
Introduction to Python

Part 2

v0.4

Research Computing Services

Information Services & Technology

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

Lists

 A Python list is a general purpose 1-dimensional container for variables.

 i.e. it is a row, column, or vector of things

 Lots of things in Python act like lists or use list-style notation.

 Variables in a list can be of any type at any location, including other lists.

 Lists can change in size: elements can be added or removed

Making a list and checking it twice…

 Make a list with [] brackets.

 Append with the append() function

 Create a list with some initial elements

 Create a list with N repeated elements

Try these out yourself!

Edit the file in Spyder and run it.

Add some print() calls to see the lists.

List functions

 Try dir(list_1)

 Like strings, lists have a number of

built-in functions

 Let’s try out a few…

 Also try the len() function to see how

many things are in the list: len(list_1)

List Indexing

 Elements in a list are accessed by an index number.

 Index #’s start at 0.

 List:

 First element: x[0]  'a'

 Nth element: x[2]  'c'

 Last element: x[-1] 'e'

 Next-to-last: x[-2] 'd'

x=['a', 'b', 'c', 'd' ,'e']

List Slicing

 Slice syntax: x[start:end:step]

 The start value is inclusive, the end value is exclusive.

 Start is optional and defaults to 0.

 Step is optional and defaults to 1.

 Leaving out the end value means “go to the end”

 Slicing always returns a new list copied from the existing list

x=['a', 'b', 'c', 'd' ,'e']

x[0:1]  ['a']

x[0:2]  ['a','b']

x[-3:]  ['c', 'd', 'e']

Third from the end to the end

x[2:5:2]  ['c', 'e']

List assignments and deletions

 Lists can have their elements overwritten or deleted (with the del) command.

x=['a', 'b', 'c', 'd' ,'e']

x[0] = -3.14  x is now [-3.14, 'b', 'c', 'd', 'e']

del x[-1]  x is now [-3.14, 'b', 'c', 'd']

DIY Lists

 In the Spyder editor try the following things:

 Assign some lists to some variables. a = [1,2,3] b = 3*[‘xyz’]
 Try an empty list, repeated elements, initial set of elements

 Add two lists: a + b What happens?

 Try list indexing, deletion, functions from dir(my_list)

 Try assigning the result of a list slice to a new variable

• Go to the menu FileNew File

• Enter your list commands there

• Give the file a name when you save it

• Use print() to print out results

More on Lists and Variables

 Open the sample file list_variables.py

but don’t run it yet!

 What do you think will be printed?

Variables and Memory Locations

 Variables refer to a value stored in memory.

 y = x does not mean “make a copy of the

list x and assign it to y” it means “make a

copy of the memory location in x and assign

it to y”

 x is not the list it’s just a reference to it.

 This is how all objects in Python are

handled.

x

y

Copying Lists

 How to copy (2 ways…there are more!):

 y = x[:] or y=list(x)

 In list_variables.py uncomment the code at the bottom and run it.

While Loops

 While loops have a condition and a

code block.
 the indentation indicates what’s in the while loop.

 The loop runs until the condition is false.

 The break keyword will stop a while

loop running.

 In the Spyder edit enter in some

loops like these. Save and run them

one at a time. What happens with

the 1st loop?

For loops

 for loops are a little different. They

loop through a collection of things.

 The for loop syntax has a collection

and a code block.
 Each element in the collection is accessed in

order by a reference variable

 Each element can be used in the code block.

 The break keyword can be used in for

loops too.

collection

In-loop reference

variable for each

collection element

The code block

Processing lists element-by-element

 A for loop is a convenient way to process every element in a list.

 There are several ways:
 Loop over the list elements

 Loop over a list of index values and access the list by index

 Do both at the same time

 Use a shorthand syntax called a list comprehension

 Open the file looping_lists.py

 Let’s look at code samples for each of these.

The range() function

 The range() function auto-generates sequences of numbers that can be

used for indexing into lists.

 Syntax: range(start, exclusive end, increment)

 range(0,4)  produces the sequence of numbers 0,1,2,3

 range(-3,15,3)  -3,0,3,6,9,12

 range(4,-3,2)  4,2,0,-2

 Try this: print(range(4))

Lists With Loops

 Open the file read_a_file.py

 This is an example of reading a file

into a list. The file is shown to the

right, numbers.txt

 We want to read the lines in the file

into a list of strings (1 string for each

line), then extract separate lists of

the odd and even numbers.

• Let’s walk through this line-by-

line using Spyder

• read_a_file_low_mem.py is a

modification that uses less memory.

38,83,37,21,98

50,53,55,37,97

39,7,81,87,82

18,83,66,82,47

56,64,9,39,83

…etc…

numbers.txt

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

Tuples

 Tuples are lists whose elements can’t

be changed.
 Like strings they are immutable

 Indexing (including slice notation) is

the same as with lists.

Return multiple values from a function

 Tuples are more useful than they

might seem at first glance.

 They can be easily used to return

multiple values from a function.

