Introduction to C++: Part 1

tutorial version 0.5

Brian Gregor
Research Computing Services

BOSTON

UNIVERSITY

Getting started with the training room terminals

= Log on with your BU username
= |f you don’t have a BU username: m
= Username: Choose tutml-tutm18, tutnl-tutnl8
= Password: on the board.

Training Files

= On the desktop is a link to MobaXterm. Double click to open it.

BOSTON
UNIVERSITY

Getting started on the SCC

= |f you prefer to work on the SCC and have your own account, login using

your account to the host scc2.bu.edu
= On the room terminals there is a MobaXterm link on the desktop

= Load the Gnu C++ (g++) compiler and NetBeans modules:

module load gcc/5.3.0
module load gdb/7.11.1
module load java/1.8.0 92
module load netbeans/8.2

= Run to make a folder in your home directory and copy in the tutorial files:

/scratch/intro to cpp.sh

BOSTON
UNIVERSITY

Getting started with your own laptop

= Goto:
http://www.bu.edu/tech/support/research/training-consulting/live-tutorials/
and download the Powerpoint or PDF copy of the unified presentation.

= Easy way to get there: Google “bu rcs tutorials” and it's the 15t or 2" [ink.

= Also download the “Additional Materials” file and unzip it to a convenient
folder on your laptop.

BOSTON
UNIVERSITY

http://www.bu.edu/tech/support/research/training-consulting/live-tutorials/

N
Getting started with your own | -

I apto p Mote: Greyed out technologg

are not supported for this platform

= Download the NetBeans 8.2 development environment:

https://netbeans.org/downloads/ /e ’i‘_”
= |n the upper right choose your operating system and .
download the link at the bottom of the C++ column. .

(86 || Download xB6NLl Download x86 | —

| Download |

(64 || Download x64 || Download x64 |

12 MB Free, 108 - 112 MB Free, 107 - 110 MB Free, 221 MB
BOSTON
UNIVERSITY

https://netbeans.org/downloads/

R
Download a C/C++ compiler

= Mac OSX: You will need Apple’s Xcode software with the command line

tools installed.
= This is the clang++ compiler, which is comparable to the g++ compiler.

= Linux: You can use the g++ compiler already installed.

= Windows: Things are a little more complicated...

BOSTON
UNIVERSITY

gcc/g++ for Windows

* Visit: https://netbeans.org/community/releases/80/cpp-setup-
Instructions.html#mingw

= Follow the directions to install the Windows port of the g++ compiler.

= Skip the step about editing the PATH variable in Windows.

BOSTON
UNIVERSITY

https://netbeans.org/community/releases/80/cpp-setup-instructions.html#mingw

Tutorial Outline: All 4 Parts

= Part 1: = Part 3:
= Intro to C++ = Defining C++ classes
= Object oriented concepts = Look at the details of how they
= Write a first program work

= Part 2: = Part 4:

= Class inheritance
= Virtual methods

= Available C++ tools on the
SCC

= Using C++ objects
= Standard Template Library
= Basic debugging

BOSTON
UNIVERSITY

Tutorial Outline: Part 1

= Very brief history of C++

= Definition object-oriented programming
= When C++ is a good choice

= The NetBeans IDE

= Object-oriented concepts

= First program!

= Some C++ syntax

= Function calls

= Create a C++ class

BOSTON
UNIVERSITY

Very brief history of C++

P Ty

1962
= 2014
Simula | was invented by 1969-1973

i Minor update: C++14 released.
Kristen Mygaard and Qle-Johan ;]r_h%': Ia_ngél_?ghe_ WatSE'”ﬁELntEd P
Dahl as a simulation language y Liennis kiichie at bell Labs T
i i 2011
4 A Major update: C++11 standard
1967 1972 released
simula 67 developed as the first —— [. Ritchie and Ken Thompson
object-oriented language re-write the Unix O35 in C T
- : 1989

F C++ 2.0 standard released.

