
Introduction to Python

Part 2

v0.2

Brian Gregor

Research Computing Services

Information Services & Technology

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

Tuples

 Tuples are lists whose elements can’t

be changed.
 Like strings they are immutable

 Indexing (including slice notation) is

the same as with lists.

Return multiple values from a function

 Tuples are more useful than they

might seem at first glance.

 They can be easily used to return

multiple values from a function.

 Python syntax can automatically

unpack a tuple return value.

Dictionaries

 Dictionaries are another basic Python data type that are tremendously

useful.

 Create a dictionary with a pair of curly braces:

x = {}

 Dictionaries store values and are indexed with keys

 Create a dictionary with some initial values:

x = {'a_key':55, 100:'a_value', 4.1:[5,6,7]}

Dictionaries

 Values can be any Python thing

 Keys can be primitive types (numbers), strings, tuples, and some custom

data types
 Basically, any data type that is immutable

 Lists and dictionaries cannot be keys but they can stored as values.

 Index dictionaries via keys: x['a_key']  55

x[100]  'a_value'

Try Out Dictionaries

 Create a dictionary in the Python console or

Spyder editor.

 Add some values to it just by using a new key as

an index. Can you overwrite a value?

 Try x.keys() and x.values()

 Try: del x[valid_key]  deletes a key/value

pair from the dictionary.

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

Modules

 Python modules, aka libraries or packages, add functionality to the core

Python language.

 The Python Standard Library provides a very wide assortment of functions

and data structures.
 Check out their Brief Tour for a quick intro.

 Distributions like Anaconda provides dozens or hundreds more

 You can write your own libraries or install your own.

https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/stdlib.html

PyPI

 The Python Package Index is a central repository for Python software.
 Mostly but not always written in Python.

 A tool, pip, can be used to install packages from it into your Python setup.
 Anaconda provides a similar tool called conda

 Number of projects (as of May 2018): 140,310

 You should always do your due diligence when using software from a

place like PyPI. Make sure it does what you think it’s doing!

https://pypi.org/

Python Modules on the SCC

 Python modules should not be confused with the SCC module command.

 For the SCC there are instructions on how to install Python software for

your account or project.

 Many SCC modules provide Python packages as well.
 Example: tensorflow, pyopencl, others.

 Need help on the SCC? Send us an email: help@scv.bu.edu

http://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/install-packages/
mailto:help@scv.bu.edu

Importing modules

 The import command is used to load a

module.

 The name of the module is prepended to

function names and data structures in the

module.
 The preserves the module namespace

 This allows different modules to have the

same function names – when loaded the

module name keeps them separate.

Try these out!

Fun with import

 The import command can strip away the module name:

 Or it can import just a single function:

 Or rename on the import:

from math import *

from math import cos

from math import sin as exact_sin

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

A brief into to numpy and matplotlib

 numpy is a Python library that provides efficient multidimensional matrix

and basic linear algrebra
 The syntax is very similar to Matlab or Fortran

 matplotlib is a popular plotting library
 Remarkably similar to Matlab plotting commands!

 A third library, scipy, provides a wide variety of numerical algorithms:
 Integrations, curve fitting, machine learning, optimization, root finding, etc.

 Built on top of numpy

 Investing the time in learning these three libraries is worth the effort!!

http://www.numpy.org/
https://matplotlib.org/
https://www.scipy.org/

numpy

 numpy provides data structures written in compiled C code

 Many of its operations are executed in compiled C or Fortran code, not

Python.

 Check out numpy_basics.py

numpy datatypes

 Unlike Python lists, which are generic

containers, numpy arrays are typed.

 If you don’t specify a type, numpy will assign

one automatically.

 A wide variety of numerical types are available.

 Proper assignment of data types can sometimes have a significant effect on

memory usage and performance.

https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html

Numpy operators

 Numpy arrays will do element-wise

arithmetic: + / - * **

 Matrix (or vector/matrix, etc.)

multiplication needs the .dot() function.

