

Tutorial Outline: Part 2

m [References and Pointers }

= Function Overloads

= Generic Functions

= Defining Classes

= [ntro to the Standard Template Library

BOSTON
UNIVERSITY

Pass by Value

main () RectangleAreal (float L, float W)

copy

float L P | float L
copy

float W P | float W

= C++ defaults to pass by value behavior when calling a function.
= The function arguments are copied when used in the function.

= Changing the value of L or W in the RectangleAreal function does not effect their original values in
the main() function

= When passing objects as function arguments it is important to be aware that potentially large data
structures are automatically copied!

BOSTON
UNIVERSITY

Pass by Reference

main () RectangleArea3 (const float& L, const floaté& W)

reference
float L float L
reference
float W float W

= Pass by reference behavior is triggered when the & character is used to modify the type of the
argument.
= This is the type of behavior you see in Fortran, Matlab, Python, and others.

= Pass by reference function arguments are NOT copied. Instead the compiler sends a pointer to the
function that references the memory location of the original variable. The syntax of using the
argument in the function does not change.

= Pass by reference arguments almost always act just like a pass by value argument when writing
code EXCEPT that changing their value changes the value of the original variable!!

= The const modifier can be used to prevent changes to the original variable in main().

BOSTON
UNIVERSITY

void does not return a value.

|

void RectangleAread (const floaté& 1., const float& W, float& area) {
area= L*W ;

}

= |n RectangleArea4 the pass by reference behavior is used as a way to
return the result without the function returning a value.

= The value of the area argument is modified in the main() routine by the

function.
= This can be a useful way for a function to return multiple values in the

calling routine.

BOSTON
UNIVERSITY

= |[n C++ arguments to functions can be objects...
= Example: Consider a string variable containing 1 million characters (approx. 1 MB of RAM).
= Pass by value requires a copy — 1 MB, pass by reference requires 8 bytes!

= Pass by value could potentially mean the accidental copying of large
amounts of memory which can greatly impact program memory usage and
performance.

= When passing by reference, use the const modifier whenever appropriate

to protect yourself from coding errors.
= Generally speaking — use const anytime you don’t want to modify function arguments in a

function.
“C makes it easy to shoot yourself in the foot; C++ makes it harder, but
UNIVERSITY when you do it blows your whole leg off.” — Bjarne Stroustrop

Tutorial Outline: Part 2

= References and Pointers
0 LFunction Overloads }

Generic Functions
= Defining Classes
= [ntro to the Standard Template Library

BOSTON
UNIVERSITY

Function overloading

= The same function can be implemented float sum(float a, float b) {
multiple times with different arguments. return atb ;
}
= This allows for special cases to be int sum(int a, int b) {
- - i return a+b ;
handled, or specialized behavior for }
different types.

= cout and the << operator are an example
of function overloading
* << isjust a function.

BOSTON
UNIVERSITY

Function overloading

= Qverloaded functions are differentiated float sum(float a, float b) |
by their arguments and not the return return a+b ;
type. }
= The number of arguments and their types can be int sum(int a, int b) {
varied. return a+b ;
}

= The compiler will decide which overload
to use depending on the types of the
arguments.

= |fit can’t decide a compile-time error will

‘ BOSTONMN (U]
UNIVERSITY

C++ Templates (aka generics)

= Generic code is code that works on multiple different data types but is
only coded once.

= In C++ this is called a template.

= A C++ template is implemented entirely in a header file to define
generic classes and functions.

= The actual code is generated by the compiler wherever the template
IS used in your code.
= There is NO PENALTY when your code is running!
= Function overloads are created automatically by the compiler.
= As a preview of how the C++ Standard Template Library works we’ll
walk thru some templates with NetBeans.

BOSTON
UNIVERSITY

Sample template function

= The template is started with the keyword
template and is told itll handle a type which is ——+ template <typename T>

. T t lat T , T b
referred to as T in the code. sum_template (T a) |

_ _ _ return a+b ;
= Templates can be created with multiple different }
types, not limited to just one.

= You don’t have to use T, any non-reserved word will
do. // Then call the function:

float x=1.0 ;

float y=2.0 ;

float z=sum template<float>(x,y)

= When the compiler sees the call to the /
template function it will automatically generate
a function that takes and returns float types.