1979 1983
Bjarne Stroustrop began ——» "Cwith Classes” renamedto ——» 1.935 .
developing "C with Classes” C++ B

Cfront, released by AT&T

BOSTON . .
For details more check out A History of C++: 1979-1991

http://www.stroustrup.com/hopl2.pdf

class GasMolecule

Object-oriented programming |. ..

molecular weight, structure, common

. . . names, etc.
= Object-oriented programming LM -
(OO P) SeekS 1{0) deﬁne a pr(_)gram in return IR emission spectrum in range

terms of the things in the problem:
= files, molecules, buildings, cars, people,

etc. Objects (instances of a class)
= what they need to be created and used GasMolecule chd
= what they can do GasMolecule coz L seudo-code’
spectrum = ch4.IR(1000,3500)
Name = coZ.common name
- _

BOSTON
UNIVERSITY

Object-oriented programming Class Car

R e

= OOP defines classes to represent
these things. public interface

= (Classes can contain data and methods
(internal functions).

= Classes control access to internal data
and methods. A public interface is
used by external code when using the
class.

= This is a highly effective way of
modeling real world problems inside of
a computer program.

BOSTON
UNIVERSITY

private data and methods

“Actually I made up the term ‘object-oriented’, and I can tell you I did

Characteristics of C++ | nothaveC+inmind”

— Alan Kay (helped invent OO programming, the Smalltalk language, and the GUI)

= C++is...
= Compiled.

= A separate program, the compiler, is used to turn C++ source code into a form directly
executed by the CPU.

Strongly typed and unsafe

= Conversions between variable types must be made by the programmer (strong typing) but can
be circumvented when needed (unsafe)

C compatible
= call C libraries directly and C code is nearly 100% valid C++ code.

Capable of very high performance
= The programmer has a very large amount of control over the program execution

Obiject oriented
= With support for many programming styles (procedural, functional, etc.)

= No automatic memory management (mostly)
BOSTON . .
The programmer is in control of memory usage

When to choose C++

Despite its many competitors C++ has
remained popular for ~30 years and will

continue to be so in the foreseeable future.

Why?
= Complex problems and programs can be
effectively implemented
= OOP works in the real world!

= No other language quite matches C++’s
combination of performance, libraries,
expressiveness, and ability to handle
complex programs.

BOSTON

UNIVERSITY

“If you’re not at all interested in performance, shouldn’t you
be in the Python room down the hall?”
— Scott Meyers (author of Effective Modern C++)

Choose C++ when:

= Program performance matters

= Dealing with large amounts of data, multiple
CPUs, complex algorithms, etc.

= Programmer productivity is less important
= You'll get more code written in less time in a
languages like Python, R, Matlab, etc.
= The programming language itself can help
organize your code

= |n C++ your objects can closely model
elements of your problem

= Complex data structures can be
implemented

= Access to libraries
= EX. Nvidia’s CUDA Thrust library for GPUs

= Your group uses it already!

http://www.aristeia.com/books.html

NetBeans http://www.netbeans.org

= |n this tutorial we will use the NetBeans integrated development

environment (IDE) for writing and compiling C++
= Run it right on the terminal or on the SCC (module load netbeans/8.2.0)

= About NetBeans

= Qriginally developed at the Charles University in Prague, then by Sun Microsystems, then by
Oracle, now part of the Apache Software Foundation.

= cross-platform: supported on Mac OSX, Linux, and Windows
= Qriented towards Java but also supports C and C++.
= Short learning curve compared with other IDEs such as Eclipse or Visual Studio

= Generates its own Makefiles and builds with make, standard tools for
building software.

BOSTON
UNIVERSITY

http://www.netbeans.org/

I D E AdVantag €S |IDEs available on the SCC

= NetBeans(used here)
= geany —a minimalist IDE, simple to use

= Eclipse — a highly configurable, adaptable
IDE. Very powerful but with a long

= Handles build process for you
= Syntax highlighting and live error detection
= Code completion (fills in as you type)

= Creation of files via templates learning curve
= Built-in debugging = Spyder — Python only, part of Anaconda
= Code refactoring (ex. Change a variable = Emacs — The one and only.

name everywhere in your code)
= Higher productivity than plain text editors!

Some Others
= Xcode for Mac OSX
= Visual Studio for Windows
= Code::Blocks (cross platform)

BOSTON
UNIVERSITY

Opening NetBeans

m Open NetBeanS G MetBeans IDE 8.2@scc?

]]] File Edit “iew Mavigate Source Refactor RBun D
= click icon on OSX or Windows . P . .

. i 0 BN C
= Type netbeans on the SCC or Linux i = o

* Start Page =

= Create a new project under the File
Menu or by clicking on the icon

BOSTON
UNIVERSITY

© |

Steps Choose Project
1. Choose Project QL Filter: | |
ES h
Categories: Projects: |
] Jawa E C/C++ Project with Exizting Sources

4+ Project from Binary Files

3 JawaFx
= Choose the C/C++ e b e byt o |
category and C/C++

f=
=

5]

|j HTMLS /Javascript CJC4++ Static Library
= ME Embedded CHC4++ Ot Application
ava mhbedde

=]
[

,_‘:'i
=Tt

. . 4+ Ot Dynamic Library
Appl |Cat|0n Maven & C/C++ Ot Static Library
PHP
Croowy
CICH+ —
] MetBeans Modules =

= Click the Next button.

Creates a new application project. It uzes an IDE-generated makefile 1o build your praject.

Mext > Cancel Help

BOSTON
UNIVERSITY

[G Ive the prOJeCt the name G Mew C/C++ Application@scc2 w
Te St- :SLt_EpsChunse Praject ::jj:: :::: - LDET-IrI:: |

2. FProject Name and Location

cation: |,.fusr2,fcu:|llah,"hgtesthetEeansPrDjects | Browse...

Praject Folder: fusrz2fcollabfbgtestfMetBeansPrajects fTest

Project Makefile fame: |Makefi|e |

= Under Tool Collection

choose Clang or Gnu : |,|||C++ ~
(depending on what is T £ 5
shown)

= Click Finish

BOSTON
UNIVERSITY

File Edit Yiew PMavigate

o [Test

o= Header Files

[Resource Files

e ﬁ Source Files
@ main.cpp

o= ﬁ Test Files

[-2 ﬁ Impoartant Files

= Check that
everything works.

= Click the green
triangle to compile
& run the
program.

Mavigator X [=1

(@ mainfint arge, char™ :

BOSTON

[4] Il []

S|
x 2 Sriage]/

- O X
Souyrce PRefactor Run Debug Profile Team Tools Window Help Q'
[pebug - @ T B DB
I main.cpp = =
| source | ristory - S @ H &g i
1 [L=
2
3
=
B SRR
C botest
10 =
11 -
12 -
13
14 #nclude <cstdlibs=
15
16 using namespace std;
17
15
19 T -
20
21 int main{int argeo, char** arow) {
22
23 return 0;
24 H
25 —
26 Bl
pt x
Qutput X
l/Test (Build, Rur) = | Test (Run) x
cd 'Susr2scollabsbgtest/HetBeansProjects Test! [
u> Ausrgsbinggmake -1 Makeftile CONF=Debuy —
"Susrsbindgmake" -T nbproject/Makefile-Debug.mk (MAEE= SUBPEOJECTS= .build-conf
[;D gmake[1]: Entering directory ~JusrZ scollabsbgtestysNetBeansProjects,Test'
"Ausrshindamake" -f nbproject/Makefile-Debug.mk distc/DebugCLang-Linus test
E gmake[2]: Entering directary ' JusrZscollabysbgtesty/NetBeansProjects Test'
mkdir -p build/TebugsCLang-Linux
ri =T "huwild/DebugsClang-Linuemain.o.d"
clang++ -c =g -MHD -MP -HWF "build Debug CLang-Linux main.o.d" -o buildLebugCLang-Linuxmain.o main.cpp =
mkdir -p dist /Debug/CLang-Linux
clang++ -0 dist/DebugsClang-Linux,cest buildsDebugClang-Linuxmain. o
gnake[2]: Leawing directory °~usrZ collab hgrest HetBeansPFrojects, Test'
gnake[1]: Leawing directary " susrzscollabshgtest NetBeansProjects,Test'
BUILD SUCCESSFUL (total time: &9ms) | §
-

UNIVERSITY

151

[s

© \

= Windows will probably ask to have el ==

Tool Collection:

t I -f- d Clang Family: ClLang Encoding: | UTF-8
some tools specified. e . e
Base Directory: C:\Program Files L LWMbin EPATH
C Compiler: C:\Program Files\LLVMYbin\dang. exe

C++ Compiler: * |C:\Program Files\LLVM\bin\dang++.exe ‘

= Set the base directory for Clang to: e e
= C:\Program Files\LLVM\bin e

- Debugger to: Make Command: * | |
Debugger Command: C:\Program Files'LLYMbinYldb.exe
= C:\Program Files\LLVM\bin\lldb.exe Qake Command:

CMake Command:

*Tools marked with * are required.

= The make program is found in:
= C:\Program Files (x86)\GnuWin32\bin

Add... Duplicate. ..

Remove Default Make is missing or invalid Versions... Restore Defaults

Cancel Help

BOSTON
UNIVERSITY

O Project Properties - Test@scc2 x

Categaries:

@ General gunfiguration:|Dehug(active) |"H Manage Configurationsz. .. ‘

Enable C++11 standard

Include Directories D
Include Headers |:|
Preprocessor Definitions D
Use Linker Libraries

o C4++ Compiler
@ Fortran Compiler
@ Assembler
=]
=]

Linker
Packaging ¢ Basic Options
2 Run Dewelopment Mode Cebug -
O Test - MetBeans IDE 8.2@scc2 5 Debug Warning Lewel SOm e Warnings -
File Edit Wiew Mavigate Source Refactor Run @ Related Projects Architecture =Default= v
o — i i o Farmaning Strip Symbaoals D
RN [% % ; |pebug o License Headars C++ Standard C4+11 -
2@ Launchers § Tool
X = (“Stnpage x| En]
o @ Te ; ¢ Compilation Line
- (i My » Additional Options [

o Add Existing tem ..

$ [ai Add Existing ltems from Folders. .
Mewy Logical Folder...

o (i3 suila

> (| ciean and uild

More Build Commands] Debug

Set Configuration]
Set Build Host]

Run
Debug

Step Into
Test Alt-F& 1.4 H Cancel H Apply H Help

Manage Launchers...
Cpen Required Projects] /
Close

e— = Click the C++ Compiler category and choose C++11
Have.. option under the C++ Standard menu.

Copey...

Celete Celete

-

Code Azsistance

| = Right-click on your project
@ name and choose Properties

Hiztory

- v

Properties

Make the program do something....

= Edit the main.cpp program in your Test
project to look like the code to the
right.

#include <iostream>
using namespace std;

int main(int argc, char** argv) {

cout << "Hello World!" << endl ;

= This is text — it can be copied and
pasted from the presentation...but it's return
better to type it.

= When done, click the green triangle
again to run the updated program.

BOSTON
UNIVERSITY

Output X
l/Test {Buildy x rTESt {Runy x |

cd 'SusrZScollabsbgtest MetBeansProjects Test'
H eI I O WO rI d I L Ausesbinsgmake -f Makefile CONF=Debug
y n "SusrShingSdamake” -1 nbproject/Makefile-Debug. mk QMAEE= SUBPROJECTZ= .build-contT
E gmake[1]: Entering directory ~Jusrz Scollab /bgtest MetBeansProjects Test'
"AusrShingSdgmake” - nbproject/Makefile-Debug.mk dist DebugCLang-Linuxtest

gmake[2]: Entering directory ~susrzscollabshogtest NetBeansProjects sTest'
mkdir -p build/DebugsCLang-Linux

- rm -T "build/Debug CLang-Linuz main.o.d"
» BUIId Illessages —l clang++ -C -g -std=c++11 -MHD -MP -MF "build DebugsCLang-Linuxmain.o.d" -o build/Tebug TlLang-Linuxmain.o main
mkdir -p distDebugCLang-Linux
clang++ -0 distDebug CLang-Linuxtest buildDebug CLang-Linuxmain.o

gmake[2]: Leaving directary ~Jusrz scollab shatest NetBeansPraojects Test'
gmake[1]: Leaving directory ~Jusrz scollab sbotest NetBeansFrojects Test'

BUTLD SUCCESSFUL [total time: 462ms)

