
Introduction to C++: Part 3

Tutorial Outline: Part 3

 Intro to the Standard Template Library

 Class inheritance

 Public, private, and protected access

 Virtual functions

The Standard Template Library

 The STL is a large collection of containers and algorithms that are part of

C++.
 It provides many of the basic algorithms and data structures used in computer science.

 As the name implies, it consists of generic code that you specialize as

needed.

 The STL is:
 Well-vetted and tested.

 Well-documented with lots of resources available for help.

Containers

 There are 16 types of containers in the STL:

Container Description

array 1D list of elements.

vector 1D list of elements

deque Double ended queue

forward_list Linked list

list Double-linked list

stack Last-in, first-out list.

queue First-in, first-out list.

priority_queue 1st element is always the

largest in the container

Container Description

set Unique collection in a specific

order

multiset Elements stored in a specific

order, can have duplicates.

map Key-value storage in a specific

order

multimap Like a map but values can

have the same key.

unordered_set Same as set, sans ordering

unordered_multiset Same as multisetset, sans

ordering

unordered_map Same as map, sans ordering

unordered_multimap Same as multimap, sans

ordering

Algorithms

 There are 85+ of these.

 Example: find, count, replace, sort, is_sorted, max, min, binary_search, reverse

 Algorithms manipulate the data stored in containers but is not tied to STL containers

 These can be applied to your own collections or containers of data

 Example:

 The implementation is hidden and the necessary code for reverse() is generated from

templates at compile time.

vector<int> v(3); // Declare a vector of 3 elements.

v[0] = 7;

v[1] = 3;

v[2] = v[0] + v[1]; // v[0] == 7, v[1] == 3, v[2] == 10

reverse(v.begin(), v.end()) ; // v[0] == 10, v[1] == 3, v[2] == 7

vector<T>
 A very common and useful class in C++ is the vector class. Access it with:

 Vector has many methods:

 Various constructors

 Ways to iterate or loop through its contents

 Copy or assign to another vector

 Query vector for the number of elements it contains or its backing storage size.

 Example usage: vector<float> my_vec ;

 Or: vector<float> my_vec(50) ;

#include <vector>

 Hidden from the programmer is the backing store

 Object oriented design in action!

 This is how the vector stores its data internally.

vector<T>

Contains N elements. Given by size() method.

Allocated for a total of M

elements

Given by capacity() method.

Add some more to the vector

New memory is allocated.

Old data is copied in.

New M > old M.

Old allocation is destroyed.

Allocated for a total of M’

elements

Destructors

 vector<t> can hold objects of any type:
 Primitive (aka basic) types: int, float, char, etc.

 Objects: string, your own classes, file stream objects (ex. ostream), etc.

 Pointers: int*, string*, etc.

 But NOT references!

 When a vector is destroyed:
 If it holds primitive types or pointers it just deallocates its backing store.

 If it holds objects it will call each object’s destructor before freeing its backing store.

vector<t> with objects

 Select an object in a vector.

 The members and methods can be

accessed directly.

 Elements can be accessed with

brackets and an integer starting

from 0.

// a vector with memory preallocated to

// hold 1000 objects.

vector<MyClass> my_vec(1000);

// Now make a vector with 1000 MyClass objects

// that are initialized using the MyClass constructor

vector<MyClass> my_vec2(1000,MyClass(arg1,arg2));

// Access an object's method.

my_vec2[100].some_method() ;

// Or a member

my_vec2[10].member_integer = 100 ;

// Clear out the entire vector

my_vec2.clear()

// but that might not re-set the backing store…

// Let’s check the docs:

// http://www.cplusplus.com/reference/vector/vector/clear/

http://www.cplusplus.com/reference/vector/vector/clear/

 Loop with a “for” loop, referencing the value of vec using brackets.

 1st time through:
 index = 0

 Print value at vec[0]

 index gets incremented by 1

 2nd time through:
 Index = 1

 Etc

 After last time through
 Index now equal to vec.size()

 Loop exits

 Careful! Using an out of range index will likely cause a memory error that crashes your

program.

for (int index = 0 ; index < vec.size() ; ++index)

{

// ++index means "add 1 to the value of index"

cout << vec[index] << " " ;

}

L
o
o

p
in

g

Iterators

 Iterators are generalized ways of keeping track of positions in a container.