 Numpy has its own sin(), cos(), log(),

etc. functions that will operate element-

by-element on its arrays. Try these out!

indexing

 Numpy arrays are indexed much like Python lists

 Slicing and indexing get a little more complicated when using numpy

arrays.

 Open numpy_indexing.py

Plotting with matplotlib

 Matplotlib is probably the most

popular Python plotting library
 Plotly is another good one

 If you are familiar with Matlab

plotting then matplotlib is very

easy to learn!

 Plots can be made from lists,

tuples, numpy arrays, etc.

Try these out!

https://plot.ly/d3-js-for-python-and-pandas-charts/

 Some sample images from matplotlib.org

 A vast array of plot types in 2D and 3D are available in

this library.

https://matplotlib.org/tutorials/introductory/sample_plots.html

A numpy and matplotlib example

 Let’s walk through a short example on using numpy and matplotlib

together.

 Open numpy_matplotlib_fft.py

 Let’s walk through this…

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

Classes (writing your own)

 The data types we’ve used so far are classes!

 Make a list: a = []

 See what functions a list defines internally: dir(a)

 Your own classes can be as simple or complex as you need.

Class syntax

 A class is defined with the keyword class, a

classname, and a code block.

 Methods always take an extra argument,

self, and are called with the self prefix

inside the class.

 Members (i.e. variables) in the class can be

added at any time even outside of the class

definition.
 Members are called internally with the self prefix.

Try this out!

Initializer

 When an object is instantiated from a class, a special function called the

initializer is called to set up the object.

 Syntax: def __init__(self,…args…):

initialize a member

self.x = arg1

etc

 The members are typically created here, files are opened, etc.

A class by example…

 Open the file read_a_file_classes.py

 This is a re-write of the earlier code that reads numbers from a file.

 The functionality is pushed into a custom class, OddEvenNums.

 Let’s walk through and compare to the other solutions.

Other special methods

 To have a class work with print(), implement the __str__() method.

 To make a class sortable in a list, implement the “less than” method,

__lt__()

 To make a class usable as a key in a dictionary, implement the

__hash__() method.

 For a complete list see the official docs.

https://docs.python.org/3/reference/datamodel.html

Class inheritance

 Classes can inherit from other classes.
 The one being inherited from is called the parent or

super class

 The one doing the inheriting is called the child or sub

class.

 Sub-classes get all of their parent’s members

and methods and can add their own.

 This is a very useful feature that really pays

off in more complex code.
 Less coding, fewer bugs, easier to maintain

 However…it’s outside the scope of this

tutorial.

When to use your own class

 A class works best when you’ve done some planning and design work

before starting your program.

 Simple programs can be written via classes although they will function just

like a function-based program.

 Classes can be easier to re-use in other programs compared with a set of

functions.

An example with classes

 Open faces_by_tables.py

 This is a program that produces images

of students assigned to groups at tables

in a classroom.

 The output is an image per table with

the student’s faces and names in groups

by rows.

 A naturally object-oriented situation.

 Each class tracks on the info it needs to

define itself.

Classroom: a classroom has

some Tables.

Table: a Table contains one

or more Groups.

Group: A group has a name

and one or more students.

Student: Students

have names,

BUIDs, and a

picture.

Writing Good Code

 Cultivating good coding habits pays off in many ways:
 Easier and faster to write

 Easier and faster to edit, change, and update your code

 Other people can understand your work

 Python lends itself to readable code
 It’s quite hard to write completely obfuscated code in Python.

 Contrast that with this sample of obfuscated C code.

 But some attention should still be paid…

 Here we’ll go over some suggestions on how to setup a Python script,

make it readable, reusable, and testable.

https://www.ioccc.org/2018/algmyr/prog.c
https://www.ioccc.org/2018/algmyr/prog.c

Think of others

 You should think of (at least!) three other people when working on your

program.
 EVEN for little ‘one-off’ scripts. Many such programs take on a life of their own.