BOSTON
UNIVERSITY

An Example

= Open the project Overloads and_templates

= This is an example of simple function overloads and a template function.

= Let's walk through it with the debugger.

BOSTON
UNIVERSITY

When to use function overloading and templates?

= When it makes your code easier to use, maintain, write, or debug!
= From an academic scientific computing point of view, that is.

= These are more advanced C++ features. Mis-use can cause a lot of
misery and confusion.

= These are worthwhile parts of the language to become comfortable for
more experienced C++ programmers.

BOSTON
UNIVERSITY

Stepping back a bit

= Summary so far:
= Basics of C++ syntax
= Declaring variables
= Defining functions
= Using the IDE

= As an object-oriented language C++ supports a core set of OOP
concepts.

= Knowing these concepts help with understanding some of the underlying
design of the language and how it operates in your programs.

BOSTON
UNIVERSITY

The formal concepts in OOP
= Object-oriented programming (OOP):

= Defines classes to represent data and logic in a
program. Classes can contain members (data)
and methods (internal functions).

= Creates instances of classes, aka objects, and
builds the programs out of their interactions.

= The core concepts in addition to

classes and objects are:
= Encapsulation
= Inheritance
= Polymorphism
= Abstraction

BOSTON
UNIVERSITY

Polymorphism

Encapsulation

Abstraction

Core Concepts

= Encapsulation = Abstraction
= Bundles related data and functions = The hiding of members, methods,
Into a class and implementation details inside of a
class.

= |nheritance

= Builds a relationship between classes * Polymorphism
to share class members and methods = The application of the same code to
multiple data types

BOSTON
UNIVERSITY

Core Concepts in this tutorial

= Encapsulation = Abstraction
= Demonstrated by writing some = Design and setup of classes,
classes discussion of the Standard Template
Library (STL).

= |nheritance

- Write classes that inherit (re-use) the ~ ® Polymorphism
code from other classes. = Function overloading, template code,
and the STL

BOSTON
UNIVERSITY

Tutorial Outline: Part 2

= References and Pointers

= Function Overloads

= Generic Functions

-[Defining Classes }

= [ntro to the Standard Template Library

BOSTON
UNIVERSITY

A first C++ class

= QOpen project Basic_Rectangle.
= We’ll add our own custom class to this project.
= A C++ class consists of 2 files: a header file (.h) and a source file (.cpp)

= The header file contains the definitions for the types and names of members, methods, and
how the class relates to other classes (if it does).

= The source file contains the code that implements the functionality of the class

= Sometimes there is a header file for a class but no source file.

BOSTON
UNIVERSITY "_

Projects X | Files Classes |Senriu:es | —_— ||
=N =) = |
-] Folder...
C++ Class..

. [aﬂ Header New o
Using NetBeans B s E—
| mail Add Existing ltems from Folders... & ci+ Source File
:E :—r::tur,:ti: MNew Logical Folder... & C main Fil..
Build B ¢ source File...
1 1 Clean and Build 3 ¢ Header File...
. An I DE IS Ve ry UserI for Settl ng u p More Build Commands ; E‘] C++ Main File...
Code th at fO”OWS patterns and set Co.nfiguratian & For‘trar.w File (Free Farmat)...
Set Build Host i T Makefile...

configuring the build system to compile other..

Debug

them . Step Into

Test Alt+F6

Manage Launchers...

= This saves time and effort for the T e ’ =

------ (& main{int arg

programmer.

Move...

Copy...
Delete Delete

= Right-click on the Basic_Rectangle code assitnce >
project and choose New -2>C++ Class Versioning > P

History »

Properties
BOSTON
UNIVERSITY

C] Mew C++ Class >
Steps Mame and Location

= Give it the name L. Choose Fie Type
2. MName and Location Class Mame: Rectangld

ReCtangIe and ClICk Project: Basic_Rectangle
the FlﬂlSh button. Source File

Folder: Browse...