 3 types: forward iterators, bidirectional, random access

 Forward iterators can only be incremented (as seen here)

 Bidirectional can be added or subtracted to move both directions

 Random access can be used to access the container at any location

v[0] v[1] v[2]v.begin()

v.begin()+1

v.begin()+2

v.end()

for (vector<int>::iterator itr = vec.begin(); itr != vec.end() ; ++itr)

{

cout << *itr << " " ;

// iterators are pointers!

}

 Loop with a “for” loop, referencing the value of vec using an iterator type.

 vector<int>::iterator is a type that iterates through a vector of int’s.

 1st time through:

 itr points at 1st element in vec

 Print value pointed at by itr: *itr

 itr is incremented to the next element in the vector

 Iterators are very useful C++ concepts. They work on any STL container!

 No need to worry about the # of elements!

 Exact iterator behavior depends on the type of container but they are guaranteed to always

reach every value.

L
o
o

p
in

g

 Let the auto type asks the C++ compiler to figure out the iterator type automatically.

 An extra modification: Assigning the vec_end variable avoids calling vec.end() on every loop.

for (auto itr = vec.begin() ; itr != vec.end() ; ++itr)

{

cout << *itr << " " ;

}

L
o
o

p
in

g

for (auto itr = vec.begin(), auto vec_end = vec.end() ; itr != vec_end ; ++itr)

{

cout << *itr << " " ;

}

 Another iterator-based loop: iterator behavior and accessing an element are handled

automatically by the compiler

 Uses a reference so the element is not copied.

 The const auto & prevents changes to the element in the vector.

 If you don’t use const then the loop can update the vector elements via the reference.

 Less typing == less chance for program bugs.

for(const auto &element : vec)

{

cout << element << " " ;

}

L
o
o

p
in

g

Iterator notes
 There is small performance penalty for using iterators…but are they safer to use.

 They allow substitution of one container for another (list<> for vector<>, etc.)

 With templates you can write a function that accepts any STL container type.

template<typename T>

void dump_string(T &t)

{

for(auto itr=t.begin() ; itr!=t.end() ; itr++) {

cout << *itr << endl;

}

}

list<float> lst ;

lst.push_back(-5.0) ;

lst.push_back(12.0) ;

vector<double> vec(2) ;

vec[0] = 1.0 ;

vec[1] = 2.0 ;

dump_string<list<float> >(lst) ;

dump_string<vector<double> >(lst) ;

STL Demo

 Open project STL_Demo

 Let’s walk through the functions with the debugger and see

some vectors in action.

Tutorial Outline: Part 3

 Intro to the Standard Template Library

 Class inheritance

 Public, private, and protected access

 Virtual functions

Inheritance

 Inheritance is the ability to form a

hierarchy of classes where they

share common members and

methods.
 Helps with: code re-use, consistent

programming, program organization

 This is a powerful concept!

Molecule

Inorganic

Mineral

Organic

Protein

Inheritance
 The class being derived from is referred

to as the base, parent, or super class.

 The class being derived is the derived,

child, or sub class.

 For consistency, we’ll use superclass

and subclass in this tutorial. A base class

is the one at the top of the hierarchy.

Molecule

Inorganic

Mineral

Organic

Protein

Superclass

Subclass

Base Class

Inheritance in Action

 Streams in C++ are series of characters

– the C+ I/O system is based on this

concept.

 cout is an object of the class ostream. It

is a write-only series of characters that

prints to the terminal.

 There are two subclasses of ostream:

 ofstream – write characters to a file

 ostringstream – write characters to a string

 Writing to the terminal is straightforward:

cout << some_variable ;

 How might an object of class ofstream or

ostringstream be used if we want to write

characters to a file or to a string?

Inheritance in Action

 For ofstream and ofstringstream the << operator is inherited from ostream

and behaves the same way for each from the programmer’s point of view.

 The ofstream class adds a constructor to open a file and a close() method.

 ofstringstream adds a method to retrieve the underlying string, str()

 If you wanted a class to write to something else, like a USB port…
 Maybe look into inheriting from ostream!

 Or its underlying class, basic_ostream which handles types other than characters…

Inheritance in Action

#include <iostream> // cout

#include <fstream> // ofstream

#include <sstream> // ostringstream

using namespace std ;

void some_func(string msg) {

cout << msg ; // to the terminal

// The constructor opens a file for writing

ofstream my_file("filename.txt") ;

// Write to the file.

my_file << msg ;

// close the file.

my_file.close() ;

ostringstream oss ;

// Write to the stringstream

oss << msg ;

// Get the string from stringstream

cout << oss.str() ;

}

Public, protected, private

 Public and private were added by

NetBeans to the Rectangle class.

