.py

= Same code, debugged, with testing code:
= good_code_testing.py

BOSTON
UNIVERSITY

import argparse

Command Iine arguments parser = argparse.ArgumentParser(description="Process some integers.')

parser.add _argument(integers’, metavar='N", type=int, nargs="+",
help="an integer for the accumulator”)

parser.add_argument(’ --sum’, dest="accumulate’, action='store const’,
const=sum, default=max,

- .1-r)/ t() Ei\/()i(j r]Eir(j'(:C)(jir]gJ fiIEB F)Eitr]ss, help="sum the integers (default: find the max)")

problem size ranges, etc. into your angs parser.parse args()
F)r()glréirT]_ print(args.accumulate(args.integers))

e $ python prog.py -h
= They can be specified at the command usage: prog.py [-h] [--sum] N [N ...]

Iir]EE Process some integers.

positional arguments:
M an integer for the accumulator

= Look at the argparse module, part of optional arguments:
tr]ee F))/tr]()r] EStEif](jéir(j l_it)rfir)/. -h, --help show this help message and exit

- -Sum sum the integers (default: find the max)

BOSTON
UNIVERSITY

https://docs.python.org/3/library/argparse.html

Tutorial Outline — Part 2

= Lists
= Tuples and dictionaries
= Modules
= numpy and matplotlib modules
= Script setup

[- Classes]
= Development notes

BOSTON
UNIVERSITY

class Student:

o s def init (self, name, buid, gpa):
ertlng YOur Own self.name = name
self.buid = buid
Classes self.gpa = gpa

def has 4 O(self):
return self.gpa==4.0

me = Student ("RCS Instructor","U0000000™,2.9)
print(me.has 4 0())

= Your own classes can be as simple or as complex as you need.

= Define your own Python classes to:
= Bundle together logically related pieces of data
= Write functions that work on specific types of data

= Improve code re-use
= Qrganize your code to more closely resemble the problem it is solving.

BOSTON
UNIVERSITY

When to use your own class

= A class works best when you’'ve done some planning and design work
before starting your program.

= This is a topic that is best tackled after you’re comfortable with solving
programming problems with Python.

= Some tutorials on using Python classes:

W3Schools: https://www.w3schools.com/python/python_classes.asp

Python tutorial: https://docs.python.org/3.6/tutorial/classes.html

BOSTON
UNIVERSITY

https://www.w3schools.com/python/python_classes.asp
https://docs.python.org/3.6/tutorial/classes.html

Tutorial Outline — Part 2

= Lists

= Tuples and dictionaries

= Modules

= numpy and matplotlib modules
= Script setup

= Classes

[- Development notes]

BOSTON
UNIVERSITY

.
Function, class, and variable naming

= There’s no word or character limit for names.
= [t's ok to use descriptive names for things.

= An IDE (like Spyder) will help you fill in longer names so there’s no extra
typing anyway.

= Give your functions and variables names that reflect their meaning.
= Once a program is finished it's easy to forget what does what where

BOSTON
UNIVERSITY

An example development process

= Work to develop your program.
= Do some flowcharts, work out algorithms, and so on.
= Write some Python to try out a few ideas.
= Get organized.

= Write a “1st draft” version that gets most of what's needed done.

1

= Move hard-coded values into the if _name =="_main__’section of your code.

= Once the code is testing well add command line arguments and remove hard-
coded values

= Finally (e.g. to run as an SCC batch job) test run from the command line.

BOSTON
UNIVERSITY

4 Run configuration per file 7 >

Select a run configuration:

Spyder command line arguments crmcn oo s -

Console

& Execute in current console

= Click on the Run menu and choose

Execute in 3 dedicated console

COI’]fIgUI’a'[IOH per f|le Execute in an external system terminal
. . General settings
m Debug Consoles Projects Tools View Help
» Run ES Clear all variables before execution
- Directly enter debugging when errors appear
BH rRun cell Ctrl+Return
0 _ Command line options:
E¥ Run cell and advance Shift+Return
n N . .
Re-run last cell Alt+Return | PIT L RE R
aF Run selection or current line Fg ® The directory of the file being executed
{; Re-run last script £6 The current working directory
. i))) The following directory: [—3
m—p | 4 Configuration per file... Ctri+Fa
@ Profile F10 External system termina
Interact with the Python console after execution
Command line options

Always show this dialog on a first file run

BOSTON = Enter command line arguments
oK Run Cancel

Python from the command line

= To run Python from the command line:

f)(bgregor@scc2:~ - (| >

[bgregor@scc2 ~]1% module load python/3.6.2
[bgregor@scc2 ~1$ python my script.py -N 30 -L 25 -o outfile.txt |

= Just type python followed by the script name followed by script arguments.

BOSTON
UNIVERSITY

Where to get help...

= The official Python Tutorial

Automate the Boring Stuff with Python

= Focuses more on doing useful things with Python, not focused on scientific computing

= Full Speed Python tutorial

= Contact Research Computing: help@scv.bu.edu

BOSTON
UNIVERSITY

https://docs.python.org/3/tutorial/index.html
http://automatetheboringstuff.com/
https://github.com/joaoventura/full-speed-python/releases/
mailto:help@scv.bu.edu