 Python syntax can automatically

unpack a tuple return value.

Dictionaries

 Dictionaries are another basic Python data type that are tremendously

useful.

 Create a dictionary with a pair of curly braces:

x = {}

 Dictionaries store values and are indexed with keys

 Create a dictionary with some initial values:

x = {'a_key':55, 100:'a_value', 4.1:[5,6,7]}

Dictionaries

 Values can be any Python thing

 Keys can be primitive types (numbers), strings, tuples, and some custom

data types
 Basically, any data type that is immutable

 Lists and dictionaries cannot be keys but they can stored as values.

 Index dictionaries via keys:
x['a_key']  55

x[100]  'a_value'

Try Out Dictionaries

 Create a dictionary in the Python console or

Spyder editor.

 Add some values to it just by using a new key as

an index. Can you overwrite a value?

 Try x.keys() and x.values()

 Try: del x[valid_key]  deletes a key/value

pair from the dictionary.

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

Modules

 Python modules, aka libraries or packages, add functionality to the core

Python language.

 The Python Standard Library provides a very wide assortment of functions

and data structures.
 Check out their Brief Tour for a quick intro.

 Distributions like Anaconda provides dozens or hundreds more

 You can write your own libraries or install your own.

https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/stdlib.html

PyPI

 The Python Package Index is a central repository for Python software.
 Mostly but not always written in Python.

 A tool, pip, can be used to install packages from it into your Python setup.
 Anaconda provides a similar tool called conda

 Number of projects (as of January 2019): 164,947

 You should always do your due diligence when using software from a

place like PyPI. Make sure it does what you think it’s doing!

https://pypi.org/

Python Modules on the SCC

 Python modules should not be confused with the SCC module command.

 For the SCC there are instructions on how to install Python software for

your account or project.

 Many SCC modules provide Python packages as well.
 Example: tensorflow, pycuda, others.

 Need help on the SCC? Send us an email: help@scv.bu.edu

http://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/install-packages/
mailto:help@scv.bu.edu

Importing modules

 The import command is used to load a

module.

 The name of the module is prepended to

function names and data structures in the

module.
 The preserves the module namespace

 This allows different modules to have the

same function names – when loaded the

module name keeps them separate.

Try these out!

Fun with import

 The import command can strip away the module name:

 Or it can import select functions:

 Or rename on the import:

from math import *

from math import cos

from math import cos,sqrt

from math import sin as pySin

Fun with import

 The import command can also load

your own Python files.

 The Python file to the right can be

used in another Python script:

def get_odds(lst):

''' Gets the odd numbers in a list.

lst: incoming list of integers

return: list of odd integers '''

odds = []

for elem in lst:

Odd if there's a remainder when

dividing by 2.

if elem % 2 != 0:

odds.append(elem)

return odds

myfuncs.py

Don't use the .py ending

import myfuncs

x = [1,2,3,4]

y = myfuncs.get_odds(x)

Import details

 Python reads and executes a file

when the file
 is opened directly: python somefile.py

 is imported: import somefile

 Lines that create variables, call

functions, etc. are all executed.

 Here these lines will run when it’s

imported into another script!

def get_odds(lst):

''' Gets the odd numbers in a list.

lst: incoming list of integers

return: list of odd integers '''

odds = []

for elem in lst:

Odd if there's a remainder when

dividing by 2.

if elem % 2 != 0:

odds.append(elem)

return odds

x = [1,2,3,4]

y = get_odds(x)

print(y)

myfuncs.py

The __name__ attribute

 Python stores object information in

hidden fields called attributes

myfuncs.py

in another Python

script

import myfuncs

 Every file has one called __name__

whose value depends on how the

file is used.

__name__  myfuncs

(i.e. the file name)

called directly

python myfuncs.py
__name__  __main__

The __name__ attribute

 __name__ can be used to make a

Python scripts usable as a

standalone program and as

imported code.

 Now:
 python myfuncs.py  __name__ has the

value of ‘__main__’ and the code in the if

statement is executed.

 import myfuncs  __name__ is ‘myfuncs’

and the if statement does not run.

def get_odds(lst):

''' Gets the odd numbers in a list.

lst: incoming list of integers

return: list of odd integers '''

odds = []

for elem in lst:

Odd if there's a remainder when

dividing by 2.

if elem % 2 != 0:

odds.append(elem)

return odds

if __name__=='__main__':

x = [1,2,3,4]

y = get_odds(x)

print(y)

myfuncs.py

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

A brief into to numpy and matplotlib

 numpy is a Python library that provides efficient multidimensional matrix

and basic linear algrebra
 The syntax is very similar to Matlab or Fortran

 matplotlib is a popular plotting library
 Remarkably similar to Matlab plotting commands!

 A third library, scipy, provides a wide variety of numerical algorithms:
 Integrations, curve fitting, machine learning, optimization, root finding, etc.