 These are used to control access

to parts of the class with

inheritance.

class Rectangle

{

public:

Rectangle();

Rectangle(float width, float length) ;

virtual ~Rectangle();

float m_width ;

float m_length ;

float Area() ;

protected:

private:

};

“There are only two things wrong with C++: The initial concept

and the implementation.”

– Bertrand Meyer (inventor of the Eiffel OOP language)

C++ Access Control and Inheritance

Access public protected private

Same class Yes Yes Yes

Subclass Yes Yes No

Outside classes Yes No No

Sub myobj ;

Myobj.i = 10 ; // public - ok

Myobj.j = 3 ; // protected - Compiler error

Myobj.k = 1 ; // private - Compiler error

class Super {

public:

int i;

protected:

int j ;

private:

int k ;

};

class Sub : public Super {

// in methods, could access

// i and j from Parent only.

};

Inheritance

Outside code

Inheritance

 With inheritance subclasses have access

to private and protected members and

methods all the way back to the base

class.

 Each subclass can still define its own

public, protected, and private members

and methods along the way.

class A

public

protected

private

class B : public A

public

protected

private

public A

protected A

class C : public B

public A

protected A

public

protected

public B

protected B

private

Single vs Multiple Inheritance

 C++ supports creating relationships where a subclass

inherits data members and methods from a single

superclass: single inheritance

 C++ also support inheriting from multiple classes

simultaneously: Multiple inheritance

 This tutorial will only cover single inheritance.

 Generally speaking…

 Multiple inheritance requires a large amount of design effort

 It’s an easy way to end up with overly complex, fragile code

 Java and C# (both came after C++) exclude multiple

inheritance on purpose to avoid problems with it.

 With multiple inheritance a hierarchy like

this is possible to create…this is

nicknamed the Deadly Diamond of

Death.

D

B C

A

C++ Inheritance Syntax

 Inheritance syntax pattern:
class SubclassName : public SuperclassName

 Here the public keyword is used.
 Methods implemented in class Sub can access any public or

protected members and methods in Super but cannot access

anything that is private.

 Other inheritance types are protected and private.

class Super {

public:

int i;

protected:

int j ;

private:

int k ;

};

class Sub : public Super {

// ...

};

Square

 Let’s make a subclass of Rectangle called Square.

 Open the NetBeans project Shapes

 This has the Rectangle class from Part 2 implemented.

 Add a class named Square.

 Make it inherit from Rectangle.

 Class Square inherits from class Rectangle

Square.h Square.cpp

#ifndef SQUARE_H

#define SQUARE_H

#include "Rectangle.h"

class Square : public Rectangle

{

public:

Square();

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include “Square.h"

Square::Square()

{}

Square::~Square()

{}

 Note that subclasses are free to add any number

of new methods or members, they are not limited

to those in the superclass.

A new Square constructor is needed.

 A square is, of course, just a rectangle with equal length and width.

 The area can be calculated the same way as a rectangle.

 Our Square class therefore needs just one value to initialize it and it can

re-use the Rectangle.Area() method for its area.

 Go ahead and try it:

 Add an argument to the default constructor in Square.h

 Update the constructor in Square.cpp to do…?

 Remember Square can access the public members and methods in its superclass

Solution 1

 Square can access the public members in its superclass.

 Its constructor can then just assign the length of the side to the

Rectangle m_width and m_length.

 This is unsatisfying – while there is nothing wrong with this it’s

not the OOP way to do things.

 Why re-code the perfectly good constructor in Rectangle?

#ifndef SQUARE_H

#define SQUARE_H

#include “Rectangle.h"

class Square : public Rectangle

{

public:

Square(float width);

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include “Square.h"

Square::Square(float length):

m_width (length), m_length(length)

{

}

The delegating constructor

 C++11 added a new constructor type

called the delegating constructor.

 Using member initialization lists you can

call one constructor from another.

 Even better: with member initialization

lists C++ can call superclass

constructors!

Square::Square(float length) :

Rectangle(length,length)

{

// other code could go here.

}

class class_c {

public:

int max;

int min;

int middle;

class_c(int my_max) {

max = my_max > 0 ? my_max : 10;

}

class_c(int my_max, int my_min) : class_c(my_max) {

min = my_min > 0 && my_min < max ? my_min : 1;

}

class_c(int my_max, int my_min, int my_middle) :

class_c (my_max, my_min){

middle = my_middle < max &&

my_middle > min ? my_middle : 5;

}

};

Reference:
https://msdn.microsoft.com/en-us/library/dn387583.aspx

Solution 2

 Square can directly call its superclass constructor and let the

Rectangle constructor make the assignment to m_width and

m_length.

 This saves typing, time, and reduces the chance of adding

bugs to your code.

 The more complex your code, the more compelling this statement

is.

 Code re-use is one of the prime reasons to use OOP.

#ifndef SQUARE_H

#define SQUARE_H

#include "Rectangle.h"

class Square : public Rectangle

{

public:

Square(float width);

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include "Square.h"

Square::Square(float length) :

Rectangle(length, length) {}

Trying it out in main()

 What happens behind the scenes

when this is compiled….

#include <iostream>

using namespace std;

#include “Square.h"

int main()

{

Square sQ(4) ;

// Uses the Rectangle Area() method!

cout << sQ.Area() << endl ;

return 0;

}

sQ.Area()

Square class
does not

implement Area()
so compiler looks

to superclass

Finds Area() in
Rectangle class.

Inserts call to
Rectangle.Area()

method in
compiled code.

More on Destructors
 When a subclass object is

removed from memory, its

destructor is called as it is for any

object.

 Its superclass destructor is than

also called .

 Each subclass should only clean

up its own problems and let

superclasses clean up theirs.

Square object is
removed from

memory

~Square() is called

~Rectangle() is
called

The formal concepts in OOP
Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

 Next up: Polymorphism

Using subclasses
 A function that takes a superclass

argument can also be called with

a subclass as the argument.

 The reverse is not true – a

function expecting a subclass

argument cannot accept its

superclass.

 Copy the code to the right and

add it to your main.cpp file.

void PrintArea(Rectangle &rT) {

cout << rT.Area() << endl ;

}

int main() {

Rectangle rT(1.0,2.0) ;

Square sQ(3.0) ;

PrintArea(rT) ;

PrintArea(sQ) ;

}

The PrintArea function

can accept the Square

object sQ because

Square is a subclass of

Rectangle.

Overriding Methods
 Sometimes a subclass needs to have the

same interface to a method as a

superclass but with different functionality.

 This is achieved by overriding a method.

 Overriding a method is simple: just re-

implement the method with the same

name and arguments in the subclass.

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

Super sP ;

sP.PrintNum() ; // Prints 1

Sub sB ;

sB.PrintNum() ; // Prints 2

Overriding Methods

 Seems simple, right?

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

Super sP ;

sP.PrintNum() ; // Prints 1

Sub sB ;

sB.PrintNum() ; // Prints 2

How about in a function call…

 Using a single function to operate

on different types is

polymorphism.

 Given the class definitions, what

is happening in this function call?

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

void FuncRef(Super &sP) {

sP.PrintNum() ;

}

Super sP ;

Func(sP) ; // Prints 1

Sub sB ;

Func(sB) ; // Hey!! Prints 1!!

“C++ is an insult to the human brain”

– Niklaus Wirth (designer of Pascal)

Type casting

 The Func function passes the argument as a reference (Super &sP).

 What’s happening here is dynamic type casting, the process of converting from

one type to another at runtime.

 Same mechanism as the dynamic_cast<type>() function

 The incoming object is treated as though it were a superclass object in

the function.

 When methods are overridden and called there are two points where

the proper version of the method can be identified: either at compile

time or at runtime.

void FuncRef(Super &sP) {

sP.PrintNum() ;

}

Virtual methods
 When a method is labeled as virtual and

overridden the compiler will generate

code that will check the type of an object

at runtime when the method is called.

 The type check will then result in the

expected version of the method being

called.

 When overriding a virtual method in a

subclass, it’s a good idea to label the

method as virtual in the subclass as well.

 …just in case this gets subclassed again!

class SuperVirtual

{

public:

virtual void PrintNum()

{

cout << 1 << endl ;

}

} ;

class SubVirtual : public SuperVirtual

{

public:

// Override

virtual void PrintNum()

{

cout << 2 << endl ;

}

} ;

void Func(SuperVirtual &sP)

{

sP.PrintNum() ;

}

SuperVirtual sP ;

Func(sP) ; // Prints 1

SubVirtual sB ;

Func(sB) ; // Prints 2!!

Early (static) vs. Late (dynamic) binding

 Leaving out the virtual keyword on a

method that is overridden results in the

compiler deciding at compile time which

version (subclass or superclass) of the

method to call.

 This is called early or static binding.

 At compile time, a function that takes a

superclass argument will only call the

non-virtual superclass method under

early binding.

 Making a method virtual adds code

behind the scenes (that you, the

programmer, never interact with directly)

 Lookups in a hidden table, called the

vtable, are done to figure out what version

of the virtual method should be run.

 This is called late or dynamic binding.

 There is a small performance penalty for

late binding due to the vtable lookup.

 This only applies when an object is

referred to by a reference or pointer.

Behind the scenes – vptr and vtable

 C++ classes have a hidden pointer (vptr)

generated that points to a table of virtual

methods associated with a class (vtable).

 When a virtual class method (base class

or its subclasses) is called by reference (

or pointer) when the program is running

the following happens:

 The object’s class vptr is followed to its class

vtable

 The virtual method is looked up in the vtable

and is then called.

 One vptr and one vtable per class so minimal

memory overhead

 If a method override is non-virtual it won’t be in

the vtable and it is selected at compile time.

Func(SuperVirtual &sP)

sP is a reference to a…

SuperVirtual SubVirtual

SuperVirtual’s

vptr

SubVirtual’s

vptr

Vtable

& SuperVirtual::PrintNum()

Vtable

& SubVirtual::PrintNum()

Let’s run this through the debugger

 Open the project Virtual_Method_Calls.

 Everything here is implemented in one big main.cpp

 Place a breakpoint at the first line in main() and in the two

implementations of Func()

When to make methods virtual

 If a method will be (or might be)

overridden in a subclass, make it virtual

 There is a minuscule performance

penalty. Will that even matter to you?
 i.e. Have you profiled and tested your code to

show that virtual method calls are a performance

issue?

 When is this true?
 Almost always! Who knows how your code will

be used in the future?

 Constructors are never virtual in C++.

 Destructors in a base class should

always be virtual.

 Also – if any method in a class is virtual,

make the destructor virtual

 These are important when dealing with

objects via reference and it avoids some

subtleties when manually allocating

memory.

Why all this complexity?

 Late binding allows for code libraries to be updated for new functionality. As methods are identified

at runtime the executable does not need to be updated.

 This is done all the time! Your C++ code may be, for example, a plugin to an existing simulation

code.

 Greater flexibility when dealing with multiple subclasses of a superclass.

 Most of the time this is the behavior you are looking for when building class hierarchies.

void FuncLate(SuperVirtual sP)

{

sP.PrintNum() ;

}

void FuncEarly(SuperVirtual &sP)

{

sP.PrintNum() ;

}

 Called by reference – late binding

to PrintNum()
 Called by value – early binding to

PrintNum even though it’s virtual!

 Remember the Deadly Diamond of

Death? Let’s explain.

 Look at the class hierarchy on the right.

 Square and Circle inherit from Shape

 Squircle inherits from both Square and Circle

 Syntax:

class Squircle : public Square, public Circle

 The Shape class implements an empty

Area() method. The Square and Circle

classes override it. Squircle does not.

 Under late binding, which version of Area

is accessed from Squircle?

Square.Area() or Circle.Area()?

Shape

virtual float Area() {}

Square

virtual float

Area() {…}

Circle

virtual float

Area() {…}

Squircle

Interfaces

 Interfaces are a way to have your

classes share behavior without them

sharing actual code.

 Gives much of the benefit of multiple

inheritance without the complexity and

pitfalls

Shape

Square Circle

 Example: for debugging you want each class

to have a Log() method that writes some info

to a file.

 Implement with an interface.

Log

Interfaces

 An interface class in C++ is called a pure virtual class.

 It contains virtual methods only with a special syntax.

Instead of {} the function is set to 0.
 Any subclass needs to implement the methods!

 Modified Square.h shown.

 What happens when this is compiled?

 Once the LogInfo() is uncommented it will compile.

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Log {

virtual void LogInfo()=0 ;

};

class Square : public Rectangle, Log

{

public:

Square(float length);

virtual ~Square();

// virtual void LogInfo() {}

protected:

private:

};

#endif // SQUARE_H

(…error…)

include/square.h:10:7: note: because the following virtual

functions are pure within 'Square':

class Square : public Rectangle, Log

^

include/square.h:7:18: note: virtual void Log::LogInfo()

virtual void LogInfo()=0 ;

Putting it all together

 Now let’s revisit our Shapes

project.

 Open the “Shapes with Circle”

project.

 This has a Shape base class with a

Rectangle and a Square

 Add a Circle class to the class

hierarchy in a sensible fashion.

Shape

Rectangle

Square

 Hint: Think first, code second.

Circle

???

New pure virtual Shape class

 Slight bit of trickery:

 An empty constructor is defined in shape.h

 No need to have an extra shape.cpp file if these

functions do nothing!

 Q: How much code can be in the header file?

 A: Most of it with some exceptions.

 .h files are not compiled into .o files so a

header with a lot of code gets re-compiled

every time it’s referenced in a source file.

#ifndef SHAPE_H

#define SHAPE_H

class Shape

{

public:

Shape() {}

virtual ~Shape() {}

virtual float Area()=0 ;

protected:

private:

};

#endif // SHAPE_H

Give it a try

 Add inheritance from Shape

to the Rectangle class

 Add a Circle class, inheriting

from wherever you like.

 Implement Area() for the

Circle

 If you just want to see a

solution, open the project

“Shapes with Circle solved”

A Potential Solution

 A Circle has one dimension

(radius), like a Square.

 Would only need to override the

Area() method

 But…

 Would be storing the radius in the

members m_width and m_length.

This is not a very obvious to

someone else who reads your code.

 Maybe:

 Change m_width and m_length

names to m_dim_1 and m_dim_2?

 Just makes everything more muddled!

Shape

Rectangle

Square

Circle

A Better Solution

 Inherit separately from the Shape

base class

 Seems logical, to most people a

circle is not a specialized form of

rectangle…

 Add a member m_radius to store

the radius.

 Implement the Area() method

 Makes more sense!

 Easy to extend to add an Oval

class, etc.

Shape

Rectangle

Square

Circle

New Circle class

 Also inherits from Shape

 Adds a constant value for p

 Constant values can be defined right in the

header file.

 If you accidentally try to change the value of PI

the compiler will throw an error.

#ifndef CIRCLE_H

#define CIRCLE_H

#include "shape.h"

class Circle : public Shape

{

public:

Circle();

Circle(float radius) ;

virtual ~Circle();

virtual float Area() ;

const float PI = 3.14;

float m_radius ;

protected:

private:

};

#endif // CIRCLE_H

 circle.cpp

 Questions?

#include "circle.h"

Circle::Circle()

{

//ctor

}

Circle::~Circle()

{

//dtor

}

// Use a member initialization list.

Circle::Circle(float radius) : m_radius{radius}

{}

float Circle::Area()

{

// Quiz: what happens if this line is

// uncommented and then compiled:

//PI=3.14159 ;

return m_radius * m_radius * PI ;

}

Quiz time!

 What happens behind

the scenes when the

function PrintArea is

called?

 How about if PrintArea’s

argument was instead:

void PrintArea(Shape shape)

void PrintArea(Shape &shape) {

cout << "Area: " << shape.Area() << endl ;

}

int main()

{

Square sQ(4) ;

Circle circ(3.5) ;

Rectangle rT(21,2) ;

// Print everything

PrintArea(sQ) ;

PrintArea(rT) ;

PrintArea(circ) ;

return 0;

}

Quick mention…

 Aside from overriding functions it

is also possible to override

operators in C++.

 As seen in the C++ string. The +

operator concatenates strings:

 It’s possible to override +,-,=,<,>,

brackets, parentheses, etc.

 Syntax:

 Recommendation:

 Generally speaking, avoid this. This

is an easy way to generate very

confusing code.

 A well-named function will almost

always be easier to understand than

an operator.

 An exceptions is the assignment

operator: operator=

string str = "ABC" ;

str = str + "DEF" ;

// str is now "ABCDEF"

MyClass operator*(const MyClass& mC) {...}

Summary

 C++ classes can be created in hierarchies via

inheritance, a core concept in OOP.

 Classes that inherit from others can make use

of the superclass’ public and protected

members and methods

 You write less code!

 Virtual methods should be used

whenever methods will be overridden in

subclasses.

 Avoid multiple inheritance, use interfaces

instead.

 Subclasses can override a superclass

method for their own purposes and can still

explicitly call the superclass method.

 Abstraction means hiding details when they

don’t need to be accessed by external code.
 Reduces the chances for bugs.

 While there is a lot of complexity here – in

terms of concepts, syntax, and application –

keep in mind that OOP is a highly successful

way of building programs!

