
Introduction to C++: Part 1
tutorial version 0.5

Brian Gregor

Research Computing Services

Getting started with the training room terminals

 Log on with your BU username
 If you don’t have a BU username:

 Username: Choose tutm1-tutm18, tutn1-tutn18

 Password: on the board.

 On the desktop is a link to MobaXterm. Double click to open it.

Getting started on the SCC

 If you prefer to work on the SCC and have your own account, login using

your account to the host scc2.bu.edu
 On the room terminals there is a MobaXterm link on the desktop

 Load the Gnu C++ (g++) compiler and NetBeans modules:

 Run to make a folder in your home directory and copy in the tutorial files:

module load gcc/5.3.0

module load gdb/7.11.1

module load java/1.8.0_92

module load netbeans/8.2

/scratch/intro_to_cpp.sh

Getting started with your own laptop

 Go to:

http://www.bu.edu/tech/support/research/training-consulting/live-tutorials/

and download the Powerpoint or PDF copy of the unified presentation.

 Easy way to get there: Google “bu rcs tutorials” and it’s the 1st or 2nd link.

 Also download the “Additional Materials” file and unzip it to a convenient

folder on your laptop.

http://www.bu.edu/tech/support/research/training-consulting/live-tutorials/

Getting started with your own

laptop

 Download the NetBeans 8.2 development environment:

https://netbeans.org/downloads/

 In the upper right choose your operating system and

download the link at the bottom of the C++ column.

https://netbeans.org/downloads/

Download a C/C++ compiler

 Mac OSX: You will need Apple’s Xcode software with the command line

tools installed.
 This is the clang++ compiler, which is comparable to the g++ compiler.

 Linux: You can use the g++ compiler already installed.

 Windows: Things are a little more complicated…

gcc/g++ for Windows

 Visit: https://netbeans.org/community/releases/80/cpp-setup-

instructions.html#mingw

 Follow the directions to install the Windows port of the g++ compiler.

 Skip the step about editing the PATH variable in Windows.

https://netbeans.org/community/releases/80/cpp-setup-instructions.html#mingw

Tutorial Outline: All 4 Parts

 Part 1:

 Intro to C++

 Object oriented concepts

 Write a first program

 Part 2:

 Using C++ objects

 Standard Template Library

 Basic debugging

 Part 3:

 Defining C++ classes

 Look at the details of how they

work

 Part 4:

 Class inheritance

 Virtual methods

 Available C++ tools on the

SCC

Tutorial Outline: Part 1

 Very brief history of C++

 Definition object-oriented programming

 When C++ is a good choice

 The NetBeans IDE

 Object-oriented concepts

 First program!

 Some C++ syntax

 Function calls

 Create a C++ class

Very brief history of C++

For details more check out A History of C++: 1979−1991

C

C++

http://www.stroustrup.com/hopl2.pdf

Object-oriented programming

 Object-oriented programming

(OOP) seeks to define a program in

terms of the things in the problem:

 files, molecules, buildings, cars, people,

etc.

 what they need to be created and used

 what they can do

• Data:

• molecular weight, structure, common

names, etc.

• Methods:

• IR(wavenumStart, wavenumEnd) :

return IR emission spectrum in range

class GasMolecule

GasMolecule ch4

GasMolecule co2

spectrum = ch4.IR(1000,3500)

Name = co2.common_name

Objects (instances of a class)

“pseudo-code”

Object-oriented programming

 OOP defines classes to represent

these things.

 Classes can contain data and methods

(internal functions).

 Classes control access to internal data

and methods. A public interface is

used by external code when using the

class.

 This is a highly effective way of

modeling real world problems inside of

a computer program.

public interface

private data and methods

“Class Car”

Characteristics of C++
“Actually I made up the term ‘object-oriented’, and I can tell you I did

not have C++ in mind.”

– Alan Kay (helped invent OO programming, the Smalltalk language, and the GUI)

 C++ is…

 Compiled.

 A separate program, the compiler, is used to turn C++ source code into a form directly

executed by the CPU.

 Strongly typed and unsafe

 Conversions between variable types must be made by the programmer (strong typing) but can

be circumvented when needed (unsafe)

 C compatible

 call C libraries directly and C code is nearly 100% valid C++ code.

 Capable of very high performance

 The programmer has a very large amount of control over the program execution

 Object oriented

 With support for many programming styles (procedural, functional, etc.)

 No automatic memory management (mostly)

 The programmer is in control of memory usage

When to choose C++

 Despite its many competitors C++ has

remained popular for ~30 years and will

continue to be so in the foreseeable future.

 Why?

 Complex problems and programs can be

effectively implemented

 OOP works in the real world!