Extension: pp w

reated File: urmmer w0, 5\MetBeans_Projects\Part_2\Basic_Rectangle'Rectangle.
= Under the Header CreatedF 2018 v0.5\NetBeans_Projects\Part_2\Basic_Rectangle Rectange.op
Files in the project reader e

Folder: Browse...
Open the neW Extension: h w
R eCta.n g Ie . h fl I e . Header File: +\5ummer 2013 v, 5\MetBeans_Projects'Part_2\Basic_Rectangle'Rectangle.h

=}

< Back Mext = m Cancel Help
BOSTON ___H
UNIVERSITY

Rectangle.h
Class name

#lfndef RECTANGLE H

¥define RECTANGLE
keyword - Curly brace
\ /

class Rectangle {
public:

Bectangle () :

RBectangle (const Rectangle& orig):;

Access)
restrictions virtual ~Rectanglel():;
private:
Curly brace
1 - and a
semi-colon.
Fendlf

BOSTON
UNIVERSITY

Default declared methods

*ifndef RECTANGLE H

¥define RECTANGLE

= Rectangle();

= A constructor. Called when an object of this class is
created.

class Rectangle {
public:
Rectangle () :
Rectangle (const Eectangle& orig):;

virtual ~Rectangle()

= ~Rectangle();
= A destructor. Called when an object of this class is
removed from memory, i.e. destroyed. private:

= [gnore the virtual keyword for now.

= Rectangle(const Rectangle& orig); o
= A copy constructor. Used to create a new object that's i
a copy of another.

BOSTON
UNIVERSITY

Rectangle.cpp

Header file included

Class_name:: pattern indicates
the method declared in the header
Is being implemented in code
here.

Methods are otherwise regular
functions with arguments () and
matched curly braces {}.

BOSTON
UNIVERSITY

FEectangle: :Rectangle () {

Eectangle: :Rectangle (const Rectangle& orig)

Fectangle: :~Rectangle () {

{

Let’'s add some functionality

class Rectangle {

= A Rectangle class should store a public:

. Rectangle () ;
length and a width. Rectangle (const Rectangle& oriqg);
= To make it useful, let’s have it virtual ~Rectangle();
supply an Area() method to float m length ;
compute Its own area. float m width ;

float Area () ;
= Edit the header file to look like the float ScaledArea (const float scale);

code to the right.

private:

Y

BOSTON
UNIVERSITY

.
Encapsulation

= Bundling the data and area calculation for a rectangle into a
single class is an example of the concept of encapsulation.

BOSTON
UNIVERSITY

N
The code for the two methods Is needed

= Click on Rectangle.cpp and put
the cursor at the end of the file.
= Type Ctrl-Space float Rectangle::Area() {
= Select the Area() method.
= Repeat for ScaledArea().

float Eectangle::ScaledArea(const float scale) {

= This creates a stub with
necessary stuff filled in.

BOSTON
UNIVERSITY

float BRectangle::Areal) {

Fill In the methods

return m length * m width ;

= Step 1: add some comments.
= Step 2: add some code. float Rectangle::5caledArea (const float scale) {

= Member variables can be accessed as though they were passed to the method.
= Methods can also call each other.
= Fill in the Area() method and then write your own ScaledArea(). Don’t forget to compile!

BOSTON
UNIVERSITY

N
Using the new class

= Open main.cpp = We'll do this together...

= Add an include statement for
the new Rectangle.h

= Create a Rectangle object
and call its methods.

BOSTON
UNIVERSITY

Special methods

= There are several methods that deal with creating and
destroying objects.

= These include:
= Constructors — called when an object is created. Can have many defined per class.

= Destructor — one per class, called when an object is destroyed
= Copy - called when an object is created by copying an existing object

= Move — a feature of C++11 that is used in certain circumstances to avoid copies.

BOSTON
UNIVERSITY

Construction and Destruction

= The constructor is called when an = The destructor is called when an

object is created. object goes out of scope.
= Example:
= This is used to initialize an object: void fonotionO 1
= Load values into member variables ClassOne cl :
= Open files }

= Connect to hardware, databases,

networks, etc. = Object cl is created when the

program reaches the first line of
the function, and destroyed when
the program leaves the function.

BOSTON
UNIVERSITY

When an ObjeCt iS inStantiated. - #include "rectangle.h"
int main ()
= The rT object is created in memory. t fectangle 11

= When it is created its constructor Is called to rT.m_width = 1.0 ;

do any necessary initialization.

#include "rectangle.h"

= The constructor can take any number of Rectangle: :Rectangle ()
arguments like any other function but it { y
t
cannot return any values. } 7

| Note the constructor has no
= What if there are multiple constructors? return type!

