
Introduction to Python

Part 2

v0.2

Brian Gregor

Research Computing Services

Information Services & Technology

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

Tuples

 Tuples are lists whose elements can’t

be changed.
 Like strings they are immutable

 Indexing (including slice notation) is

the same as with lists.

Return multiple values from a function

 Tuples are more useful than they

might seem at first glance.

 They can be easily used to return

multiple values from a function.

 Python syntax can automatically

unpack a tuple return value.

Dictionaries

 Dictionaries are another basic Python data type that are tremendously

useful.

 Create a dictionary with a pair of curly braces:

x = {}

 Dictionaries store values and are indexed with keys

 Create a dictionary with some initial values:

x = {'a_key':55, 100:'a_value', 4.1:[5,6,7]}

Dictionaries

 Values can be any Python thing

 Keys can be primitive types (numbers), strings, tuples, and some custom

data types
 Basically, any data type that is immutable

 Lists and dictionaries cannot be keys but they can stored as values.

 Index dictionaries via keys: x['a_key'] 55

x[100] 'a_value'

Try Out Dictionaries

 Create a dictionary in the Python console or

Spyder editor.

 Add some values to it just by using a new key as

an index. Can you overwrite a value?

 Try x.keys() and x.values()

 Try: del x[valid_key] deletes a key/value

pair from the dictionary.

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

Modules

 Python modules, aka libraries or packages, add functionality to the core

Python language.

 The Python Standard Library provides a very wide assortment of functions

and data structures.
 Check out their Brief Tour for a quick intro.

 Distributions like Anaconda provides dozens or hundreds more

 You can write your own libraries or install your own.

https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/stdlib.html

PyPI

 The Python Package Index is a central repository for Python software.
 Mostly but not always written in Python.

 A tool, pip, can be used to install packages from it into your Python setup.
 Anaconda provides a similar tool called conda

 Number of projects (as of May 2018): 140,310

 You should always do your due diligence when using software from a

place like PyPI. Make sure it does what you think it’s doing!

https://pypi.org/

Python Modules on the SCC

 Python modules should not be confused with the SCC module command.

 For the SCC there are instructions on how to install Python software for

your account or project.

 Many SCC modules provide Python packages as well.
 Example: tensorflow, pyopencl, others.

 Need help on the SCC? Send us an email: help@scv.bu.edu

http://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/install-packages/
mailto:help@scv.bu.edu

Importing modules

 The import command is used to load a

module.

 The name of the module is prepended to

function names and data structures in the

module.
 The preserves the module namespace

 This allows different modules to have the

same function names – when loaded the

module name keeps them separate.

Try these out!

Fun with import

 The import command can strip away the module name:

 Or it can import just a single function:

 Or rename on the import:

from math import *

from math import cos

from math import sin as exact_sin

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

A brief into to numpy and matplotlib

 numpy is a Python library that provides efficient multidimensional matrix

and basic linear algrebra
 The syntax is very similar to Matlab or Fortran

 matplotlib is a popular plotting library
 Remarkably similar to Matlab plotting commands!

 A third library, scipy, provides a wide variety of numerical algorithms:
 Integrations, curve fitting, machine learning, optimization, root finding, etc.

 Built on top of numpy

 Investing the time in learning these three libraries is worth the effort!!

http://www.numpy.org/
https://matplotlib.org/
https://www.scipy.org/

numpy

 numpy provides data structures written in compiled C code

 Many of its operations are executed in compiled C or Fortran code, not

Python.

 Check out numpy_basics.py

numpy datatypes

 Unlike Python lists, which are generic

containers, numpy arrays are typed.

 If you don’t specify a type, numpy will assign

one automatically.

 A wide variety of numerical types are available.

 Proper assignment of data types can sometimes have a significant effect on

memory usage and performance.

https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html

Numpy operators

 Numpy arrays will do element-wise

arithmetic: + / - * **

 Matrix (or vector/matrix, etc.)

multiplication needs the .dot() function.

 Numpy has its own sin(), cos(), log(),

etc. functions that will operate element-

by-element on its arrays. Try these out!

indexing

 Numpy arrays are indexed much like Python lists

 Slicing and indexing get a little more complicated when using numpy

arrays.

 Open numpy_indexing.py

Plotting with matplotlib

 Matplotlib is probably the most

popular Python plotting library
 Plotly is another good one

 If you are familiar with Matlab

plotting then matplotlib is very

easy to learn!

 Plots can be made from lists,

tuples, numpy arrays, etc.

Try these out!

https://plot.ly/d3-js-for-python-and-pandas-charts/

 Some sample images from matplotlib.org

 A vast array of plot types in 2D and 3D are available in

this library.

https://matplotlib.org/tutorials/introductory/sample_plots.html

A numpy and matplotlib example

 Let’s walk through a short example on using numpy and matplotlib

together.

 Open numpy_matplotlib_fft.py

 Let’s walk through this…

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

Classes (writing your own)

 The data types we’ve used so far are classes!

 Make a list: a = []

 See what functions a list defines internally: dir(a)

 Your own classes can be as simple or complex as you need.

Class syntax

 A class is defined with the keyword class, a

classname, and a code block.

 Methods always take an extra argument,

self, and are called with the self prefix

inside the class.

 Members (i.e. variables) in the class can be

added at any time even outside of the class

definition.
 Members are called internally with the self prefix.

Try this out!

Initializer

 When an object is instantiated from a class, a special function called the

initializer is called to set up the object.

 Syntax: def __init__(self,…args…):

initialize a member

self.x = arg1

etc

 The members are typically created here, files are opened, etc.

A class by example…

 Open the file read_a_file_classes.py

 This is a re-write of the earlier code that reads numbers from a file.

 The functionality is pushed into a custom class, OddEvenNums.

 Let’s walk through and compare to the other solutions.

Other special methods

 To have a class work with print(), implement the __str__() method.

 To make a class sortable in a list, implement the “less than” method,

__lt__()

 To make a class usable as a key in a dictionary, implement the

__hash__() method.

 For a complete list see the official docs.

https://docs.python.org/3/reference/datamodel.html

Class inheritance

 Classes can inherit from other classes.
 The one being inherited from is called the parent or

super class

 The one doing the inheriting is called the child or sub

class.

 Sub-classes get all of their parent’s members

and methods and can add their own.

 This is a very useful feature that really pays

off in more complex code.
 Less coding, fewer bugs, easier to maintain

 However…it’s outside the scope of this

tutorial.

When to use your own class

 A class works best when you’ve done some planning and design work

before starting your program.

 Simple programs can be written via classes although they will function just

like a function-based program.

 Classes can be easier to re-use in other programs compared with a set of

functions.

An example with classes

 Open faces_by_tables.py

 This is a program that produces images

of students assigned to groups at tables

in a classroom.

 The output is an image per table with

the student’s faces and names in groups

by rows.

 A naturally object-oriented situation.

 Each class tracks on the info it needs to

define itself.

Classroom: a classroom has

some Tables.

Table: a Table contains one

or more Groups.

Group: A group has a name

and one or more students.

Student: Students

have names,

BUIDs, and a

picture.

Writing Good Code

 Cultivating good coding habits pays off in many ways:
 Easier and faster to write

 Easier and faster to edit, change, and update your code

 Other people can understand your work

 Python lends itself to readable code
 It’s quite hard to write completely obfuscated code in Python.

 Contrast that with this sample of obfuscated C code.

 But some attention should still be paid…

 Here we’ll go over some suggestions on how to setup a Python script,

make it readable, reusable, and testable.

https://www.ioccc.org/2018/algmyr/prog.c
https://www.ioccc.org/2018/algmyr/prog.c

Think of others

 You should think of (at least!) three other people when working on your

program.
 EVEN for little ‘one-off’ scripts. Many such programs take on a life of their own.

 Person 1: Yourself, tomorrow.

 Your code may seem blindingly obvious to you late at night after several espressos,

but it may be less so the next afternoon.

 Person 2: Yourself, in six months.

 Same reasoning as the previous, x1000.

 Person 3: Your replacement in your lab.

 Ever inherit a program from a previous researcher? What would you like to have

handed to you to work on?

Comment your code

 Remember those (min.) 3 people to think about?

ADD PLENTY OF COMMENTS TO

YOUR CODE.

A habit of heavily commenting your code will make

you popular and appreciated in your research group.

Work with functions and classes

 Break up your program into logical chunks of functionality.

 Place those chunks into functions.

 Related functions and data can go into a class.

 Maximum length of a function: ideally no more than one screen’s worth of

code.

What’s in a __name__?
 Add the __name__ convention to your program

 Once your functionality is in functions, craft a “main”

section that will be run when Python reads your

script.

 When a file is read by Python a hidden attribute

called __name__ is set to the value of __main__

 If imported into another Python program the

__name__ is set to the name of the file.

 This separates the implementation of the program its

execution.

Compare some Python scripts

 Open up three files and let’s look at them.

 Just look at bad_code.py to start.

 bad_code.py

 good_code.py

 good_code_testing.py

Command line arguments

 Try to avoid hard-coding file paths,

problem size ranges, etc. into your

program.

 They can be specified at the command

line.

 Look at the argparse module, part of

the Python Standard Library.

https://docs.python.org/3/library/argparse.html

Function, class, and variable naming

 There’s no word or character limit for names.

 It’s ok to use descriptive names for things.

 BE OBVIOUS. It helps you and others use and understand your code.

 An IDE (like Spyder) will help you fill in longer names so there’s no extra

typing anyway!

Python from the command line

 A possible development process:

 Work on your program. Put hard-coded values into the if __name__==‘__main__’ section of

your code.

 Once things are underway add command line arguments and remove hard-coded values

 Modify the Spyder (or other IDE) launch command to use command line arguments.

 Finally (e.g. to run as an SCC batch job) test run from the command line.

Spyder command line arguments

 Click on the Run menu and choose

Configuration per file

 Enter command line arguments

Python from the command line

 To run Python from the command line:

 Just type python followed by the script name followed by script arguments.

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

Ways to debug

 There are many ways to debug Python programs.

 As an interpreted language Python is easier to debug than compiled ones.
 The interpreter has a complete understanding of the state of the program and it can manipulate

it at any time.

 A debugger can freely change variable values, function definitions, etc. inside a running

program!

 The main tool is pdb, the Python debugger.
 IDEs like Spyder make this very easy to use.

Alternate methods

 Sprinkle print() functions throughout your code.
 This is very popular.

 It can be effective.

 Not as fast or as reliable as using pdb, but it has its place.

 Make code changes until it works.
 Alas, also popular.

 Implement tests on your functions so that you know they work correctly.
 If you do this while developing it’s easy!

 The more people there are working on a program (concurrently or over time) the greater the

advantage of this method.

Use the debugger

 Let’s go back to the faces_by_table.py file and step

through it using the debugger to watch how it runs.

 Double-click to the left of line number 227 to make the

debugger pause when we reach that line:

 Now run the program using the debugger. Normally we’d

click the icon but to use the command line arguments

enter this into the console:
debugfile('faces_by_tables.py',args='student_images seating_chart.csv

seating_charts')

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

Where to get help…

 The official Python Tutorial

 Automate the Boring Stuff with Python
 Focuses more on doing useful things with Python, not scientific computing

 Full Speed Python tutorial

 Contact Research Computing: help@scv.bu.edu

https://docs.python.org/3/tutorial/index.html
http://automatetheboringstuff.com/
https://github.com/joaoventura/full-speed-python/releases/
mailto:help@scv.bu.edu