 No other language quite matches C++’s

combination of performance, libraries,

expressiveness, and ability to handle

complex programs.

 Choose C++ when:

 Program performance matters

 Dealing with large amounts of data, multiple

CPUs, complex algorithms, etc.

 Programmer productivity is less important

 You’ll get more code written in less time in a

languages like Python, R, Matlab, etc.

 The programming language itself can help

organize your code

 In C++ your objects can closely model

elements of your problem

 Complex data structures can be

implemented

 Access to libraries

 Ex. Nvidia’s CUDA Thrust library for GPUs

 Your group uses it already!

“If you’re not at all interested in performance, shouldn’t you

be in the Python room down the hall?”

― Scott Meyers (author of Effective Modern C++)

http://www.aristeia.com/books.html

NetBeans http://www.netbeans.org

 In this tutorial we will use the NetBeans integrated development

environment (IDE) for writing and compiling C++
 Run it right on the terminal or on the SCC (module load netbeans/8.2.0)

 About NetBeans
 Originally developed at the Charles University in Prague, then by Sun Microsystems, then by

Oracle, now part of the Apache Software Foundation.

 cross-platform: supported on Mac OSX, Linux, and Windows

 Oriented towards Java but also supports C and C++.

 Short learning curve compared with other IDEs such as Eclipse or Visual Studio

 Generates its own Makefiles and builds with make, standard tools for

building software.

http://www.netbeans.org/

IDE Advantages

 Handles build process for you

 Syntax highlighting and live error detection

 Code completion (fills in as you type)

 Creation of files via templates

 Built-in debugging

 Code refactoring (ex. Change a variable

name everywhere in your code)

 Higher productivity than plain text editors!

IDEs available on the SCC

 NetBeans(used here)

 geany – a minimalist IDE, simple to use

 Eclipse – a highly configurable, adaptable

IDE. Very powerful but with a long

learning curve

 Spyder – Python only, part of Anaconda

 Emacs – The one and only.

Some Others

 Xcode for Mac OSX

 Visual Studio for Windows

 Code::Blocks (cross platform)

Opening NetBeans

 Open NetBeans
 click icon on OSX or Windows

 Type netbeans on the SCC or Linux

 Create a new project under the File

Menu or by clicking on the icon

 Choose the C/C++

category and C/C++

Application

 Click the Next button.

 Give the project the name

Test.

 Under Tool Collection

choose Clang or Gnu

(depending on what is

shown)

 Click Finish

 Check that

everything works.

 Click the green

triangle to compile

& run the

program.

 Windows will probably ask to have

some tools specified.

 Set the base directory for Clang to:

 C:\Program Files\LLVM\bin

 Debugger to:

 C:\Program Files\LLVM\bin\lldb.exe

 The make program is found in:
 C:\Program Files (x86)\GnuWin32\bin

Enable C++11 standard

 Right-click on your project

name and choose Properties

 Click the C++ Compiler category and choose C++11

option under the C++ Standard menu.

Make the program do something….

 Edit the main.cpp program in your Test

project to look like the code to the

right.

 This is text – it can be copied and

pasted from the presentation…but it’s

better to type it.

 When done, click the green triangle

again to run the updated program.

#include <iostream>

using namespace std;

int main(int argc, char** argv) {

cout << "Hello World!" << endl ;

return 0;

}

Hello, World!

 Build messages

 Run output

Behind the Scenes: The Compilation Process

Hello, World! explained

The main routine – the start of every C++ program! It

returns an integer value to the operating system and (in

this case) takes arguments to allow access to command

line arguments.

The return statement returns an integer value to the

operating system after completion. 0 means “no error”. C++

programs must return an integer value.

Hello, World! explained

 loads a header file containing function and class

definitions

 Loads a namespace called std.

 Namespaces are used to separate sections of code

for programmer convenience. To save typing we’ll

always use this line in this tutorial.

 cout is the object that writes to the stdout device, i.e. the console

window.

 It is part of the C++ standard library.

 Without the “using namespace std;” line this would have been called

as std::cout. It is defined in the iostream header file.

 << is the C++ insertion operator. It is used to pass characters from

the right to the object on the left.

 endl is the C++ newline character.

Header Files

 C++ (along with C) uses header files as to hold definitions for the compiler to use while

compiling.

 A source file (file.cpp) contains the code that is compiled into an object file (file.o).

 The header (file.h) is used to tell the compiler what to expect when it assembles the

program in the linking stage from the object files.

 Source files and header files can refer to any number of other header files.

 When compiling the linker connects all of the object (.o) files together into the

executable.

Make some changes

 Let’s put the message into some variables

of type string and print some numbers.

