
Introduction to C++: Part 2

Tutorial Outline: Part 2

 References and Pointers

 Function Overloads

 Generic Functions

 Defining Classes

 Intro to the Standard Template Library

Pass by Value

 C++ defaults to pass by value behavior when calling a function.

 The function arguments are copied when used in the function.

 Changing the value of L or W in the RectangleArea1 function does not effect their original values in

the main() function

 When passing objects as function arguments it is important to be aware that potentially large data

structures are automatically copied!

main()

float L

float W

RectangleArea1(float L, float W)

float L

float W

copy

copy

Pass by Reference

 Pass by reference behavior is triggered when the & character is used to modify the type of the

argument.

 This is the type of behavior you see in Fortran, Matlab, Python, and others.

 Pass by reference function arguments are NOT copied. Instead the compiler sends a pointer to the

function that references the memory location of the original variable. The syntax of using the

argument in the function does not change.

 Pass by reference arguments almost always act just like a pass by value argument when writing

code EXCEPT that changing their value changes the value of the original variable!!

 The const modifier can be used to prevent changes to the original variable in main().

main()

float L

float W

RectangleArea3(const float& L, const float& W)

float L

float W

reference

reference

 In RectangleArea4 the pass by reference behavior is used as a way to

return the result without the function returning a value.

 The value of the area argument is modified in the main() routine by the

function.

 This can be a useful way for a function to return multiple values in the

calling routine.

void RectangleArea4(const float& L, const float& W, float& area) {

area= L*W ;

}

void does not return a value.

 In C++ arguments to functions can be objects…
 Example: Consider a string variable containing 1 million characters (approx. 1 MB of RAM).

 Pass by value requires a copy – 1 MB, pass by reference requires 8 bytes!

 Pass by value could potentially mean the accidental copying of large

amounts of memory which can greatly impact program memory usage and

performance.

 When passing by reference, use the const modifier whenever appropriate

to protect yourself from coding errors.
 Generally speaking – use const anytime you don’t want to modify function arguments in a

function.

“C makes it easy to shoot yourself in the foot; C++ makes it harder, but

when you do it blows your whole leg off.” – Bjarne Stroustrop

Tutorial Outline: Part 2

 References and Pointers

 Function Overloads

 Generic Functions

 Defining Classes

 Intro to the Standard Template Library

Function overloading

 The same function can be implemented

multiple times with different arguments.

 This allows for special cases to be

handled, or specialized behavior for

different types.

 cout and the << operator are an example

of function overloading
 << is just a function.

float sum(float a, float b) {

return a+b ;

}

int sum(int a, int b) {

return a+b ;

}

Function overloading

 Overloaded functions are differentiated

by their arguments and not the return

type.
 The number of arguments and their types can be

varied.

 The compiler will decide which overload

to use depending on the types of the

arguments.

 If it can’t decide a compile-time error will

occur.

float sum(float a, float b) {

return a+b ;

}

int sum(int a, int b) {

return a+b ;

}

C++ Templates (aka generics)

 Generic code is code that works on multiple different data types but is

only coded once.

 In C++ this is called a template.

 A C++ template is implemented entirely in a header file to define

generic classes and functions.

 The actual code is generated by the compiler wherever the template

is used in your code.

 There is NO PENALTY when your code is running!

 Function overloads are created automatically by the compiler.

 As a preview of how the C++ Standard Template Library works we’ll

walk thru some templates with NetBeans.

Sample template function

 The template is started with the keyword

template and is told it’ll handle a type which is

referred to as T in the code.

 Templates can be created with multiple different

types, not limited to just one.

 You don’t have to use T, any non-reserved word will

do.

 When the compiler sees the call to the

template function it will automatically generate

a function that takes and returns float types.

template <typename T>

T sum_template (T a, T b) {

return a+b ;

}

// Then call the function:

float x=1.0 ;

float y=2.0 ;

float z=sum_template<float>(x,y) ;

An Example

 Open the project Overloads_and_templates

 This is an example of simple function overloads and a template function.

 Let’s walk through it with the debugger.

When to use function overloading and templates?

 When it makes your code easier to use, maintain, write, or debug!
 From an academic scientific computing point of view, that is.

