
Introduction to Python

Part 2

v0.4

Research Computing Services

Information Services & Technology

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

Lists

 A Python list is a general purpose 1-dimensional container for variables.

 i.e. it is a row, column, or vector of things

 Lots of things in Python act like lists or use list-style notation.

 Variables in a list can be of any type at any location, including other lists.

 Lists can change in size: elements can be added or removed

Making a list and checking it twice…

 Make a list with [] brackets.

 Append with the append() function

 Create a list with some initial elements

 Create a list with N repeated elements

Try these out yourself!

Edit the file in Spyder and run it.

Add some print() calls to see the lists.

List functions

 Try dir(list_1)

 Like strings, lists have a number of

built-in functions

 Let’s try out a few…

 Also try the len() function to see how

many things are in the list: len(list_1)

List Indexing

 Elements in a list are accessed by an index number.

 Index #’s start at 0.

 List:

 First element: x[0] 'a'

 Nth element: x[2] 'c'

 Last element: x[-1] 'e'

 Next-to-last: x[-2] 'd'

x=['a', 'b', 'c', 'd' ,'e']

List Slicing

 Slice syntax: x[start:end:step]

 The start value is inclusive, the end value is exclusive.

 Start is optional and defaults to 0.

 Step is optional and defaults to 1.

 Leaving out the end value means “go to the end”

 Slicing always returns a new list copied from the existing list

x=['a', 'b', 'c', 'd' ,'e']

x[0:1] ['a']

x[0:2] ['a','b']

x[-3:] ['c', 'd', 'e']

Third from the end to the end

x[2:5:2] ['c', 'e']

List assignments and deletions

 Lists can have their elements overwritten or deleted (with the del) command.

x=['a', 'b', 'c', 'd' ,'e']

x[0] = -3.14 x is now [-3.14, 'b', 'c', 'd', 'e']

del x[-1] x is now [-3.14, 'b', 'c', 'd']

DIY Lists

 In the Spyder editor try the following things:

 Assign some lists to some variables. a = [1,2,3] b = 3*[‘xyz’]
 Try an empty list, repeated elements, initial set of elements

 Add two lists: a + b What happens?

 Try list indexing, deletion, functions from dir(my_list)

 Try assigning the result of a list slice to a new variable

• Go to the menu FileNew File

• Enter your list commands there

• Give the file a name when you save it

• Use print() to print out results

More on Lists and Variables

 Open the sample file list_variables.py

but don’t run it yet!

 What do you think will be printed?

Variables and Memory Locations

 Variables refer to a value stored in memory.

 y = x does not mean “make a copy of the

list x and assign it to y” it means “make a

copy of the memory location in x and assign

it to y”

 x is not the list it’s just a reference to it.

 This is how all objects in Python are

handled.

x

y

Copying Lists

 How to copy (2 ways…there are more!):

 y = x[:] or y=list(x)

 In list_variables.py uncomment the code at the bottom and run it.

While Loops

 While loops have a condition and a

code block.
 the indentation indicates what’s in the while loop.

 The loop runs until the condition is false.

 The break keyword will stop a while

loop running.

 In the Spyder edit enter in some

loops like these. Save and run them

one at a time. What happens with

the 1st loop?

For loops

 for loops are a little different. They

loop through a collection of things.

 The for loop syntax has a collection

and a code block.
 Each element in the collection is accessed in

order by a reference variable

 Each element can be used in the code block.

 The break keyword can be used in for

loops too.

collection

In-loop reference

variable for each

collection element

The code block

Processing lists element-by-element

 A for loop is a convenient way to process every element in a list.

 There are several ways:
 Loop over the list elements

 Loop over a list of index values and access the list by index

 Do both at the same time

 Use a shorthand syntax called a list comprehension

 Open the file looping_lists.py

 Let’s look at code samples for each of these.

The range() function

 The range() function auto-generates sequences of numbers that can be

used for indexing into lists.

 Syntax: range(start, exclusive end, increment)

 range(0,4) produces the sequence of numbers 0,1,2,3

 range(-3,15,3) -3,0,3,6,9,12

 range(4,-3,2) 4,2,0,-2

 Try this: print(range(4))

Lists With Loops

 Open the file read_a_file.py

 This is an example of reading a file

into a list. The file is shown to the

right, numbers.txt

 We want to read the lines in the file

into a list of strings (1 string for each

line), then extract separate lists of

the odd and even numbers.

• Let’s walk through this line-by-

line using Spyder

• read_a_file_low_mem.py is a

modification that uses less memory.

38,83,37,21,98

50,53,55,37,97

39,7,81,87,82

18,83,66,82,47

56,64,9,39,83

…etc…

numbers.txt

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

Tuples

 Tuples are lists whose elements can’t

be changed.
 Like strings they are immutable

 Indexing (including slice notation) is

the same as with lists.

Return multiple values from a function

 Tuples are more useful than they

might seem at first glance.

 They can be easily used to return

multiple values from a function.

 Python syntax can automatically

unpack a tuple return value.

Dictionaries

 Dictionaries are another basic Python data type that are tremendously

useful.

 Create a dictionary with a pair of curly braces:

x = {}

 Dictionaries store values and are indexed with keys

 Create a dictionary with some initial values:

x = {'a_key':55, 100:'a_value', 4.1:[5,6,7]}

Dictionaries

 Values can be any Python thing

 Keys can be primitive types (numbers), strings, tuples, and some custom

data types
 Basically, any data type that is immutable

 Lists and dictionaries cannot be keys but they can stored as values.

 Index dictionaries via keys:
x['a_key'] 55

x[100] 'a_value'

Try Out Dictionaries

 Create a dictionary in the Python console or

Spyder editor.

 Add some values to it just by using a new key as

an index. Can you overwrite a value?

 Try x.keys() and x.values()

 Try: del x[valid_key] deletes a key/value

pair from the dictionary.

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

Modules

 Python modules, aka libraries or packages, add functionality to the core

Python language.

 The Python Standard Library provides a very wide assortment of functions

and data structures.
 Check out their Brief Tour for a quick intro.

 Distributions like Anaconda provides dozens or hundreds more

 You can write your own libraries or install your own.

https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/stdlib.html

PyPI

 The Python Package Index is a central repository for Python software.
 Mostly but not always written in Python.

 A tool, pip, can be used to install packages from it into your Python setup.
 Anaconda provides a similar tool called conda

 Number of projects (as of January 2019): 164,947

 You should always do your due diligence when using software from a

place like PyPI. Make sure it does what you think it’s doing!

https://pypi.org/

Python Modules on the SCC

 Python modules should not be confused with the SCC module command.

 For the SCC there are instructions on how to install Python software for

your account or project.

 Many SCC modules provide Python packages as well.
 Example: tensorflow, pycuda, others.

 Need help on the SCC? Send us an email: help@scv.bu.edu

http://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/install-packages/
mailto:help@scv.bu.edu

Importing modules

 The import command is used to load a

module.

 The name of the module is prepended to

function names and data structures in the

module.
 The preserves the module namespace

 This allows different modules to have the

same function names – when loaded the

module name keeps them separate.

Try these out!

Fun with import

 The import command can strip away the module name:

 Or it can import select functions:

 Or rename on the import:

from math import *

from math import cos

from math import cos,sqrt

from math import sin as pySin

Fun with import

 The import command can also load

your own Python files.

 The Python file to the right can be

used in another Python script:

def get_odds(lst):

''' Gets the odd numbers in a list.

lst: incoming list of integers

return: list of odd integers '''

odds = []

for elem in lst:

Odd if there's a remainder when

dividing by 2.

if elem % 2 != 0:

odds.append(elem)

return odds

myfuncs.py

Don't use the .py ending

import myfuncs

x = [1,2,3,4]

y = myfuncs.get_odds(x)

Import details

 Python reads and executes a file

when the file
 is opened directly: python somefile.py

 is imported: import somefile

 Lines that create variables, call

functions, etc. are all executed.

 Here these lines will run when it’s

imported into another script!

def get_odds(lst):

''' Gets the odd numbers in a list.

lst: incoming list of integers

return: list of odd integers '''

odds = []

for elem in lst:

Odd if there's a remainder when

dividing by 2.

if elem % 2 != 0:

odds.append(elem)

return odds

x = [1,2,3,4]

y = get_odds(x)

print(y)

myfuncs.py

The __name__ attribute

 Python stores object information in

hidden fields called attributes

myfuncs.py

in another Python

script

import myfuncs

 Every file has one called __name__

whose value depends on how the

file is used.

__name__ myfuncs

(i.e. the file name)

called directly

python myfuncs.py
__name__ __main__

The __name__ attribute

 __name__ can be used to make a

Python scripts usable as a

standalone program and as

imported code.

 Now:
 python myfuncs.py __name__ has the

value of ‘__main__’ and the code in the if

statement is executed.

 import myfuncs __name__ is ‘myfuncs’

and the if statement does not run.

def get_odds(lst):

''' Gets the odd numbers in a list.

lst: incoming list of integers

return: list of odd integers '''

odds = []

for elem in lst:

Odd if there's a remainder when

dividing by 2.

if elem % 2 != 0:

odds.append(elem)

return odds

if __name__=='__main__':

x = [1,2,3,4]

y = get_odds(x)

print(y)

myfuncs.py

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

A brief into to numpy and matplotlib

 numpy is a Python library that provides efficient multidimensional matrix

and basic linear algrebra
 The syntax is very similar to Matlab or Fortran

 matplotlib is a popular plotting library
 Remarkably similar to Matlab plotting commands!

 A third library, scipy, provides a wide variety of numerical algorithms:
 Integrations, curve fitting, machine learning, optimization, root finding, etc.