 Things to note:

 Strings can be concatenated with a + operator.

 No messing with null terminators or strcat() as in

C

 Some string notes:

 Access a string character by brackets or

function:

 msg[0]  “H” or msg.at(0)  “H”

 C++ strings are mutable – they can be

changed in place.

 Re-run and check out the output.

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello";

string world = "world!";

string msg = hello + " " + world ;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

return 0;

}

A first C++ class: string

 string is not a basic type (more

on those later), it is a class.

 string hello creates an

instance of a string called “hello”.

 hello is an object.

 Remember that a class defines

some data and a set of functions

(methods) that operate on that

data.

 Let’s use NetBeans to see what

some of these methods are….

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello";

string world = "world!";

string msg = hello + " " + world ;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

return 0;

}

A first C++ class: string

 Update the code as you see

here.

 After the last character is entered

NetBeans will display a large

number of methods defined for

the msg object.

 If you click or type something

else just delete and re-type the

last character.

 Ctrl-space will force the list to

appear.

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello";

string world = "world!";

string msg = hello + " " + world ;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

msg.

return 0;

}

A first C++ class: string

A first C++ class: string

 Start typing “msg.size()” until it

appears in the list.

 Once it’s highlighted (or you

scroll to it) press the Tab key

to auto-enter it.

 An explanation appears below.

 “Returns the number of

characters in a string not

including any null-termination.”

A first C++ class: string

 Tweak the code to print the number

of characters in the string, build, and

run it.

 size() is a public method, usable by

code that creates the object.

 The internal tracking of the size and

the storage itself is private, visible

only inside the string class source

code.

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello" ;

string world = "world!" ;

string msg = hello + " " + world ;

cout << msg << endl ;

msg[0] = 'h';

cout << msg << endl ;

cout << msg.size() << endl ;

return 0;

}

 cout prints integers

without any modification!

 Note: while the string class has a huge number

of methods your typical C++ class has far fewer!

Break your code.

 Remove a semi-colon. Re-compile. What messages do you get from the

compiler and NetBeans?

 Fix that and break something else. Capitalize string  String

 C++ can have elaborate error messages when compiling. Experience is

the only way to learn to interpret them!

 Fix your code so it still compiles and then we’ll move on…

 C++ syntax is very similar to C, Java, or C#. Here’s a few things up front and we’ll cover

more as we go along.

 Curly braces are used to denote a code block (like the main() function):
{ … some code … }

 Statements end with a semicolon:

 Comments are marked for a single line with a // or for multilines with a pair of /* and */ :

 Variables can be declared at any time in a code block.

Basic Syntax

void my_function() {

int a ;

a=1 ;

int b;

}

int a ;

a = 1 + 3 ;

// this is a comment.

/* everything in here

is a comment */

 Functions are sections of code that are called from other code. Functions always have a

return argument type, a function name, and then a list of arguments separated by

commas:

 A void type means the function does not return a value.

 Variables are declared with a type and a name:

int add(int x, int y) {

int z = x + y ;

return z ;

}

// No arguments? Still need ()

void my_function() {

/* do something...

but a void value means the

return statement can be skipped.*/

}

// Specify the type

int x = 100;

float y;

vector<string> vec ;

// Sometimes types can be inferred

auto z = x;

 A sampling of arithmetic operators:

 Arithmetic: + - * / % ++ --

 Logical: && (AND) ||(OR) !(NOT)

 Comparison: == > < >= <= !=

 Sometimes these can have special meanings beyond arithmetic, for

example the “+” is used to concatenate strings.

 What happens when a syntax error is made?
 The compiler will complain and refuse to compile the file.

 The error message usually directs you to the error but sometimes the error occurs before the

compiler discovers syntax errors so you hunt a little bit.

Built-in (aka primitive or intrinsic) Types

 “primitive” or “intrinsic” means these types are not objects.
 They have no methods or internal hidden data.

 Here are the most commonly used types.

 Note: The exact bit ranges here are platform and compiler dependent!

 Typical usage with PCs, Macs, Linux, etc. use these values

 Variations from this table are found in specialized applications like embedded system processors.

Name Name Value

char unsigned char 8-bit integer

short unsigned short 16-bit integer

int unsigned int 32-bit integer

long unsigned long 64-bit integer

bool true or false

Name Value

float 32-bit floating point

double 64-bit floating point

long long 128-bit integer

long double 128-bit floating point

http://www.cplusplus.com/doc/tutorial/variables/

http://www.cplusplus.com/doc/tutorial/variables/

Need to be sure of integer sizes?

 In the same spirit as using integer(kind=8) type notation in Fortran, there are type definitions that

exactly specify exactly the bits used. These were added in C++11.