 These are more advanced C++ features. Mis-use can cause a lot of

misery and confusion.

 These are worthwhile parts of the language to become comfortable for

more experienced C++ programmers.

Stepping back a bit

 Summary so far:
 Basics of C++ syntax

 Declaring variables

 Defining functions

 Using the IDE

 As an object-oriented language C++ supports a core set of OOP

concepts.

 Knowing these concepts help with understanding some of the underlying

design of the language and how it operates in your programs.

The formal concepts in OOP

 Object-oriented programming (OOP):
 Defines classes to represent data and logic in a

program. Classes can contain members (data)

and methods (internal functions).

 Creates instances of classes, aka objects, and

builds the programs out of their interactions.

 The core concepts in addition to

classes and objects are:
 Encapsulation

 Inheritance

 Polymorphism

 Abstraction

Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

Core Concepts

 Encapsulation

 Bundles related data and functions

into a class

 Inheritance

 Builds a relationship between classes

to share class members and methods

 Abstraction

 The hiding of members, methods,

and implementation details inside of a

class.

 Polymorphism

 The application of the same code to

multiple data types

Core Concepts in this tutorial

 Encapsulation

 Demonstrated by writing some

classes

 Inheritance

 Write classes that inherit (re-use) the

code from other classes.

 Abstraction

 Design and setup of classes,

discussion of the Standard Template

Library (STL).

 Polymorphism

 Function overloading, template code,

and the STL

Tutorial Outline: Part 2

 References and Pointers

 Function Overloads

 Generic Functions

 Defining Classes

 Intro to the Standard Template Library

A first C++ class

 Open project Basic_Rectangle.

 We’ll add our own custom class to this project.

 A C++ class consists of 2 files: a header file (.h) and a source file (.cpp)

 The header file contains the definitions for the types and names of members, methods, and

how the class relates to other classes (if it does).

 The source file contains the code that implements the functionality of the class

 Sometimes there is a header file for a class but no source file.

Using NetBeans

 An IDE is very useful for setting up

code that follows patterns and

configuring the build system to compile

them.

 This saves time and effort for the

programmer.

 Right-click on the Basic_Rectangle

project and choose NewC++ Class

 Give it the name

Rectangle and click

the Finish button.

 Under the Header

Files in the project

open the new

Rectangle.h file.

Rectangle.h

keyword

Class name

Curly brace

Curly brace

and a

semi-colon.

Access

restrictions

Default declared methods

 Rectangle();
 A constructor. Called when an object of this class is

created.

 ~Rectangle();
 A destructor. Called when an object of this class is

removed from memory, i.e. destroyed.

 Ignore the virtual keyword for now.

 Rectangle(const Rectangle& orig);
 A copy constructor. Used to create a new object that’s

a copy of another.

Rectangle.cpp

Header file included

Class_name:: pattern indicates

the method declared in the header

is being implemented in code

here.

Methods are otherwise regular

functions with arguments () and

matched curly braces {}.

Let’s add some functionality

 A Rectangle class should store a

length and a width.

 To make it useful, let’s have it

supply an Area() method to

compute its own area.

 Edit the header file to look like the

code to the right.

class Rectangle {

public:

Rectangle();

Rectangle(const Rectangle& orig);

virtual ~Rectangle();

float m_length ;

float m_width ;

float Area() ;

float ScaledArea(const float scale);

private:

};

Encapsulation

 Bundling the data and area calculation for a rectangle into a

single class is an example of the concept of encapsulation.

The code for the two methods is needed

 Click on Rectangle.cpp and put

the cursor at the end of the file.

 Type Ctrl-Space

 Select the Area() method.

 Repeat for ScaledArea().

 This creates a stub with

necessary stuff filled in.

Fill in the methods

 Member variables can be accessed as though they were passed to the method.

 Methods can also call each other.

 Fill in the Area() method and then write your own ScaledArea(). Don’t forget to compile!

 Step 1: add some comments.

 Step 2: add some code.

Using the new class

 Open main.cpp

 Add an include statement for

the new Rectangle.h

 Create a Rectangle object

and call its methods.

 We’ll do this together…

Special methods

 There are several methods that deal with creating and

destroying objects.