 Built on top of numpy

 Investing the time in learning these three libraries is worth the effort!!

http://www.numpy.org/
https://matplotlib.org/
https://www.scipy.org/

numpy

 numpy provides data structures written in compiled C code

 Many of its operations are executed in compiled C or Fortran code, not

Python.

 Check out numpy_basics.py

numpy datatypes

 Unlike Python lists, which are generic

containers, numpy arrays are typed.

 If you don’t specify a type, numpy will assign

one automatically.

 A wide variety of numerical types are available.

 Proper assignment of data types can sometimes have a significant effect on

memory usage and performance.

https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html

Numpy operators

 Numpy arrays will do element-wise

arithmetic: + / - * **

 Matrix (or vector/matrix, etc.)

multiplication needs the .dot() function.

 Numpy has its own sin(), cos(), log(),

etc. functions that will operate element-

by-element on its arrays. Try these out!

indexing

 Numpy arrays are indexed much like Python lists

 Slicing and indexing get a little more complicated when using numpy

arrays.

 Open numpy_indexing.py

Plotting with matplotlib

 Matplotlib is probably the most

popular Python plotting library
 Plotly is another good one

 If you are familiar with Matlab

plotting then matplotlib is very

easy to learn!

 Plots can be made from lists,

tuples, numpy arrays, etc.

Try these out!

https://plot.ly/d3-js-for-python-and-pandas-charts/

 Some sample images from matplotlib.org

 A vast array of plot types in 2D and 3D are available in

this library.

https://matplotlib.org/tutorials/introductory/sample_plots.html

A numpy and matplotlib example

 numpy_matplotlib_fft.py is a short example on using numpy and matplotlib

together.

 Open numpy_matplotlib_fft.py

 Let’s walk through this…

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

Writing Quality Pythonic Code

 Cultivating good coding habits pays off in many ways:
 Easier and faster to write

 Easier and faster to edit, change, and update your code

 Other people can understand your work

 Python lends itself to readable code
 It’s quite hard to write completely obfuscated code in Python.

 Exploit language features where it makes sense

 Contrast that with this sample of obfuscated C code.

 Here we’ll go over some suggestions on how to setup a Python script,

make it readable, reusable, and testable.

https://www.ioccc.org/2018/algmyr/prog.c
https://www.ioccc.org/

Compare some Python scripts

 Open up three files and let’s look at them.

 A file that does…something…
 bad_code.py

 Same code, re-organized:
 good_code.py

 Same code, debugged, with testing code:
 good_code_testing.py

Command line arguments

 Try to avoid hard-coding file paths,

problem size ranges, etc. into your

program.

 They can be specified at the command

line.

 Look at the argparse module, part of

the Python Standard Library.

https://docs.python.org/3/library/argparse.html

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

Writing Your Own

Classes

 Your own classes can be as simple or as complex as you need.

 Define your own Python classes to:
 Bundle together logically related pieces of data

 Write functions that work on specific types of data

 Improve code re-use

 Organize your code to more closely resemble the problem it is solving.

class Student:

def __init__(self, name, buid, gpa):

self.name = name

self.buid = buid

self.gpa = gpa

def has_4_0(self):

return self.gpa==4.0

me = Student("RCS Instructor","U0000000",2.9)

print(me.has_4_0())

When to use your own class

 A class works best when you’ve done some planning and design work

before starting your program.

 This is a topic that is best tackled after you’re comfortable with solving

programming problems with Python.

 Some tutorials on using Python classes:

W3Schools: https://www.w3schools.com/python/python_classes.asp

Python tutorial: https://docs.python.org/3.6/tutorial/classes.html

https://www.w3schools.com/python/python_classes.asp
https://docs.python.org/3.6/tutorial/classes.html

Tutorial Outline – Part 2

 Lists

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Development notes

Function, class, and variable naming

 There’s no word or character limit for names.

 It’s ok to use descriptive names for things.

 An IDE (like Spyder) will help you fill in longer names so there’s no extra

typing anyway.

 Give your functions and variables names that reflect their meaning.
 Once a program is finished it’s easy to forget what does what where

An example development process
 Work to develop your program.

 Do some flowcharts, work out algorithms, and so on.

 Write some Python to try out a few ideas.

 Get organized.

 Write a “1st draft” version that gets most of what’s needed done.

 Move hard-coded values into the if __name__==‘__main__’ section of your code.

 Once the code is testing well add command line arguments and remove hard-

coded values

 Finally (e.g. to run as an SCC batch job) test run from the command line.

Spyder command line arguments

 Click on the Run menu and choose

Configuration per file

 Enter command line arguments

Python from the command line

 To run Python from the command line:

 Just type python followed by the script name followed by script arguments.

Where to get help…

 The official Python Tutorial

 Automate the Boring Stuff with Python
 Focuses more on doing useful things with Python, not focused on scientific computing

 Full Speed Python tutorial

 Contact Research Computing: help@scv.bu.edu

https://docs.python.org/3/tutorial/index.html
http://automatetheboringstuff.com/
https://github.com/joaoventura/full-speed-python/releases/
mailto:help@scv.bu.edu

