
Introduction to C++: Part 2

Tutorial Outline: Part 2

 References and Pointers

 Function Overloads

 Generic Functions

 Defining Classes

 Intro to the Standard Template Library

Pass by Value

 C++ defaults to pass by value behavior when calling a function.

 The function arguments are copied when used in the function.

 Changing the value of L or W in the RectangleArea1 function does not effect their original values in

the main() function

 When passing objects as function arguments it is important to be aware that potentially large data

structures are automatically copied!

main()

float L

float W

RectangleArea1(float L, float W)

float L

float W

copy

copy

Pass by Reference

 Pass by reference behavior is triggered when the & character is used to modify the type of the

argument.

 This is the type of behavior you see in Fortran, Matlab, Python, and others.

 Pass by reference function arguments are NOT copied. Instead the compiler sends a pointer to the

function that references the memory location of the original variable. The syntax of using the

argument in the function does not change.

 Pass by reference arguments almost always act just like a pass by value argument when writing

code EXCEPT that changing their value changes the value of the original variable!!

 The const modifier can be used to prevent changes to the original variable in main().

main()

float L

float W

RectangleArea3(const float& L, const float& W)

float L

float W

reference

reference

 In RectangleArea4 the pass by reference behavior is used as a way to

return the result without the function returning a value.

 The value of the area argument is modified in the main() routine by the

function.

 This can be a useful way for a function to return multiple values in the

calling routine.

void RectangleArea4(const float& L, const float& W, float& area) {

area= L*W ;

}

void does not return a value.

 In C++ arguments to functions can be objects…
 Example: Consider a string variable containing 1 million characters (approx. 1 MB of RAM).

 Pass by value requires a copy – 1 MB, pass by reference requires 8 bytes!

 Pass by value could potentially mean the accidental copying of large

amounts of memory which can greatly impact program memory usage and

performance.

 When passing by reference, use the const modifier whenever appropriate

to protect yourself from coding errors.
 Generally speaking – use const anytime you don’t want to modify function arguments in a

function.

“C makes it easy to shoot yourself in the foot; C++ makes it harder, but

when you do it blows your whole leg off.” – Bjarne Stroustrop

Tutorial Outline: Part 2

 References and Pointers

 Function Overloads

 Generic Functions

 Defining Classes

 Intro to the Standard Template Library

Function overloading

 The same function can be implemented

multiple times with different arguments.

 This allows for special cases to be

handled, or specialized behavior for

different types.

 cout and the << operator are an example

of function overloading
 << is just a function.

float sum(float a, float b) {

return a+b ;

}

int sum(int a, int b) {

return a+b ;

}

Function overloading

 Overloaded functions are differentiated

by their arguments and not the return

type.
 The number of arguments and their types can be

varied.

 The compiler will decide which overload

to use depending on the types of the

arguments.

 If it can’t decide a compile-time error will

occur.

float sum(float a, float b) {

return a+b ;

}

int sum(int a, int b) {

return a+b ;

}

C++ Templates (aka generics)

 Generic code is code that works on multiple different data types but is

only coded once.

 In C++ this is called a template.

 A C++ template is implemented entirely in a header file to define

generic classes and functions.

 The actual code is generated by the compiler wherever the template

is used in your code.

 There is NO PENALTY when your code is running!

 Function overloads are created automatically by the compiler.

 As a preview of how the C++ Standard Template Library works we’ll

walk thru some templates with NetBeans.

Sample template function

 The template is started with the keyword

template and is told it’ll handle a type which is

referred to as T in the code.

 Templates can be created with multiple different

types, not limited to just one.

 You don’t have to use T, any non-reserved word will

do.

 When the compiler sees the call to the

template function it will automatically generate

a function that takes and returns float types.

template <typename T>

T sum_template (T a, T b) {

return a+b ;

}

// Then call the function:

float x=1.0 ;

float y=2.0 ;

float z=sum_template<float>(x,y) ;

An Example

 Open the project Overloads_and_templates

 This is an example of simple function overloads and a template function.

 Let’s walk through it with the debugger.

When to use function overloading and templates?

 When it makes your code easier to use, maintain, write, or debug!
 From an academic scientific computing point of view, that is.

 These are more advanced C++ features. Mis-use can cause a lot of

misery and confusion.

 These are worthwhile parts of the language to become comfortable for

more experienced C++ programmers.

Stepping back a bit

 Summary so far:
 Basics of C++ syntax

 Declaring variables

 Defining functions

 Using the IDE

 As an object-oriented language C++ supports a core set of OOP

concepts.

 Knowing these concepts help with understanding some of the underlying

design of the language and how it operates in your programs.

The formal concepts in OOP

 Object-oriented programming (OOP):
 Defines classes to represent data and logic in a

program. Classes can contain members (data)

and methods (internal functions).

 Creates instances of classes, aka objects, and

builds the programs out of their interactions.

 The core concepts in addition to

classes and objects are:
 Encapsulation

 Inheritance

 Polymorphism

 Abstraction

Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

Core Concepts

 Encapsulation

 Bundles related data and functions

into a class

 Inheritance

 Builds a relationship between classes

to share class members and methods

 Abstraction

 The hiding of members, methods,

and implementation details inside of a

class.

 Polymorphism

 The application of the same code to

multiple data types

Core Concepts in this tutorial

 Encapsulation

 Demonstrated by writing some

classes

 Inheritance

 Write classes that inherit (re-use) the

code from other classes.

 Abstraction

 Design and setup of classes,

discussion of the Standard Template

Library (STL).

 Polymorphism

 Function overloading, template code,

and the STL

Tutorial Outline: Part 2

 References and Pointers

 Function Overloads

 Generic Functions

 Defining Classes

 Intro to the Standard Template Library

A first C++ class

 Open project Basic_Rectangle.

 We’ll add our own custom class to this project.

 A C++ class consists of 2 files: a header file (.h) and a source file (.cpp)

 The header file contains the definitions for the types and names of members, methods, and

how the class relates to other classes (if it does).

 The source file contains the code that implements the functionality of the class

 Sometimes there is a header file for a class but no source file.

Using NetBeans

 An IDE is very useful for setting up

code that follows patterns and

configuring the build system to compile

them.

 This saves time and effort for the

programmer.

 Right-click on the Basic_Rectangle

project and choose NewC++ Class

 Give it the name

Rectangle and click

the Finish button.

 Under the Header

Files in the project

open the new

Rectangle.h file.

Rectangle.h

keyword

Class name

Curly brace

Curly brace

and a

semi-colon.

Access

restrictions

Default declared methods

 Rectangle();
 A constructor. Called when an object of this class is

created.

 ~Rectangle();
 A destructor. Called when an object of this class is

removed from memory, i.e. destroyed.

 Ignore the virtual keyword for now.

 Rectangle(const Rectangle& orig);
 A copy constructor. Used to create a new object that’s

a copy of another.

Rectangle.cpp

Header file included

Class_name:: pattern indicates

the method declared in the header

is being implemented in code

here.

Methods are otherwise regular

functions with arguments () and

matched curly braces {}.

Let’s add some functionality

 A Rectangle class should store a

length and a width.

 To make it useful, let’s have it

supply an Area() method to

compute its own area.

 Edit the header file to look like the

code to the right.

class Rectangle {

public:

Rectangle();

Rectangle(const Rectangle& orig);

virtual ~Rectangle();

float m_length ;

float m_width ;

float Area() ;

float ScaledArea(const float scale);

private:

};

Encapsulation

 Bundling the data and area calculation for a rectangle into a

single class is an example of the concept of encapsulation.

The code for the two methods is needed

 Click on Rectangle.cpp and put

the cursor at the end of the file.

 Type Ctrl-Space

 Select the Area() method.

 Repeat for ScaledArea().

 This creates a stub with

necessary stuff filled in.

Fill in the methods

 Member variables can be accessed as though they were passed to the method.

 Methods can also call each other.

 Fill in the Area() method and then write your own ScaledArea(). Don’t forget to compile!

 Step 1: add some comments.

 Step 2: add some code.

Using the new class

 Open main.cpp

 Add an include statement for

the new Rectangle.h

 Create a Rectangle object

and call its methods.

 We’ll do this together…

Special methods

 There are several methods that deal with creating and

destroying objects.

 These include:
 Constructors – called when an object is created. Can have many defined per class.

 Destructor – one per class, called when an object is destroyed

 Copy – called when an object is created by copying an existing object

 Move – a feature of C++11 that is used in certain circumstances to avoid copies.

Construction and Destruction

 The constructor is called when an

object is created.

 This is used to initialize an object:

 Load values into member variables

 Open files

 Connect to hardware, databases,

networks, etc.

 The destructor is called when an

object goes out of scope.

 Example:

 Object c1 is created when the

program reaches the first line of

the function, and destroyed when

the program leaves the function.

void function() {

ClassOne c1 ;

}

When an object is instantiated…

 The rT object is created in memory.

 When it is created its constructor is called to

do any necessary initialization.

 The constructor can take any number of

arguments like any other function but it

cannot return any values.

 What if there are multiple constructors?
 The compiler follows standard function overload rules.

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

}

#include "rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Note the constructor has no

return type!

A second constructor

rectangle.h

class Rectangle

{

public:

Rectangle();

Rectangle(const float width,

const float length) ;

/* etc */

};

rectangle.cpp
#include "rectangle.h“

/* C++11 style */

Rectangle::Rectangle(const float width,

const float length):

m_width(width),

m_length(length)

{

/* extra code could go here */

}

 Adding a second constructor is similar to overloading a

function.

 Here the modern C++11 style is used to set the member

values – this is called a member initialization list

Member Initialization Lists

 Syntax:

MyClass(int A, OtherClass &B, float C):

m_A(A),

m_B(B),

m_C(C) {

/* other code can go here */

}

Colon goes here

Members assigned

and separated with

commas. The order

doesn’t matter.

Additional code can be

added in the code

block.

And now use both constructors

 Both constructors are now used.

The new constructor initializes the

values when the object is created.

 Constructors are used to:

 Initialize members

 Open files

 Connect to databases

 Etc.

#include <iostream>

using namespace std;

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

rT.m_length = 2.0 ;

cout << rT.Area() << endl ;

Rectangle rT_2(2.0,2.0) ;

cout << rT_2.Area() << endl ;

return 0;

}

Default values

 C++11 added the ability to define default

values in headers in an intuitive way.

 Pre-C++11 default values would have been

coded into constructors.

 If members with default values get their value

set in constructor than the default value is

ignored.

 i.e. no “double setting” of the value.

class Rectangle {

public:

Rectangle();

Rectangle(const float width,

const float length) ;

Rectangle(const Rectangle& orig);

virtual ~Rectangle();

float m_length = 0.0 ;

float m_width = 0.0 ;

float Area() ;

float ScaledArea(const float scale);

private:

};

Default constructors and destructors

 The two methods created by NetBeans automatically

are explicit versions of the default C++ constructors

and destructors.

 Every class has them – if you don’t define them then

empty ones that do nothing will be created for you by

the compiler.

 If you really don’t want the default constructor you can

delete it with the delete keyword.

 Also in the header file you can use the default keyword

if you like to be clear that you are using the default.

class Foo {

public:

Foo() = delete ;

// Another constructor

// must be defined!

Foo(int x) ;

};

class Bar {

public:

Bar() = default ;

};

Custom constructors and destructors

 You must define your own constructor when you want to initialize an

object with arguments.

 A custom destructor is always needed when internal members in the

class need special handling.

 Examples: manually allocated memory, open files, hardware drivers, database or

network connections, custom data structures, etc.

Destructors

 Destructors are called when an object is

destroyed.

 Destructors have no return type.

 There is only one destructor allowed per

class.

 Objects are destroyed when they go out

of scope.

 Destructors are never called explicitly by

the programmer. Calls to destructors are

inserted automatically by the compiler.

Rectangle::~Rectangle()

{

//dtor

}

This class just has 2 floats as members which are

automatically removed from memory by the compiler.

House object

~House() destructor

Destructors

 Example:

class Example {

public:

Example() = delete ;

Example(int count) ;

virtual ~Example() ;

// A pointer to some memory

// that will be allocated.

float *values = nullptr ;

};

Example::Example(int count) {

// Allocate memory to store "count"

// floats.

values = new float[count];

}

Example::~Example() {

// The destructor must free this

// memory. Only do so if values is not

// null.

if (values) {

delete[] values ;

}

}

Scope
 Scope is the region where a variable is valid.

 Constructors are called when an object is created.

 Destructors are only ever called implicitly.

int main() { // Start of a code block

// in main function scope

float x ; // No constructors for built-in types

ClassOne c1 ; // c1 constructor ClassOne() is called.

if (1){ // Start of an inner code block

// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne() is called.

} // c2 destructor ~ClassOne() is called.

ClassOne c3 ; // c3 constructor ClassOne() is called.

} // leaving program, call destructors for c3 and c1 ~ClassOne()

// variable x: no destructor for built-in type

Copy, Assignment, and Move Constructors

 The compiler will automatically create constructors to deal with copying, assignment, and

moving. NetBeans filled in an empty default copy constructor for us.

 How do you know if you need to write one?

 When the code won’t compile and the error message says you need one!

 OR unexpected things happen when running.

 You may require custom code when...

 dealing with open files inside an object

 The class manually allocated memory

 Hardware resources (a serial port) opened inside an object

 Etc.

Rectangle rT_1(1.0,2.0) ;

// Now use the copy constructor

Rectangle rT_2(rT_1) ;

// Do an assignment, with the

// default assignment operator

rT_2 = rT_1 ;

Templates and classes

 Classes can also be created via templates in C++

 Templates can be used for type definitions with:
 Entire class definitions

 Members of the class

 Methods of the class

 Templates can be used with class inheritance as well.

 This topic is way beyond the scope of this tutorial!

Tutorial Outline: Part 2

 References and Pointers

 Function Overloads

 Generic Functions

 Defining Classes

 Intro to the Standard Template Library

The Standard Template Library

 The STL is a large collection of containers and algorithms that are part of

C++.
 It provides many of the basic algorithms and data structures used in computer science.

 As the name implies, it consists of generic code that you specialize as

needed.

 The STL is:
 Well-vetted and tested.

 Well-documented with lots of resources available for help.

Containers

 There are 16 types of containers in the STL:

Container Description

array 1D list of elements.

vector 1D list of elements

deque Double ended queue

forward_list Linked list

list Double-linked list

stack Last-in, first-out list.

queue First-in, first-out list.

priority_queue 1st element is always the

largest in the container

Container Description

set Unique collection in a specific

order

multiset Elements stored in a specific

order, can have duplicates.

map Key-value storage in a specific

order

multimap Like a map but values can

have the same key.

unordered_set Same as set, sans ordering

unordered_multiset Same as multisetset, sans

ordering

unordered_map Same as map, sans ordering

unordered_multimap Same as multimap, sans

ordering

Algorithms

 There are 85+ of these.

 Example: find, count, replace, sort, is_sorted, max, min, binary_search, reverse

 Algorithms manipulate the data stored in containers but is not tied to STL containers

 These can be applied to your own collections or containers of data

 Example:

 The implementation is hidden and the necessary code for reverse() is generated from

templates at compile time.

vector<int> v(3); // Declare a vector of 3 elements.

v[0] = 7;

v[1] = 3;

v[2] = v[0] + v[1]; // v[0] == 7, v[1] == 3, v[2] == 10

reverse(v.begin(), v.end()) ; // v[0] == 10, v[1] == 3, v[2] == 7

vector<T>
 A very common and useful class in C++ is the vector class. Access it with:

 Vector has many methods:

 Various constructors

 Ways to iterate or loop through its contents

 Copy or assign to another vector

 Query vector for the number of elements it contains or its backing storage size.

 Example usage: vector<float> my_vec ;

 Or: vector<float> my_vec(50) ;

#include <vector>

 Hidden from the programmer is the backing store

 Object oriented design in action!

 This is how the vector stores its data internally.

vector<T>

Contains N elements. Given by size() method.

Allocated for a total of M

elements

Given by capacity() method.

Add some more to the vector

New memory is allocated.

Old data is copied in.

New M > old M.

Old allocation is destroyed.

Allocated for a total of M’

elements

Destructors

 vector<t> can hold objects of any type:
 Primitive (aka basic) types: int, float, char, etc.

