
Introduction to Python

Part 1

v0.3

Brian Gregor

Research Computing Services

Information Services & Technology

RCS Team and Expertise

 Our Team

 Scientific Programmers

 Systems Administrators

 Graphics/Visualization Specialists

 Account/Project Managers

 Special Initiatives (Grants)

 Maintains and administers the Shared

Computing Cluster

 Located in Holyoke, MA

 ~17,000 CPUs running Linux

 Consulting Focus:

 Bioinformatics

 Data Analysis / Statistics

 Molecular modeling

 Geographic Information Systems

 Scientific / Engineering Simulation

 Visualization

 CONTACT US: help@scv.bu.edu

mailto:help@scv.bu.edu

About You

 Working with Python already?

 Have you used any other programming languages?

 Why do you want to learn Python?

Running Python for the Tutorial

 If you have an SCC account, log into it and use Python

there.

 Run:

module load anaconda3

spyder &

unzip /projectnb/scv/python/Intro_Python_code_0.3.zip

Links on the Rm 107 Terminals

 On the Desktop open the folders:

Tutorial Files RCS_Tutorials Tutorial Files Introduction to Python

 Copy the whole Introduction to Python folder to the desktop or to a flash

drive.
 When you log out the desktop copy will be deleted!

Run Spyder

 Click on the Start Menu in

the bottom left corner and

type: spyder

 After a second or two it will

be found. Click to run it.

 Be patient…it takes a while

to start.

Running Python: Installing it yourself

 There are many ways to install Python on your laptop/PC/etc.

 https://www.python.org/downloads/

 https://www.anaconda.com/download/

 https://www.enthought.com/product/enthought-python-distribution/

 https://python-xy.github.io/

https://www.python.org/downloads/
https://www.anaconda.com/download/
https://www.enthought.com/product/enthought-python-distribution/
https://python-xy.github.io/

BU’s most popular option: Anaconda

 https://www.anaconda.com/download/

 Anaconda is a packaged set of programs including the Python language,

a huge number of libraries, and several tools.

 These include the Spyder development environment and Jupyter

notebooks.

 Anaconda can be used on the SCC, with some caveats.

https://www.anaconda.com/download/

Python 2 vs. 3

 Python 2: released in 2000, Python 3 released in 2008
 Python 2 is in “maintenance mode” – no new features are expected

 Py3 is not completely compatible with Py2
 For learning Python these differences are almost negligible

 Which one to learn?
 If your research group / advisor / boss / friends all use one version that’s probably the best one

for you to choose.

 If you have a compelling reason to focus on one vs the other

 Otherwise just choose Py3. This is where the language development is happening!

Spyder – a Python development environment

 Pros:
 Faster development

 Easier debugging!

 Helps organize code

 Increased efficiency

 Cons
 Learning curve

 Can add complexity to smaller

problems

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 Functions

 Classes

 If / Else

 Lists

Tutorial Outline – Part 2

 Loops

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Debugging

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 Functions

 Classes

 If / Else

 Lists

What is Python?

 Python…

 …is a general purpose interpreted programming language.

 …is a language that supports multiple approaches to software design,

principally structured and object-oriented programming.

 …provides automatic memory management and garbage collection

 …is extensible

 …is dynamically typed.

 By the end of the tutorial you will understand all of these terms.

Some History

 “Over six years ago, in December 1989, I was looking for a "hobby"

programming project that would keep me occupied during the week

around Christmas…I chose Python as a working title for the project, being

in a slightly irreverent mood (and a big fan of Monty Python's Flying

Circus).”
–Python creator Guido Van Rossum, from the foreward to Programming Python (1st

ed.)

 Goals:
 An easy and intuitive language just as powerful as major competitors

 Open source, so anyone can contribute to its development

 Code that is as understandable as plain English

 Suitability for everyday tasks, allowing for short development times

Compiled Languages (ex. C++ or Fortran)

Interpreted Languages (ex. Python or R)

Source code files

prog.py

math.py

Python interpreter
bytecode
conversion

Python interpreter:
follows bytecode

instructions

python prog.py

 A lot less work is done to get a program to start running compared with compiled

languages!

 Bytecodes are an internal representation of the text program that can be efficiently run by

the Python interpreter.

 The interpreter itself is written in C and is a compiled program.

Comparison

Interpreted

 Faster development

 Easier debugging

 Debugging can stop anywhere, swap in

new code, more control over state of

program

 (almost always) takes less code to

get things done

 Slower programs

 Sometimes as fast as compiled, rarely

faster

 Less control over program behavior

Compiled

 Longer development

 Edit / compile / test cycle is longer!

 Harder to debug

 Usually requires a special compilation

 (almost always) takes more code to

get things done

 Faster

 Compiled code runs directly on CPU

 Can communicate directly with

hardware

 More control over program behavior

The Python Prompt
 The standard Python prompt looks like this:

 The IPython prompt in Spyder looks like this:

 IPython adds some handy behavior around the standard Python prompt.

The Spyder IDE

editor

Python console

Variable and file explorer

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 Functions

 Classes

 If / Else

 Lists

Operators

 Python supports a wide variety of operators which act like functions, i.e.

they do something and return a value:
 Arithmetic: + - * / % **

 Logical: and or not

 Comparison: > < >= <= != ==

 Assignment: =

 Bitwise: & | ~ ^ >> <<

 Identity: is is not

 Membership: in not in

Try Python as a calculator

 Go to the Python prompt.

 Try out some arithmetic operators:

+ - * / % ** == ()

 Can you identify what they all do?

Try Python as a calculator

 Go to the Python prompt.

 Try out some arithmetic operators:

+ - * / % ** == ()

Operator Function

+ Addition

- Subtraction

* Multiplication

/ Division (Note: 3 / 4 is 0.75!)

% Remainder (aka modulus)

** Exponentiation

== Equals

More Operators

 Try some comparisons and Boolean operators. True and False are the

keywords indicating those values:

Comments

 # is the Python comment character. On

any line everything after the # character

is ignored by Python.

 There is no multi-line comment

character as in C or C++.

 An editor like Spyder makes it very easy

to comment blocks of code or vice-

versa. Check the Edit menu

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 Functions

 Classes

 If / Else

 Lists

Variables

 Variables are assigned values using the = operator

 In the Python console, typing the name of a variable

prints its value
 Not true in a script!

 Variables can be reassigned at any time

 Variable type is not specified

 Types can be changed with a reassignment

Variables cont’d

 Variables refer to a value stored in memory and are created when first

assigned

 Variable names:
 Must begin with a letter (a - z, A - B) or underscore _

 Other characters can be letters, numbers or _

 Are case sensitive: capitalization counts!

 Can be any reasonable length

 Assignment can be done en masse:

x = y = z = 1

 Multiple assignments can be done on one line:

x, y, z = 1, 2.39, 'cat'

Try these out!

Variable Data Types

 Python determines data types for variables based on the context

 The type is identified when the program runs, called dynamic typing

 Compare with compiled languages like C++ or Fortran, where types are identified by

the programmer and by the compiler before the program is run.

 Run-time typing is very convenient and helps with rapid code

development…but requires the programmer to do more code testing for

reliability.

 The larger the program, the more significant the burden this is!!

Variable Data Types

 Available basic types:

 Numbers: Integers and floating point (64-bit)

 Complex numbers: x = complex(3,1) or x = 3+1j

 Strings, using double or single quotes: "cat" 'dog'

 Boolean: True and False

 Lists, dictionaries, and tuples

 These hold collections of variables

 Specialty types: files, network connections, objects

 Custom types can be defined. This will be covered in Part 2.

Variable modifying operators

 Some additional arithmetic operators that modify variable values:

 The += operator is by far the most commonly used of these!

Operator Effect Equivalent to…

x += y Add the value of y to x x = x + y

x -= y Subtract the value of y

from x

x = x - y

x *= y Multiply the value of x

by y

x = x * y

x /= y Divide the value of x by

y

x = x / y

Check a type

 A built-in function, type(), returns the

type of the data assigned to a variable.

 It’s unusual to need to use this in a

program, but it’s available if you need it!

 Try this out in Python – do some

assignments and reassignments and

see what type() returns.

Strings

 Strings are a basic data type in Python.

 Indicated using pairs of single '' or

double "" quotes.

 Multiline strings use a triple set of

quotes (single or double) to start and

end them.

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 Functions

 Classes

 If / Else

 Lists

Functions

 Functions are used to create code that can be used in a program or in

other programs.

 The use of functions to logically separate the program into discrete

computational steps.

 Programs that make heavy use of function definitions tend to be easier to

develop, debug, maintain, and understand.

Python functions

 The return value can be any Python type

 If the return statement is omitted a special None value is still returned.

 The arguments are optional but the parentheses are required!

 Functions must be defined before they can be called.

Keyword def

Function name

Optional comma-separated

list of arguments (incoming

variables)

A code block

Optional return statement

Function Return Values

 A function can return any Python value.

 Function call syntax:

 Open function_calls.py for some examples

A = some_func() # return a value

Another_func() # ignore return value or nothing returned

b,c = multiple_vals(x,y,z) # return multiple values

Function arguments

 Function arguments can be required or optional.

 Optional arguments are given a default value

 To call a function with optional arguments:

 Optional arguments can be used in the order they’re declared or out of

order if their name is used.

def my_func(a,b,c=10,d=-1):

…some code…

my_func(x,y,z) # a=x, b=y, c=z, d=-1

my_func(x,y) # a=x, b=y, c=10, d=-1

my_func(x,y,d=w,c=z) # a=x, b=y, c=z, d=w

Function arguments

 Remember the list assignment?

 This applies in function calls too.

 Then call it:

x = ['a', [], 'c', 3.14]

y=x # y points to the same list as x

def my_func(a_list):

modifies the list in the calling routine!

a_list.append(1)

my_func(x) # x and a_list inside the function are the same list!

Garbage collection

 Variables defined in a function (or in any code block) no longer have any

“live” references to them once the function returns.

 These variables become garbage, and garbage collection operates to

remove them from the computer’s memory, freeing up the memory to be

re-used.

 There is no need to explicitly destroy or release most variables.
 Some complex data types provide .close(), .clean(), etc. type functions. Use these where

available.

 Simple data types (int, string,lists) will be taken care of automatically.

When does garbage collection occur?

 It happens when Python thinks it should.

 For the great majority of programs this is

not an issue.

 Programs using very large quantities of

memory or allocating large chunks of

memory in repeated function calls can run

into trouble.

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 Functions

 Classes

 If / Else

 Lists

Classes

 In OOP a class is a data structure that combines data with functions that

operate on that data.

 An object is a variable whose type is a class
 Also called an instance of a class

 Classes provide a lot of power to help organize a program and can

improve your ability to re-use your own code.

Object-oriented programming

 Python is a fully object oriented

programming (OOP) language.

 Object-oriented programming (OOP)

seeks to define a program in terms of

the things in the problem (files,

molecules, buildings, cars, people,

etc.), what they need, and what they

can do.

• Data:

• molecular weight, structure, common

names, etc.

• Methods:

• IR(wavenumStart, wavenumEnd) :

return IR emission spectrum in range

class GasMolecule

GasMolecule ch4

GasMolecule co2

spectrum = ch4.IR(1000,3500)

Name = co2.common_name

Objects (instances of a class)

“pseudo-code”

Object-oriented programming

 OOP defines classes to represent the

parts of the program.

 Classes can contain data and methods

(internal functions).

 Classes can inherit from one another

 A class (the subclass) can use all of the data

and methods from another class (the

superclass) and add its own.

 This is a highly effective way of modeling

real world problems inside of a computer

program.

public interface

private data and methods

“Class Car”

Encapsulation bundles data and functions

 In Python, calculate the area of some shapes after defining some functions.

 If we defined Circle and Rectangle classes with their own area() methods…it is not

possible to miscalculate.

assume radius and width_square are assigned

already

a1 = AreaOfCircle(radius) # ok

a2 = AreaOfSquare(width_square) # ok

a3 = AreaOfCircle(width_square) # !! OOPS

c1 = Circle(radius)

r1 = Square(width_square)

a1 = c1.area()

a2 = r1.area()

Strings in Python

 Python defines a string class – all strings in Python are objects.

 This means strings have:

 Their own internal (hidden) memory management to handle storage of the characters.

 A variety of functions accessible once you have a string object in memory.

 You can’t access string functions without a string!
 No “strcat” / “strcmp” / … as in C

 No “strlength” / “isletter” / … as in Matlab

String functions

 In the Python console, create a string variable

called mystr

 type: dir(mystr)

 Try out some functions:

 Need help? Try:

help(mystr.title)

len(mystr)

mystr.upper()

mystr.title()

mystr.isdecimal()

help(mystr.isdecimal)

The len() function

 The len() function is not a string specific function.

 It’ll return the length of any Python object that contains any

countable thing.

 In the case of strings it is the number of characters in the

string.

String operators

 Try using the + and += operators with strings in the

Python console.

 + concatenates strings.

 += appends strings.

 These are defined in the string class as functions that

operate on strings.

 Index strings using square brackets, starting at 0.

String operators

 Changing elements of a string by an index is not allowed:

 Python strings are immutable, i.e. they can’t be changed.

String Substitutions

 Python provides an easy way

to stick variable values into

strings called substitutions

 Syntax for one variable:

 For more than one:

%s means sub in

value

variable name

comes after a %

Variables are listed in the

substitution order inside ()

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 Functions

 Classes

 If / Else

 Lists

If / Else

 If, elif, and else statements are used to implement conditional program

behavior

 Syntax:

 elif and else are not required – used to chain together multiple conditional

statements or provide a default case.

if Boolean_value:

…some code

elif Boolean_value:

…some other code

else:

…more code

 Try out something like this in the Spyder

editor.

 Do you get any error messages in the

console?

 Try using an elif or else statement by

itself without a preceding if. What error

message comes up?

Indentation of code…easier on the eyes!

 C:
or

 Matlab:

or

The Use of Indentation

 Python uses whitespace (spaces or tabs) to define code blocks.

 Code blocks are logical groupings of commands. They are always

preceded by a colon :

 This is due to an emphasis on code readability.

 Fewer characters to type and easier on the eyes!

 Spaces or tabs can be mixed in a file but not within a code block.

A code block

Another code block

If / Else code blocks

 Python knows a code block has

ended when the indentation is

removed.

 Code blocks can be nested

inside others therefore if-elif-else

statements can be freely nested

within others.

• Note the lack of “end if”,

“end”, curly braces, etc.

File vs. Console Code Blocks

 Python knows a code block

has ended when the

indentation is removed.

 EXCEPT when typing code

into the Python console.

There an empty line indicates

the end of a code block.

 Let’s try this out in Spyder

 This sometimes causes

problems when pasting code

into the console.

 This issue is something the

IPython console helps with.

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 Functions

 Classes

 If / Else

 Lists

Lists

 A Python list is a general purpose 1-dimensional container for variables.

 i.e. it is a row, column, or vector of things

 Lots of things in Python act like lists or use list-style notation.

 Variables in a list can be of any type at any location, including other lists.

 Lists can change in size: elements can be added or removed

 Lists are not meant for high performance numerical computing!

Making a list and checking it twice…

 Make a list with [] brackets.

 Append with the append() function

 Create a list with some initial elements

 Create a list with N repeated elements

Try these out yourself!

Edit the file in Spyder and run it.

Add some print() calls to see the lists.

List functions

 Try dir(list_1)

 Like strings, lists have a number of

built-in functions

 Let’s try out a few…

 Also try the len() function to see how

many things are in the list: len(list_1)

Accessing List Elements

 Lists are accessed by index.
 All of this applies to accessing strings by index as well!

 Index #’s start at 0.

 List: x=['a', 'b', 'c', 'd' ,'e']

 First element: x[0]

 Nth element: x[2]

 Last element: x[-1]

 Next-to-last: x[-2]

List Indexing

 Elements in a list are accessed by an index number.

 Index #’s start at 0.

 List: x=['a', 'b', 'c', 'd' ,'e']

 First element: x[0] 'a'

 Nth element: x[2] 'c'

 Last element: x[-1] 'e'

 Next-to-last: x[-2] 'd'

List Slicing

 List: x=['a', 'b', 'c', 'd' ,'e']

 Slice syntax: x[start:end:step]

 The start value is inclusive, the end value is exclusive.

 Step is optional and defaults to 1.

 Leaving out the end value means “go to the end”

 Slicing always returns a new list copied from the existing list

 x[0:1] ['a']

 x[0:2] ['a','b']

 x[-3:] ['c', 'd', 'e'] # Third from the end to the end

 x[2:5:2] ['c', 'e']

List assignments and deletions

 Lists can have their elements overwritten or deleted (with the del) command.

 List: x=['a', 'b', 'c', 'd' ,'e']

 x[0] = -3.14 x is now [-3.14, 'b', 'c', 'd', 'e']

 del x[-1] x is now [-3.14, 'b', 'c', 'd']

DIY Lists

 In the Spyder editor try the following things:

 Assign some lists to some variables.
 Try an empty list, repeated elements, initial set of elements

 Add two lists: a + b What happens?

 Try list indexing, deletion, functions from dir(my_list)

 Try assigning the result of a list slice to a new variable

• Go to the menu FileNew File

• Enter your list commands there

• Give the file a name when you save it

• Use print() to print out results

More on Lists and Variables

 Open the sample file list_variables.py

but don’t run it yet!

 What do you think will be printed?

 Now run it…were you right?

Variables and Memory Locations

 Variables refer to a value stored in memory.

 y = x does not mean “make a copy of the

list x and assign it to y” it means “make a

copy of the memory location in x and assign

it to y”

 x is not the list it’s just a reference to it.

 This is how all objects in Python are

handled.

x

y

Copying Lists

 How to copy (2 ways…there are more!):

 y = x[:] or y=list(x)

 In list_variables.py uncomment the code at the bottom and run it.

While Loops

 While loops have a condition and a

code block.
 the indentation indicates what’s in the while loop.

 The loop runs until the condition is false.

 The break keyword will stop a while

loop running.

 In the Spyder edit enter in some

loops like these. Save and run them

one at a time. What happens with

the 1st loop?

For loops

 for loops are a little different. They

loop through a collection of things.

 The for loop syntax has a collection

and a code block.
 Each element in the collection is accessed in

order by a reference variable

 Each element can be used in the code block.

 The break keyword can be used in for

loops too.

collection

In-loop reference

variable for each

collection element

The code block

Processing lists element-by-element

 A for loop is a convenient way to process every element in a list.

 There are several ways:
 Loop over the list elements

 Loop over a list of index values and access the list by index

 Do both at the same time

 Use a shorthand syntax called a list comprehension

 Open the file looping_lists.py

 Let’s look at code samples for each of these.

The range() function

 The range() function auto-generates sequences of numbers that can be

used for indexing into lists.

 Syntax: range(start, exclusive end, increment)

 range(0,4) produces the sequence of numbers 0,1,2,3

 range(-3,15,3) -3,0,3,6,9,12

 range(4,-3,2) 4,2,0,-2

 Try this: print(range(4))

Lists With Loops

 Open the file read_a_file.py

 This is an example of reading a file

into a list. The file is shown to the

right, numbers.txt

 We want to read the lines in the file

into a list of strings (1 string for each

line), then extract separate lists of

the odd and even numbers.

odds [1,3,5…]

evens [2,4,6…]

• Edit read_a_file.py and try to

figure this out.

• A solution is available in

read_a_file_solved.py

• Use the editor and run the code

frequently after small changes!