 Person 1: Yourself, tomorrow.

 Your code may seem blindingly obvious to you late at night after several espressos,

but it may be less so the next afternoon.

 Person 2: Yourself, in six months.

 Same reasoning as the previous, x1000.

 Person 3: Your replacement in your lab.

 Ever inherit a program from a previous researcher? What would you like to have

handed to you to work on?

Comment your code

 Remember those (min.) 3 people to think about?

ADD PLENTY OF COMMENTS TO

YOUR CODE.

A habit of heavily commenting your code will make

you popular and appreciated in your research group.

Work with functions and classes

 Break up your program into logical chunks of functionality.

 Place those chunks into functions.

 Related functions and data can go into a class.

 Maximum length of a function: ideally no more than one screen’s worth of

code.

What’s in a __name__?
 Add the __name__ convention to your program

 Once your functionality is in functions, craft a “main”

section that will be run when Python reads your

script.

 When a file is read by Python a hidden attribute

called __name__ is set to the value of __main__

 If imported into another Python program the

__name__ is set to the name of the file.

 This separates the implementation of the program its

execution.

Compare some Python scripts

 Open up three files and let’s look at them.

 Just look at bad_code.py to start.

 bad_code.py

 good_code.py

 good_code_testing.py

Command line arguments

 Try to avoid hard-coding file paths,

problem size ranges, etc. into your

program.

 They can be specified at the command

line.

 Look at the argparse module, part of

the Python Standard Library.

https://docs.python.org/3/library/argparse.html

Function, class, and variable naming

 There’s no word or character limit for names.

 It’s ok to use descriptive names for things.

 BE OBVIOUS. It helps you and others use and understand your code.

 An IDE (like Spyder) will help you fill in longer names so there’s no extra

typing anyway!

Python from the command line

 A possible development process:

 Work on your program. Put hard-coded values into the if __name__==‘__main__’ section of

your code.

 Once things are underway add command line arguments and remove hard-coded values

 Modify the Spyder (or other IDE) launch command to use command line arguments.

 Finally (e.g. to run as an SCC batch job) test run from the command line.

Spyder command line arguments

 Click on the Run menu and choose

Configuration per file

 Enter command line arguments

Python from the command line

 To run Python from the command line:

 Just type python followed by the script name followed by script arguments.

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

Ways to debug

 There are many ways to debug Python programs.

 As an interpreted language Python is easier to debug than compiled ones.
 The interpreter has a complete understanding of the state of the program and it can manipulate

it at any time.

 A debugger can freely change variable values, function definitions, etc. inside a running

program!

 The main tool is pdb, the Python debugger.
 IDEs like Spyder make this very easy to use.

Alternate methods

 Sprinkle print() functions throughout your code.
 This is very popular.

 It can be effective.

 Not as fast or as reliable as using pdb, but it has its place.

 Make code changes until it works.
 Alas, also popular.

 Implement tests on your functions so that you know they work correctly.
 If you do this while developing it’s easy!

 The more people there are working on a program (concurrently or over time) the greater the

advantage of this method.

Use the debugger

 Let’s go back to the faces_by_table.py file and step

through it using the debugger to watch how it runs.

 Double-click to the left of line number 227 to make the

debugger pause when we reach that line:

 Now run the program using the debugger. Normally we’d

click the icon but to use the command line arguments

enter this into the console:
debugfile('faces_by_tables.py',args='student_images seating_chart.csv

seating_charts')

Tutorial Outline – Part 2

 Functions

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Classes

 Debugging

Where to get help…

 The official Python Tutorial

 Automate the Boring Stuff with Python
 Focuses more on doing useful things with Python, not scientific computing

 Full Speed Python tutorial

 Contact Research Computing: help@scv.bu.edu

https://docs.python.org/3/tutorial/index.html
http://automatetheboringstuff.com/
https://github.com/joaoventura/full-speed-python/releases/
mailto:help@scv.bu.edu