= The compiler follows standard function overload rules.

BOSTON
UNIVERSITY

o
A second constructor

rectangle.h rectangle.cpp
class Rectangle #include "rectangle.h“
{ public: /* C++11 style */
Rectangle() ; Rectangle: :Rectangle (const float width,
Rectangle (const float width, const float length):
const float length) ; m width (width),
m length (length)
/* etc */ {
}; /* extra code could go here */

= Adding a second constructor is similar to overloading a
function.

= Here the modern C++11 style is used to set the member
values — this is called a member initialization list

Member Initialization Lists

" Syntax: , Colon goes here
_ MyClass (int A, OtherClass &B, float C):"
Members assigned _» m A(R),
and separated with__ m B(B),
commas. The order m C(C) {

doesn’t matter. /* other code can go here */

/

/

Additional code can be
added in the code
block.

BOSTON
UNIVERSITY

#include <iostream>

And now use both constructors

using namespace std;

= Both constructors are now used. #include "rectangle.h"
The new constructor initializes the
. - int main ()
values when the object is created. {
= Constructors are used to:
. Initiali b Rectangle rT ;
nitialize Members rT.m width = 1.0 ;
= QOpen files rT.m length = 2.0 ;
= Connect to databases
. Etc cout << rT.Area() << endl ;

Rectangle rT 2(2.0,2.0) ;
cout << rT 2.Area() << endl ;

return O;

BOSTON
UNIVERSITY

DefaUIt Va|UeS class Rectangle {

public:
Rectangle () ;
Rectangle (const float width,

= C++11 added the ability to define default const float length) ;

values in headers in an intuitive way.

Rectangle (const Rectangle& oriqg) ;

= Pre-C++11 default values would have been virtual ~Rectangle();

coded into constructors. float m length = 0.0 ;

float m width = 0.0 ;
= |If members with default values get their value
set in constructor than the default value is
ignored.

= i.e. no “double setting” of the value. private:

float Area () ;
float ScaledArea (const float scale);

s

BOSTON
UNIVERSITY

Default constructors and destructors

= The two methods created by NetBeans automatically class Foo I
are explicit versions of the default C++ constructors public:

and destructors. Foo() = delete ;
// Another constructor

// must be defined!

= Every class has them — if you don'’t define them then Foo (int x) ;
empty ones that do nothing will be created for you by bi
the compiler. class Bar |
= |f you really don’t want the default constructor you can public:
delete it with the delete keyword. Bar () = default ;

= Also in the header file you can use the default keyword bi
if you like to be clear that you are using the default.

BOSTON
UNIVERSITY

Custom constructors and destructors

= You must define your own constructor when you want to initialize an
object with arguments.

= A custom destructor is always needed when internal members in the
class need special handling.

= Examples: manually allocated memory, open files, hardware drivers, database or
network connections, custom data structures, etc.

BOSTON |
UNIVERSITY

This class just has 2 floats as members which are

DeStru Cto IS automatically removed from memory by the compiler.

pd

= Destructors are called when an object is Rectangle: :~Rectangle ()
destroyed. {

= Destructors have no return type. }

= There is only one destructor allowed per
class.

= QObjects are destroyed when they go out
of scope.
= Destructors are never called explicitly by

the programmer. Calls to destructors are ~House() destructor
Inserted automatically by the compiler.

//dtor

BOSTON House object =—> |
UNIVERSITY i

Destructors

= Example:
class Example { Example: :Example (int count) {
public: // Allocate memory to store "count"
Example () = delete ; // floats.
Example (int count) ; values = new float|[count];

virtual ~Example () ;
Example: :~Example () {

// A pointer to some memory // The destructor must free this
// that will be allocated. // memory. Only do so if values 1s not
float *values = nullptr ; // null.

Y if (values) {
delete|[] values ;

BOSTON
UNIVERSITY

Scope

= Scope is the region where a variable is valid.
= Constructors are called when an object is created.
= Destructors are only ever called implicitly.

int main() { // Start of a code block
// 1in main function scope
float x ; // No constructors for built-in types
ClassOne cl ; // ¢l constructor ClassOne() 1is called.
if (1){ // Start of an inner code block
// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne () 1s called.
} // c2 destructor ~ClassOne () is called.
ClassOne c¢3 ; // c¢c3 constructor ClassOne() 1s called.
} // leaving program, call destructors for c¢3 and cl ~ClassOne ()

// variable x: no destructor for built-in type

BOSTON
UNIVERSITY

Copy, Assignment, and Move Constructors

The compiler will automatically create constructors to deal with copying, assignment, and
moving. NetBeans filled in an empty default copy constructor for us.

= How do you know if you need to write one?

= When the code won’t compile and the error message says you need one!
= OR unexpected things happen when running.

= You may require custom code when...
= dealing with open files inside an object

= The class manually allocated memory Rectangle rT 1(1.0,2.0) ;
= Hardware resources (a serial port) opened inside an object // Now use the copy constructor
= Etc Rectangle rT 2(rT 1) ;

// Do an assignment, with the
// default assignment operator
rT 2 = rT 1

.
14

BOSTON
UNIVERSITY

Templates and classes

= Classes can also be created via templates in C++

= Templates can be used for type definitions with:
= Entire class definitions
= Members of the class
= Methods of the class

= Templates can be used with class inheritance as well.

= This topic is way beyond the scope of this tutorial!

BOSTON
UNIVERSITY

Tutorial Outline: Part 2

= References and Pointers

= Function Overloads

= Generic Functions

= Defining Classes

-[Intro to the Standard Template Library}

BOSTON
UNIVERSITY

The Standard Template Library

= The STL is a large collection of containers and algorithms that are part of
C++.

= |t provides many of the basic algorithms and data structures used in computer science.

= As the name implies, it consists of generic code that you specialize as
needed.

= The STL is:
= Well-vetted and tested.
= Well-documented with lots of resources available for help.

BOSTON
UNIVERSITY

Containers

= There are 16 types of containers in the STL.:

array 1D list of elements. Unique collection in a specific
vector 1D list of elements Sl

multiset Elements stored in a specific
deque Double ended queue order, can have duplicates.
forward_list Linked list map Key-value storage in a specific
list Double-linked list order
stack Last-in. first-out list multimap Like a map but values can

’ ' have the same key.
queue First-in, first-out list. unordered_set Same as set, sans ordering
. t : : :
RICATEEE Ils elemenals always the unordered_multiset Same as multisetset, sans
argest in the container ordering
unordered_map Same as map, sans ordering
unordered_multimap Same as multimap, sans

BOSTON - .
ordering

Algorithms

= There are 85+ of these.
= Example: find, count, replace, sort, is_sorted, max, min, binary_search, reverse

= Algorithms manipulate the data stored in containers but is not tied to STL containers
= These can be applied to your own collections or containers of data

= Example:
vector<int> v (3); // Declare a vector of 3 elements.
v[0] = 7;
v[1l] = 3;
v[2] = v[0] + Vv[1]; // v[0] == 7, v[l] == 3, v[2] == 10
reverse (v.begin(), v.end()) ; // v[0] == 10, v[1l] == 3, v[2] == 7

= The implementation is hidden and the necessary code for reverse() is generated from
templates at compile time.

BOSTON
UNIVERSITY

vector<T>

= A very common and useful class in C++ is the vector class. Access it with:

#include <vector>

= Vector has many methods:
= Various constructors
= Ways to iterate or loop through its contents
= Copy or assign to another vector
= Query vector for the number of elements it contains or its backing storage size.

= Example usage: vector<float> my vec ;

°
14

= Or: vector<float> my wvec (50)

BOSTON
UNIVERSITY

vector<T>

= Hidden from the programmer is the backing store
= Object oriented design in action!

This is how the vector stores its data internally.

Allocated for a total of M’

| elements
Add some more to the vector [\
\ Y J
Contains N elements. Given by size() method. New memory Is allpcated.
Old data is copied in.

| . J New M > old M.

Allocated for a total of M o

elements e Old allocation is destroyed.

Given by capacity() method.

BOSTON
UNIVERSITY

N
Destructors

= vector<t> can hold objects of any type:

= Primitive (aka basic) types: int, float, char, etc.

= Objects: string, your own classes, file stream objects (ex. ostream), etc.
= Pointers: int*, string*, etc.

= But NOT references!

= When a vector is destroyed:

= |f it holds primitive types or pointers it just deallocates its backing store.
= [f it holds objects it will call each object’s destructor before freeing its backing store.

BOSTON
UNIVERSITY

vector<t> with objects

// a vector with memory preallocated to
// hold 1000 objects.

= Select an object in a vector. vector<MyClass> my_vec(1000);

= The members and methods can be // Now make a vector with 1000 MyClass objects
d di il // that are initialized using the MyClass constructor
accesse irec y vector<MyClass> my vec2(1000,MyClass(argl,arg2)) ;
_ // Access an object's method.
= Elements can be accessed with my_vec2[100].some_method() ;
: : // Or a member
brackets and an integer starting ny vec2[10] .member integer = 100 ;

from O.

// Clear out the entire vector

my vecZ.clear()

// but that might not re-set the backing store..

// Let’s check the docs:

// http://www.cplusplus.com/reference/vector/vector/clear/

BOSTON
UNIVERSITY

http://www.cplusplus.com/reference/vector/vector/clear/

for (int index = 0 ; index < vec.size() ,; ++index)

{

// ++index means "add 1 to the wvalue of index"
cout << vec[index] << " " ;

= Loop with a “for” loop, referencing the value of vec using brackets.
= 1sttime through:

= index=0
= Print value at vec|0]
= index gets incremented by 1

= 2nd time through:
= Index=1
= Etc

= After last time through

= Index now equal to vec.size()
= Loop exits

= Careful! Using an out of range index will likely cause a memory error that crashes your
program.

BOSTON = Note we call the size() method on every iteration.
UNIVERSITY

Looping

lterators \ v.begin () +2

v.begin () > V[O] V[l] V[Z] — v.end ()

= |terators are generalized ways of keeping track of positions in a container.
= 3 types: forward iterators, bidirectional, random access

= Forward iterators can only be incremented (as seen here)

= Bidirectional can be added or subtracted to move both directions

= Random access can be used to access the container at any location

BOSTON
UNIVERSITY

for (vector<int>::iterator itr = vec.begin(); itr !'= vec.end() ,; ++itr)

{
cout << *itr << " " ;

// iterators are pointers!

= Loop with a “for” loop, referencing the value of vec using an iterator type.
" vector<int>::iterator IS atype that iterates through a vector of int’s.

= 1sttime through:
= jtr points at 15t element in vec
= Print value pointed at by itr: *itr
= itris incremented to the next element in the vector

Iterators are very useful C++ concepts. They work on any STL container!
= No need to worry about the # of elements!
= Exact iterator behavior depends on the type of container but they are guaranteed to always reach every value.

Looping

Note we are now retrieving the end iterator at every loop to see if we've reached it: vec.end()

BOSTON

UNIVERSITY

for (auto itr = vec.begin(), auto vec end = vec.end() ; itr != vec end ; ++itr)

{
cout << *jitr << " "

}

= Let the auto type asks the C++ compiler to figure out the iterator type automatically.

= An extra modification: Assigning the vec_end variable avoids calling vec.end() on every loop.

Looping

BOSTON
UNIVERSITY

for (const auto &element : vec)

{
cout << element << " " ;

}

= Another iterator-based loop: iterator behavior and accessing an element are handled
automatically by the compiler

= Uses a reference so the element is not copied.
= The const auto & prevents changes to the element in the vector.
= Less typing == less chance for program bugs.

Looping

BOSTON
UNIVERSITY

Ilterator notes

= There is small performance penalty for using iterators...but are they safer to use.
= They allow substitution of one container for another (list<> for vector<>, etc.)
= With templates you can write a function that accepts any STL container type.

template<class T>
void dump string (T &t)

{
for(auto itr=t.begin() ; itr!=t.end() ; itr++) {

cout<<*itr<<endl;

}

list<float> 1lst ;

lst.push back (-) 7
lst.push back() 7
vector<double> vec(”) ;
vecl[U] = ;

vecl[l] = ;

dump string<list<float> > (lst) ;
dump string<vector<double> > (lst) ;

BOSTON
UNIVERSITY

STL Demo

= Open project STL _Demo

= Let's walk through the functions with the debugger and see
some vectors in action.

BOSTON
UNIVERSITY