= % @ main 3

COutput X

rTest (Buildy x rTest (Rur) =

" Run OUtpUt I:I; Hello Warld!l

EUN FIMISHED; exit walue O3 real time: 1loms; user: Oms; system: Oms

E <

BOSTON

UNIVERSITY

Behind the Scenes: The Compilation Process

L

il

header files
iastream.h
my_headerh

* BExpanded source code file

C++ preprocessor —— 3 * not normally visible L C++ compiler
* g++-Eto see output

—»

main.cpp — J’

* Assembler code file

assembler P * not normally visible
* g++ -5 10 see output

---...._,_,_...-n-""""——__""“'

C++ library files
system library files

L¢

‘ Ohject code file
main.o

Executable

linker _ g++ -0 main main.cpp
main

BOSTON
UNIVERSITY

Hello, World! explained

#Fnclude <iostreans
Using nanespace std;

int mainiint argc, char*™ argy) {/

cout == "Hello kWorldl"™ <= endl

return O;

The return statement returns an integer value to the
operating system after completion. 0 means “no error”. C++
programs must return an integer value.

BOSTON
UNIVERSITY

The main routine — the start of every C++ program! It
returns an integer value to the operating system and (in

this case) takes arguments to allow access to command
line arguments.

= |oads a header file containing function and class

_ definitions
Hello, World! explained

= Loads a namespace called std.

= Namespaces are used to separate sections of code
for programmer convenience. To save typing we’'ll

#include <jostreans always use this line in this tutorial.
using namespace std;

int main{int argz, char** argy) 1
cout == "Hello bWorldl"™ <= endl ;

return oO; cout is the object that writes to the stdout device, i.e. the console
window.
It is part of the C++ standard library.

Without the “using namespace std;” line this would have been called
as std::cout. It is defined in the iostream header file.

<< is the C++ insertion operator. It is used to pass characters from
the right to the object on the left.

endl is the C++ newline character.

N

BOSTON
UNIVERSITY

Header Files

= C++ (along with C) uses header files as to hold definitions for the compiler to use while
compiling.
= A source file (file.cpp) contains the code that is compiled into an object file (file.0).

= The header (file.h) is used to tell the compiler what to expect when it assembles the
program in the linking stage from the object files.

= Source files and header files can refer to any number of other header files.

= When compiling the linker connects all of the object (.0) files together into the
executable.

BOSTON
UNIVERSITY

Make some changes

= Let’s put the message into some variables finclude <iostream>
of type string and print some numbers.

_ using namespace std;
= Things to note:

= Strings can be concatenated with a + operator. int main ()
= No messing with null terminators or strcat() as in {
C string hello = "Hello";
= Some string notes: string world = "world!";
= Access a string character by brackets or string msg = hello + " " + world ;
function: cout << msg << endl;
= msg[0] = “H” or msg.at(0) = “H” msg[U] = 'h';
= C++ strings are mutable — they can be cout << msg << endl;
changed in place. return U;

Re-run and check out the output.

BOSTON iy
UNIVERSITY

A first C++ class: string

= string is not a basic type (more finclude <iostream>
on those later), it is a class. using namespace std;
= string hello creates an _ |
) . . o int main ()
Instance of a string called “hello”. (
= hello IS an Object_ string hello = "Hello";
_ string world = "world!";
= Remember that a class defines string msg = hello + " " + world ;
some data and a set of functions Cout[]<< mig << endl;
msg = 'h';
(methods) that operate on that cout << msg << endl;
data. return 0;

= Let’'s use NetBeans to see what
some of these methods are....

BOSTON
UNIVERSITY

A first C++ class: string

= Update the code as you see finclude <iostream>
here. using namespace std;

= After the last character is entered int main()
NetBeans will display a large {

. string hello = "Hello";
number of methods defined fo string world = "world!";
the msg ObjeCt. string msg = hello + " " + world ;

]] cout << msg << endl;
= |f you click or type something msg[0] = 'h';
else just delete and re-type the cout << msg << endl/
last character. msg.
= Ctrl-space will force the list to return 0;
appear. }

BOSTON
UNIVERSITY

A first C++ class: string

[SETE R R =g << Bridlg
msg[0] = 'h';
COUt =< msg << endl;

msg.|
[l hpos CONsST size_type |~
M O append{const hasic_stringd _ str) basic_stringd |_
I © append({const basic_string® __str, unsigned char __pos, unsigned char _n) hasic_string® |
O append(const char®* __s, unsigned char _n) bhasic_stringd& | |
O append(const char® __s) hasic_stringd
© append({unsigned char __n, char _c) hasic_string
© append(initializer_Tlist<chars> __1) hasic_stringd
O append=class _Inputlterator, typenane=std: :_Requirelnputlter<_Inputlterators={_Inputlterator _ first, _Inputlterator __Tlast) hasic_stringd
O assign{const basic_stringd _ str) hasic_stringd
O assignibasic_stringd& _ str) hasic_string
© assign{const basic_string& __str, unsigned char __pos, unsigned char _n) hasic_stringd
O assign(const char®* __s, unsigned char _n) hasic_stringd
O assign(const char® __s) hasic_stringd
© assign{unsigned char __n, char _ c) hasic_stringd
O assign=class _Inputlterator,typenane=std::_Reguirelnputlter<_Inputlterators={_Inputlterator _ first, _Inputlterator __ Tlast) hasic_stringd
O assign(initializer_Tist<char= __1) basic_stringd | |
O at{unsigned char __n) _Alloc:rwalue_type |«

Yalue returned by wvarious member functions when they fail.

Q mai

BOSTON

UNIVERSITY

A first C++ class: string

ney.size()d
O sizeld

return (= Creates for-loop that iterates through a collection of objects.
h (=) Creates for-loop that iterates through an array of ohbjects. The control wariabhle of the loop is an integer index in the array. fori
(©F (exp) { ...| } iff
L Y else { ...} ife

= Start typing “msg.size()” until it Sanite teg () 7 e
appears in the list. = atianor
= Once it’s highlighted (or you |

siza_type
fore

[nT»

scroll to it) press the Tab key
to auto-enter it.

attribute
u An explanation appears belOW_ Capacity: Returns the number of characters in the string,

attribute__
S @ man S not including any null-termination.

builtin_va_l1ist
cdec]
= “Returns the number of T

clrecall
cd ' Susr2scoll

complex
characters in a string not

4]

S_I BrErErErErsriErEriEris

complex__

"Ausrbinsgmnak
- - . - ” gmake[1]: Ente
including any null-termination. Y esesein e
gmake[2]: Ente
mkdir -p build

rm - "build/D
rebugClang-Linuxmain. o main. cpp

clang+ -c
mkdir -p dist/
clang+ -0

gmake[2]: Leawv
gmake[1]: Leawving directory Jusrd/collab/hgtest/NetbBeansFrojects/lest’

BOSTON
UNIVERSITY

BOSTON .
UNIVERSITY

A first C++ class: string

= Tweak the code to print the number

of characters in the string, build, and
run it.

size() is a public method, usable by
code that creates the object.

The internal tracking of the size and
the storage itself is private, visible
only inside the string class source
code.

#include <iostream>
using namespace std;

int main ()

{

string hello = "Hello" ;

string world = "world!" ;

string msg = hello + " " + world ;
cout << msg << endl ;

msg[U] = "h';
cout <<

cout << msg.size()

return ;

msg << endl ;

<< endl ;

N

Note: while the string class has a huge number
of methods your typical C++ class has far fewer!

N\

cout prints integers
without any modification!

Break your code.

= Remove a semi-colon. Re-compile. What messages do you get from the
compiler and NetBeans?

= Fix that and break something else. Capitalize string = String

= C++ can have elaborate error messages when compiling. Experience is
the only way to learn to interpret them!

= Fix your code so it still compiles and then we’ll move on...

BOSTON
UNIVERSITY

Basic Syntax

= (C++ syntax is very similar to C, Java, or C#. Here's a few things up front and we’ll cover
more as we go along.

= Curly braces are used to denote a code block (like the main() function):

{ .. some code .. }
= Statements end with a semicolon: int 4
a=14+ 3 ;

= Comments are marked for a single line with a // or for multilines with a pair of /* and */ :

// this is a comment.
/* everything in here
is a comment */

void my function() {
int a ;
a=1l ;
int b;

= Variables can be declared at any time in a code block.