 Objects: string, your own classes, file stream objects (ex. ostream), etc.

 Pointers: int*, string*, etc.

 But NOT references!

 When a vector is destroyed:
 If it holds primitive types or pointers it just deallocates its backing store.

 If it holds objects it will call each object’s destructor before freeing its backing store.

vector<t> with objects

 Select an object in a vector.

 The members and methods can be

accessed directly.

 Elements can be accessed with

brackets and an integer starting

from 0.

// a vector with memory preallocated to

// hold 1000 objects.

vector<MyClass> my_vec(1000);

// Now make a vector with 1000 MyClass objects

// that are initialized using the MyClass constructor

vector<MyClass> my_vec2(1000,MyClass(arg1,arg2));

// Access an object's method.

my_vec2[100].some_method() ;

// Or a member

my_vec2[10].member_integer = 100 ;

// Clear out the entire vector

my_vec2.clear()

// but that might not re-set the backing store…

// Let’s check the docs:

// http://www.cplusplus.com/reference/vector/vector/clear/

http://www.cplusplus.com/reference/vector/vector/clear/

 Loop with a “for” loop, referencing the value of vec using brackets.

 1st time through:
 index = 0

 Print value at vec[0]

 index gets incremented by 1

 2nd time through:
 Index = 1

 Etc

 After last time through
 Index now equal to vec.size()

 Loop exits

 Careful! Using an out of range index will likely cause a memory error that crashes your

program.

 Note we call the size() method on every iteration.

for (int index = 0 ; index < vec.size() ; ++index)

{

// ++index means "add 1 to the value of index"

cout << vec[index] << " " ;

}

L
o
o

p
in

g

Iterators

 Iterators are generalized ways of keeping track of positions in a container.

 3 types: forward iterators, bidirectional, random access

 Forward iterators can only be incremented (as seen here)

 Bidirectional can be added or subtracted to move both directions

 Random access can be used to access the container at any location

v[0] v[1] v[2]v.begin()

v.begin()+1

v.begin()+2

v.end()

for (vector<int>::iterator itr = vec.begin(); itr != vec.end() ; ++itr)

{

cout << *itr << " " ;

// iterators are pointers!

}

 Loop with a “for” loop, referencing the value of vec using an iterator type.

 vector<int>::iterator is a type that iterates through a vector of int’s.

 1st time through:
 itr points at 1st element in vec

 Print value pointed at by itr: *itr

 itr is incremented to the next element in the vector

 Iterators are very useful C++ concepts. They work on any STL container!
 No need to worry about the # of elements!

 Exact iterator behavior depends on the type of container but they are guaranteed to always reach every value.

 Note we are now retrieving the end iterator at every loop to see if we’ve reached it: vec.end()

L
o
o

p
in

g

 Let the auto type asks the C++ compiler to figure out the iterator type automatically.

 An extra modification: Assigning the vec_end variable avoids calling vec.end() on every loop.

for (auto itr = vec.begin(), auto vec_end = vec.end() ; itr != vec_end ; ++itr)

{

cout << *itr << " " ;

}

L
o
o

p
in

g

 Another iterator-based loop: iterator behavior and accessing an element are handled

automatically by the compiler

 Uses a reference so the element is not copied.

 The const auto & prevents changes to the element in the vector.

 Less typing == less chance for program bugs.

for(const auto &element : vec)

{

cout << element << " " ;

}

L
o
o

p
in

g

Iterator notes
 There is small performance penalty for using iterators…but are they safer to use.

 They allow substitution of one container for another (list<> for vector<>, etc.)

 With templates you can write a function that accepts any STL container type.

template<class T>

void dump_string(T &t)

{

for(auto itr=t.begin() ; itr!=t.end() ; itr++) {

cout<<*itr<<endl;

}

}

list<float> lst ;

lst.push_back(-5.0) ;

lst.push_back(12.0) ;

vector<double> vec(2) ;

vec[0] = 1.0 ;

vec[1] = 2.0 ;

dump_string<list<float> >(lst) ;

dump_string<vector<double> >(lst) ;

STL Demo

 Open project STL_Demo

 Let’s walk through the functions with the debugger and see

some vectors in action.