 These include:
 Constructors – called when an object is created. Can have many defined per class.

 Destructor – one per class, called when an object is destroyed

 Copy – called when an object is created by copying an existing object

 Move – a feature of C++11 that is used in certain circumstances to avoid copies.

Construction and Destruction

 The constructor is called when an

object is created.

 This is used to initialize an object:

 Load values into member variables

 Open files

 Connect to hardware, databases,

networks, etc.

 The destructor is called when an

object goes out of scope.

 Example:

 Object c1 is created when the

program reaches the first line of

the function, and destroyed when

the program leaves the function.

void function() {

ClassOne c1 ;

}

When an object is instantiated…

 The rT object is created in memory.

 When it is created its constructor is called to

do any necessary initialization.

 The constructor can take any number of

arguments like any other function but it

cannot return any values.

 What if there are multiple constructors?
 The compiler follows standard function overload rules.

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

}

#include "rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Note the constructor has no

return type!

A second constructor

rectangle.h

class Rectangle

{

public:

Rectangle();

Rectangle(const float width,

const float length) ;

/* etc */

};

rectangle.cpp
#include "rectangle.h“

/* C++11 style */

Rectangle::Rectangle(const float width,

const float length):

m_width(width),

m_length(length)

{

/* extra code could go here */

}

 Adding a second constructor is similar to overloading a

function.

 Here the modern C++11 style is used to set the member

values – this is called a member initialization list

Member Initialization Lists

 Syntax:

MyClass(int A, OtherClass &B, float C):

m_A(A),

m_B(B),

m_C(C) {

/* other code can go here */

}

Colon goes here

Members assigned

and separated with

commas. The order

doesn’t matter.

Additional code can be

added in the code

block.

And now use both constructors

 Both constructors are now used.

The new constructor initializes the

values when the object is created.

 Constructors are used to:

 Initialize members

 Open files

 Connect to databases

 Etc.

#include <iostream>

using namespace std;

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

rT.m_length = 2.0 ;

cout << rT.Area() << endl ;

Rectangle rT_2(2.0,2.0) ;

cout << rT_2.Area() << endl ;

return 0;

}

Default values

 C++11 added the ability to define default

values in headers in an intuitive way.

 Pre-C++11 default values would have been

coded into constructors.

 If members with default values get their value

set in constructor than the default value is

ignored.

 i.e. no “double setting” of the value.

class Rectangle {

public:

Rectangle();

Rectangle(const float width,

const float length) ;

Rectangle(const Rectangle& orig);

virtual ~Rectangle();

float m_length = 0.0 ;

float m_width = 0.0 ;

float Area() ;

float ScaledArea(const float scale);

private:

};

Default constructors and destructors

 The two methods created by NetBeans automatically

are explicit versions of the default C++ constructors

and destructors.

 Every class has them – if you don’t define them then

empty ones that do nothing will be created for you by

the compiler.

 If you really don’t want the default constructor you can

delete it with the delete keyword.

 Also in the header file you can use the default keyword

if you like to be clear that you are using the default.

class Foo {

public:

Foo() = delete ;

// Another constructor

// must be defined!

Foo(int x) ;

};

class Bar {

public:

Bar() = default ;

};

Custom constructors and destructors

 You must define your own constructor when you want to initialize an

object with arguments.

 A custom destructor is always needed when internal members in the

class need special handling.

 Examples: manually allocated memory, open files, hardware drivers, database or

network connections, custom data structures, etc.

Destructors

 Destructors are called when an object is

destroyed.

 Destructors have no return type.

 There is only one destructor allowed per

class.

 Objects are destroyed when they go out

of scope.

 Destructors are never called explicitly by

the programmer. Calls to destructors are

inserted automatically by the compiler.

Rectangle::~Rectangle()

{

//dtor

}

This class just has 2 floats as members which are

automatically removed from memory by the compiler.

House object

~House() destructor

Destructors

 Example:

class Example {

public:

Example() = delete ;

Example(int count) ;

virtual ~Example() ;

// A pointer to some memory

// that will be allocated.

float *values = nullptr ;

};

Example::Example(int count) {

// Allocate memory to store "count"

// floats.

values = new float[count];

}

Example::~Example() {

// The destructor must free this

// memory. Only do so if values is not

// null.

if (values) {

delete[] values ;

}

}

Scope
 Scope is the region where a variable is valid.

 Constructors are called when an object is created.

 Destructors are only ever called implicitly.

int main() { // Start of a code block

// in main function scope

float x ; // No constructors for built-in types

ClassOne c1 ; // c1 constructor ClassOne() is called.

if (1){ // Start of an inner code block

// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne() is called.

} // c2 destructor ~ClassOne() is called.

ClassOne c3 ; // c3 constructor ClassOne() is called.

} // leaving program, call destructors for c3 and c1 ~ClassOne()

// variable x: no destructor for built-in type

Copy, Assignment, and Move Constructors

 The compiler will automatically create constructors to deal with copying, assignment, and

moving. NetBeans filled in an empty default copy constructor for us.

 How do you know if you need to write one?

 When the code won’t compile and the error message says you need one!

 OR unexpected things happen when running.

 You may require custom code when...

 dealing with open files inside an object

 The class manually allocated memory

 Hardware resources (a serial port) opened inside an object

 Etc.

Rectangle rT_1(1.0,2.0) ;

// Now use the copy constructor

Rectangle rT_2(rT_1) ;

// Do an assignment, with the

// default assignment operator

rT_2 = rT_1 ;

Templates and classes

 Classes can also be created via templates in C++

 Templates can be used for type definitions with:
 Entire class definitions

 Members of the class

 Methods of the class

 Templates can be used with class inheritance as well.

 This topic is way beyond the scope of this tutorial!

Tutorial Outline: Part 2

 References and Pointers

 Function Overloads

 Generic Functions

 Defining Classes

 Intro to the Standard Template Library

The Standard Template Library

 The STL is a large collection of containers and algorithms that are part of

C++.
 It provides many of the basic algorithms and data structures used in computer science.

 As the name implies, it consists of generic code that you specialize as

needed.

 The STL is:
 Well-vetted and tested.

 Well-documented with lots of resources available for help.

Containers

 There are 16 types of containers in the STL:

Container Description

array 1D list of elements.

vector 1D list of elements

deque Double ended queue

forward_list Linked list

list Double-linked list

stack Last-in, first-out list.

queue First-in, first-out list.

priority_queue 1st element is always the

largest in the container

Container Description

set Unique collection in a specific

order

multiset Elements stored in a specific

order, can have duplicates.

map Key-value storage in a specific

order

multimap Like a map but values can

have the same key.

unordered_set Same as set, sans ordering

unordered_multiset Same as multisetset, sans

ordering

unordered_map Same as map, sans ordering

unordered_multimap Same as multimap, sans

ordering

Algorithms

 There are 85+ of these.

 Example: find, count, replace, sort, is_sorted, max, min, binary_search, reverse

 Algorithms manipulate the data stored in containers but is not tied to STL containers

 These can be applied to your own collections or containers of data

 Example:

 The implementation is hidden and the necessary code for reverse() is generated from

templates at compile time.

vector<int> v(3); // Declare a vector of 3 elements.

v[0] = 7;

v[1] = 3;

v[2] = v[0] + v[1]; // v[0] == 7, v[1] == 3, v[2] == 10

reverse(v.begin(), v.end()) ; // v[0] == 10, v[1] == 3, v[2] == 7

vector<T>
 A very common and useful class in C++ is the vector class. Access it with:

 Vector has many methods:

 Various constructors

 Ways to iterate or loop through its contents

 Copy or assign to another vector

 Query vector for the number of elements it contains or its backing storage size.

 Example usage: vector<float> my_vec ;

 Or: vector<float> my_vec(50) ;

#include <vector>

 Hidden from the programmer is the backing store

 Object oriented design in action!

 This is how the vector stores its data internally.

vector<T>

Contains N elements. Given by size() method.

Allocated for a total of M

elements

Given by capacity() method.

Add some more to the vector

New memory is allocated.

Old data is copied in.

New M > old M.

Old allocation is destroyed.

Allocated for a total of M’

elements

Destructors

 vector<t> can hold objects of any type:
 Primitive (aka basic) types: int, float, char, etc.

 Objects: string, your own classes, file stream objects (ex. ostream), etc.

 Pointers: int*, string*, etc.

 But NOT references!

 When a vector is destroyed:
 If it holds primitive types or pointers it just deallocates its backing store.

 If it holds objects it will call each object’s destructor before freeing its backing store.

vector<t> with objects

 Select an object in a vector.

 The members and methods can be

accessed directly.

 Elements can be accessed with

brackets and an integer starting

from 0.

// a vector with memory preallocated to

// hold 1000 objects.

vector<MyClass> my_vec(1000);

// Now make a vector with 1000 MyClass objects

// that are initialized using the MyClass constructor

vector<MyClass> my_vec2(1000,MyClass(arg1,arg2));

// Access an object's method.

my_vec2[100].some_method() ;

// Or a member

my_vec2[10].member_integer = 100 ;

// Clear out the entire vector

my_vec2.clear()

// but that might not re-set the backing store…

// Let’s check the docs:

// http://www.cplusplus.com/reference/vector/vector/clear/

http://www.cplusplus.com/reference/vector/vector/clear/

 Loop with a “for” loop, referencing the value of vec using brackets.

 1st time through:
 index = 0

 Print value at vec[0]

 index gets incremented by 1

 2nd time through:
 Index = 1

 Etc

 After last time through
 Index now equal to vec.size()

 Loop exits

 Careful! Using an out of range index will likely cause a memory error that crashes your

program.

 Note we call the size() method on every iteration.

for (int index = 0 ; index < vec.size() ; ++index)

{

// ++index means "add 1 to the value of index"

cout << vec[index] << " " ;

}

L
o
o

p
in

g

Iterators

 Iterators are generalized ways of keeping track of positions in a container.

 3 types: forward iterators, bidirectional, random access

 Forward iterators can only be incremented (as seen here)

 Bidirectional can be added or subtracted to move both directions

 Random access can be used to access the container at any location

v[0] v[1] v[2]v.begin()

v.begin()+1

v.begin()+2

v.end()

for (vector<int>::iterator itr = vec.begin(); itr != vec.end() ; ++itr)

{

cout << *itr << " " ;

// iterators are pointers!

}

 Loop with a “for” loop, referencing the value of vec using an iterator type.

 vector<int>::iterator is a type that iterates through a vector of int’s.

 1st time through:
 itr points at 1st element in vec

 Print value pointed at by itr: *itr

 itr is incremented to the next element in the vector

 Iterators are very useful C++ concepts. They work on any STL container!
 No need to worry about the # of elements!

 Exact iterator behavior depends on the type of container but they are guaranteed to always reach every value.

 Note we are now retrieving the end iterator at every loop to see if we’ve reached it: vec.end()

L
o
o

p
in

g

 Let the auto type asks the C++ compiler to figure out the iterator type automatically.

 An extra modification: Assigning the vec_end variable avoids calling vec.end() on every loop.

for (auto itr = vec.begin(), auto vec_end = vec.end() ; itr != vec_end ; ++itr)

{

cout << *itr << " " ;

}

L
o
o

p
in

g

 Another iterator-based loop: iterator behavior and accessing an element are handled

automatically by the compiler

 Uses a reference so the element is not copied.

 The const auto & prevents changes to the element in the vector.

 Less typing == less chance for program bugs.

for(const auto &element : vec)

{

cout << element << " " ;

}

L
o
o

p
in

g

Iterator notes
 There is small performance penalty for using iterators…but are they safer to use.

 They allow substitution of one container for another (list<> for vector<>, etc.)

 With templates you can write a function that accepts any STL container type.

template<class T>

void dump_string(T &t)

{

for(auto itr=t.begin() ; itr!=t.end() ; itr++) {

cout<<*itr<<endl;

}

}

list<float> lst ;

lst.push_back(-5.0) ;

lst.push_back(12.0) ;

vector<double> vec(2) ;

vec[0] = 1.0 ;

vec[1] = 2.0 ;

dump_string<list<float> >(lst) ;

dump_string<vector<double> >(lst) ;

STL Demo

 Open project STL_Demo

 Let’s walk through the functions with the debugger and see

some vectors in action.