BOSTON }
UNIVERSITY

= Functions are sections of code that are called from other code. Functions always have a
return argument type, a function name, and then a list of arguments separated by

commas.
int add(int x, int y) { // No arguments? Still need ()
int z = x + vy ; void my function() {
return z ; /* do something...
} but a void value means the

return statement can be skipped.*/

= A void type means the function does not return a value.

// Specify the type
int x = 100;
float y;

= Variables are declared with a type and a name: vector<string> vec ;

// Sometimes types can be inferred

BOSTON auto z = x;
UNIVERSITY

N
= A sampling of arithmetic operators:
= Arithmetic: + - * [O ++ -

- Logical: && (AND) ||(OR) !(NOT)

= Comparison;: == > < >= <= I=

= Sometimes these can have special meanings beyond arithmetic, for
example the “+” is used to concatenate strings.

= What happens when a syntax error is made?
= The compiler will complain and refuse to compile the file.

= The error message usually directs you to the error but sometimes the error occurs before the
compiler discovers syntax errors so you hunt a little bit.

BOSTON
UNIVERSITY

Built-in (aka primitive or intrinsic) Types

= “primitive” or “intrinsic” means these types are not objects.
= They have no methods or internal hidden data.

= Here are the most commonly used types.
= Note: The exact bit ranges here are platform and compiler dependent!

= Typical usage with PCs, Macs, Linux, etc. use these values
= Variations from this table are found in specialized applications like embedded system processors.

Name Name Value Name Value

char unsigned char 8-bit integer float 32-bit floating point
short unsigned short 16-bit integer double 64-bit floating point
int unsigned int 32-bit integer long long 128-bit integer

long unsigned long 64-Dbit integer long double 128-Dbit floating point
bool true or false

BOSTON http://www.cplusplus.com/doc/tutorial/variables/
UNIVERSITY

http://www.cplusplus.com/doc/tutorial/variables/

Need to be sure of integer sizes?

= In the same spirit as using integer(kind=8) type notation in Fortran, there are type definitions that
exactly specify exactly the bits used. These were added in C++11.

= These can be useful if you are planning to port code across CPU architectures (ex. Intel 64-bit
CPUs to a 32-bit ARM on an embedded board) or when doing particular types of integer math.

= For a full list and description see: http://www.cplusplus.com/reference/cstdint/

#include <cstdint>

Name Name Value

int8_t uint8 t 8-bit integer
int1l6 t uintl6 t 16-bit integer
INt32_t uint32_t 32-bit integer
int64 t uinté4 _t 64-bit integer

BOSTON
UNIVERSITY

http://www.cplusplus.com/reference/cstdint/

Reference and Pointer Variables

The object hello
occupies some

string hello = "Hello"; ComPUter memaory.

A pointer to the hello object string. hello_ptr
IS assigned the memory address of object
string shello ref = hello; hello which is accessed with the “&” syntax.

string *hello ptr = &hello; g

hello_ref is a reference to a string. The hello_ref
variable is assigned the memory address of object hello
automatically.

= Variable and object values are stored in particular locations in the computer’'s memory.
= Reference and pointer variables store the memory location of other variables.

= Pointers are found in C. References are a C++ variation that makes pointers easier and safer to
use.

BOSTON
= More on this topic later in the tutorial.

Type Casting

= C++is strongly typed. It will auto-convert a variable of one type to another where it can.

short x = 1 ;
int vy = x ; // OK
string z =y ; // NO

= Conversions that don’t change value work as expected:
= increasing precision (float - double) or integer - floating point of at least the same precision.

= Loss of precision usually works fine:
= 64-bit double precision - 32-bit single precision.
= But...be careful with this, if the larger precision value is too large the result might not be what you expect!

BOSTON
UNIVERSITY

Type Casting

= C++ allows for C-style type casting with the syntax: (new type) expression

double x = 1.0 ;
int vy = (int) x ;
float z = (float) (x / vy) ;

= But when using C++ it’s best to stick with deliberate type casting using the 4 different
ways that are offered...

BOSTON
UNIVERSITY

.
Type Casting

double d = 1234.56 ;

float £ = static_cast<float>(d)
// same as

float g = (float) d ;

" static cast<new type>(expression) // same as

= This is exactly equivalent to the C style cast. float h = d ;

= This identifies a cast at compile time.

= This makes it clear to another programmer that you really intended a cast that
reduces precision (ex. double - float) and make it

= ~99% of all your casts in C++ will be of this type.

" dynamic cast<new type>(expression)

= Special version where type casting is performed at runtime, only works on reference
or pointer type variables.

= Usually created automatically by the compiler where needed, rarely done by the
programmer.

BOSTON
UNIVERSITY

Type Casting cont'd

" const cast<new type>(expression)

= Variables labeled as const can’t have their value changed.

= const_cast lets the programmer remove or add const to reference or pointer type
variables.

= |f you need to do this, you probably want to re-think your code!

" reilnterpret cast<new type>(expression)

= Takes the bits in the expression and re-uses them unconverted as a new type. Also

only works on reference or pointer type variables.

= Sometimes useful when reading or writing binary files or when dealing with hardware

devices like serial or USB ports.

BOSTON
UNIVERSITY

“unsafe”: the
—— compiler will not
protect you here!

The programmer
must make sure
everything is

-

correct!

Functions

= Open the project “FunctionExample” in
the Part 1 NetBeans project file.

= Compile and run it!

= Open main.cpp
= 4 function calls are listed.

= The 1st and 2" functions are identical in
their behavior.

= The values of L and W are sent to the function,
multiplied, and the product is returned.

= RectangleArea2 uses const arguments

= The compiler will not let you modify their values in the
function.

= Tryit! Uncomment the line and see what happens
when you recompile.

= The 3" and 4t versions pass the
arguments by reference with an added &

BOSTON
UNIVERSITY

The function arguments L and W

The return type is float.

pd

/ are sent as type float.
7

float RectangleAreal (float L, float W) {
return L*W ;

: — Product is computed

float RectangleArea? (const float 1L, const float W) {

return L*W ;

float RectangleArea3 (const floaté& L, const float& W) {
return L*W ;

}

void RectangleAread (const float& 1L, const float& W, float& area)
area= L*W ;

}

{

&

Using the NetBeans Debugger

= To show how this works we will use the NetBeans interactive debugger to step through the program line-by-line
to follow the function calls.

Make sure you are running in Debug mode. This turns off compiler optimizations and has the compiler include
information in the compiled code for effective debugging.

“ile Edit View Mavigate Source Fiefar_t-::-i Run Debug Team Tools Window Help

i 71 =8 Debug oW DB

Projects x| Files Classes Services _— 'Elmain.q:up x
2. F Fimetinen Feamnla

o | [- B I F

BOSTON
UNIVERSITY

Add Breakpoints

20

21
Breakpoints tell the debugger to halt at a 2
particular line so that the state of the s
program can be inspected. ”
In main.cpp, click to the left of the lines in 27
the functions to set a pair of breakpoints. ”
A red square will appeatr. o
Click the this arrow to start the code Iin i

the debugger.

Refactor Run Debug Team Tools Window Help

Debug

AT W DB

BOSTON
UNIVERSITY

float RectangleAreal (const floati& L, const floatis W)

{
T return L*W ;

vold RBectangleAread (const floats L, const floatsd W, £lo:

{
T area= L*W :

= The debugger will pause the program at the first
breakpoint.

20

21 float RectangleAreald (const float& L, const floats W)

22 {

= return L*W ;

24

25

26

27

28 vold RectangleAread (const floati& L, const floaté W, floati area)

29 {
O area= L*W :

21
32
33

A = = vmemem ows F A

BOSTON
UNIVERSITY

Controls (hover mouse over for help):

Refactor Run Debug Team Tools Window Help

Debug v CU;{' céj' [> > B v D @ | O—lﬁjr&]*ﬁ;l @@ A

=

C)

At the bottom of the window there are several tabs showing the state of the program:

Variables X | Call Stack | Breakpoints | Output |

&) | = MName Value Type

& Gl 2 | const float &
oW 5 | const float &
@ outfile <OUT_OF_SCOFE>

BOSTON
UNIVERSITY