 Built on top of numpy

 Investing the time in learning these three libraries is worth the effort!!

http://www.numpy.org/
https://matplotlib.org/
https://www.scipy.org/

numpy

 numpy provides data structures written in compiled C code

 Many of its operations are executed in compiled C or Fortran code, not

Python.

 Check out numpy_basics.py

numpy datatypes

 Unlike Python lists, which are generic

containers, numpy arrays are typed.

 If you don’t specify a type, numpy will assign

one automatically.

 A wide variety of numerical types are available.

 Proper assignment of data types can sometimes have a significant effect on

memory usage and performance.

https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html

Numpy operators

 Numpy arrays will do element-wise

arithmetic: + / - * **

 Matrix (or vector/matrix, etc.)

multiplication needs the .dot() function.

 Numpy has its own sin(), cos(), log(),

etc. functions that will operate element-

by-element on its arrays. Try these out!

indexing

 Numpy arrays are indexed much like Python lists

 Slicing and indexing get a little more complicated when using numpy

arrays.

 Open numpy_indexing.py

Plotting with matplotlib

 Matplotlib is probably the most

popular Python plotting library
 Plotly is another good one

 If you are familiar with Matlab

plotting then matplotlib is very

easy to learn!

 Plots can be made from lists,

tuples, numpy arrays, etc.

Try these out!

https://plot.ly/d3-js-for-python-and-pandas-charts/

 Some sample images from matplotlib.org

 A vast array of plot types in 2D and 3D are available in

this library.

https://matplotlib.org/tutorials/introductory/sample_plots.html

A numpy and matplotlib example

 numpy_matplotlib_fft.py is a short example on using numpy and matplotlib

together.

 Open numpy_matplotlib_fft.py

 Let’s walk through this…

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

Writing Quality Pythonic Code

 Cultivating good coding habits pays off in many ways:
 Easier and faster to write

 Easier and faster to edit, change, and update your code

 Other people can understand your work

 Python lends itself to readable code
 It’s quite hard to write completely obfuscated code in Python.

 Exploit language features where it makes sense

 Contrast that with this sample of obfuscated C code.

 Here we’ll go over some suggestions on how to setup a Python script,

make it readable, reusable, and testable.

https://www.ioccc.org/2018/algmyr/prog.c
https://www.ioccc.org/

Compare some Python scripts

 Open up three files and let’s look at them.

 A file that does…something…
 bad_code.py

 Same code, re-organized:
 good_code.py

 Same code, debugged, with testing code:
 good_code_testing.py

Command line arguments

 Try to avoid hard-coding file paths,

problem size ranges, etc. into your

program.

 They can be specified at the command

line.

 Look at the argparse module, part of

the Python Standard Library.

https://docs.python.org/3/library/argparse.html

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

Writing Your Own

Classes

 Your own classes can be as simple or as complex as you need.

 Define your own Python classes to:
 Bundle together logically related pieces of data

 Write functions that work on specific types of data

 Improve code re-use

 Organize your code to more closely resemble the problem it is solving.

class Student:

def __init__(self, name, buid, gpa):

self.name = name

self.buid = buid

self.gpa = gpa

def has_4_0(self):

return self.gpa==4.0

me = Student("RCS Instructor","U0000000",2.9)

print(me.has_4_0())

When to use your own class

 A class works best when you’ve done some planning and design work

before starting your program.

 This is a topic that is best tackled after you’re comfortable with solving

programming problems with Python.

 Some tutorials on using Python classes:

W3Schools: https://www.w3schools.com/python/python_classes.asp

Python tutorial: https://docs.python.org/3.6/tutorial/classes.html

https://www.w3schools.com/python/python_classes.asp
https://docs.python.org/3.6/tutorial/classes.html

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

Function, class, and variable naming

 There’s no word or character limit for names.

 It’s ok to use descriptive names for things.

 An IDE (like Spyder) will help you fill in longer names so there’s no extra

typing anyway.

 Give your functions and variables names that reflect their meaning.
 Once a program is finished it’s easy to forget what does what where

An example development process
 Work to develop your program.

 Do some flowcharts, work out algorithms, and so on.

 Write some Python to try out a few ideas.

 Get organized.

 Write a “1st draft” version that gets most of what’s needed done.

 Move hard-coded values into the if __name__==‘__main__’ section of your code.

 Once the code is testing well add command line arguments and remove hard-

coded values

 Finally (e.g. to run as an SCC batch job) test run from the command line.

Spyder command line arguments

 Click on the Run menu and choose

Configuration per file

 Enter command line arguments

Python from the command line

 To run Python from the command line:

 Just type python followed by the script name followed by script arguments.

Where to get help…

 The official Python Tutorial

 Automate the Boring Stuff with Python
 Focuses more on doing useful things with Python, not focused on scientific computing

 Full Speed Python tutorial

 Contact Research Computing: help@scv.bu.edu

https://docs.python.org/3/tutorial/index.html
http://automatetheboringstuff.com/
https://github.com/joaoventura/full-speed-python/releases/
mailto:help@scv.bu.edu