 These can be useful if you are planning to port code across CPU architectures (ex. Intel 64-bit

CPUs to a 32-bit ARM on an embedded board) or when doing particular types of integer math.

 For a full list and description see: http://www.cplusplus.com/reference/cstdint/

Name Name Value

int8_t uint8_t 8-bit integer

int16_t uint16_t 16-bit integer

int32_t uint32_t 32-bit integer

int64_t uint64_t 64-bit integer

#include <cstdint>

http://www.cplusplus.com/reference/cstdint/

Reference and Pointer Variables

 Variable and object values are stored in particular locations in the computer’s memory.

 Reference and pointer variables store the memory location of other variables.

 Pointers are found in C. References are a C++ variation that makes pointers easier and safer to

use.

 More on this topic later in the tutorial.

string hello = "Hello";

string *hello_ptr = &hello;

string &hello_ref = hello;

The object hello

occupies some

computer memory.

A pointer to the hello object string. hello_ptr

is assigned the memory address of object

hello which is accessed with the “&” syntax.

hello_ref is a reference to a string. The hello_ref

variable is assigned the memory address of object hello

automatically.

 C++ is strongly typed. It will auto-convert a variable of one type to another where it can.

 Conversions that don’t change value work as expected:

 increasing precision (float  double) or integer  floating point of at least the same precision.

 Loss of precision usually works fine:

 64-bit double precision  32-bit single precision.

 But…be careful with this, if the larger precision value is too large the result might not be what you expect!

Type Casting

short x = 1 ;

int y = x ; // OK

string z = y ; // NO

 C++ allows for C-style type casting with the syntax: (new type) expression

 But when using C++ it’s best to stick with deliberate type casting using the 4 different

ways that are offered…

Type Casting

double x = 1.0 ;

int y = (int) x ;

float z = (float) (x / y) ;

Type Casting

 static_cast<new type>(expression)

 This is exactly equivalent to the C style cast.

 This identifies a cast at compile time.

 This makes it clear to another programmer that you really intended a cast that

reduces precision (ex. double  float) and make it

 ~99% of all your casts in C++ will be of this type.

 dynamic_cast<new type>(expression)

 Special version where type casting is performed at runtime, only works on reference

or pointer type variables.

 Usually created automatically by the compiler where needed, rarely done by the

programmer.

double d = 1234.56 ;

float f = static_cast<float>(d) ;

// same as

float g = (float) d ;

// same as

float h = d ;

Type Casting cont’d

 const_cast<new type>(expression)

 Variables labeled as const can’t have their value changed.

 const_cast lets the programmer remove or add const to reference or pointer type

variables.

 If you need to do this, you probably want to re-think your code!

 reinterpret_cast<new type>(expression)

 Takes the bits in the expression and re-uses them unconverted as a new type. Also

only works on reference or pointer type variables.

 Sometimes useful when reading or writing binary files or when dealing with hardware

devices like serial or USB ports.

“unsafe”: the

compiler will not

protect you here!

The programmer

must make sure

everything is

correct!

Danger!

Functions

 Open the project “FunctionExample” in

the Part 1 NetBeans project file.
 Compile and run it!

 Open main.cpp

 4 function calls are listed.

 The 1st and 2nd functions are identical in

their behavior.
 The values of L and W are sent to the function,

multiplied, and the product is returned.

 RectangleArea2 uses const arguments
 The compiler will not let you modify their values in the

function.

 Try it! Uncomment the line and see what happens

when you recompile.

 The 3rd and 4th versions pass the

arguments by reference with an added &

float RectangleArea1(float L, float W) {

return L*W ;

}

float RectangleArea2(const float L, const float W) {

// L=2.0 ;

return L*W ;

}

float RectangleArea3(const float& L, const float& W) {

return L*W ;

}

void RectangleArea4(const float& L, const float& W, float& area) {

area= L*W ;

}

The function arguments L and W

are sent as type float.

Product is computed

The return type is float.

Using the NetBeans Debugger

 To show how this works we will use the NetBeans interactive debugger to step through the program line-by-line

to follow the function calls.

 Make sure you are running in Debug mode. This turns off compiler optimizations and has the compiler include

information in the compiled code for effective debugging.

Add Breakpoints

 Breakpoints tell the debugger to halt at a

particular line so that the state of the

program can be inspected.

 In main.cpp, click to the left of the lines in

the functions to set a pair of breakpoints.

A red square will appear.

 Click the this arrow to start the code in

the debugger.

 The debugger will pause the program at the first

breakpoint.

 Controls (hover mouse over for help):

 At the bottom of the window there are several tabs showing the state of the program:

