
Introduction to
Linux

Augustine Abaris
Research Computing Services

Information Services & Technology

Topics for Today

● Research Computing Services
● Linux Overview
● Linux Interaction - Shell and Commands
● I/O redirection (pipes, etc.)
● Navigating the file system
● Processes and job control
● Editors
● Creating and Running Code

Research Computing Services

Research Computing Services (RCS)
A group within Information Services & Technology at Boston University provides
computing, storage, and visualization resources and services to support research
that has specialized or highly intensive computation, storage, bandwidth, or
graphics requirements.

Three Primary Services:

● Research Computation
● Research Visualization
● Research Consulting and Training

RCS Team and Expertise
Our Team

● Scientific Programmers
● Systems Administrators
● Service Management Specialists
● Research Facilitators
● Special Initiatives (Grants)
● help@scc.bu.edu

Consulting Focus:

● Bioinformatics
● Data Analysis / Statistics
● Molecular modeling
● Geographic Information Systems
● Scientific/Engineering Simulation
● Visualization

mailto:help@scc.bu.edu

Me

● Lead Systems Programmer/Administrator
● 20+ years of systems administration experience
● 15+ years at BU, contributed to design and deployment of SCC and 2

predecessor HPC clusters
● Contact: augustin@bu.edu

mailto:help@scc.bu.edu

You

● Who has experience programming?

● Using Linux?

● Using compute clusters?

● Using the Shared Computing Cluster (SCC)?

Linux
What, Who, When, Where & Why

What is Linux

● Unix-like computer operating system assembled under the
model of free and open-source software development and distribution.

● These operating systems share the Linux kernel.
○ Typically have the GNU utilities

● Comes in several “distributions” to serve different purposes.

What is Linux

● Bird’s eye view

Kernel

Hardware

 Shell

Utilities

multitasking

gcc

emacs

grepcat

sort awk

file
system

bash

sh

tcsh
device
access

wc

Who is Linux

● Linux is an O/S core originally
written by Linus Torvalds. Now
almost 10,000 developers
including major technology
companies like Intel and IBM.

● A set of programs written by
Richard Stallman and others.
They are the GNU utilities.

&

When is Linux?

~1991

Where is Linux

● World Wide Web
○ 67% of the world’s web-servers run Linux (2016)

● Research/High-Performance Compute
○ Google, Amazon, NSA, 100% of TOP500 Super-computers.

● Modern Smartphones and devices
○ The Android phone
○ Amazon Kindle
○ Smart TVs/Devices

Why Linux

● Free and open-source.

● Powerful for research datacenters

● Personal for desktops and phones

● Universal

● Community (and business) driven.

The most common OS used
by BU researchers when

working on a server or
computer cluster

Connecting
Let’s use Linux

Local System

Remote Server

Connection Protocols and Software
Remote Connections:

Secure SHell
(SSH)

Remote Graphics:
X-Windowing
(X, X-Win)

Data Transfer:
Secure File Transfer Protocol

(SFTP)

 Other protocols too, but let’s start with these.

Connecting from Different Platforms

SSH X-Win SFTP

Microsoft
Windows

MobaXterm
https://mobaxterm.mobatek.net

Apple
macOS

Terminal
(Built in)

XQuartz
https://www.xquartz.org

Cyberduck
https://cyberduck.io

Linux Terminal
(Built in)

X11
(Built in)

Various
(Built in)

SCC Help: http://www.bu.edu/tech/support/research/system-usage/getting-started

http://mobaxterm.mobatek.net/
https://www.xquartz.org/
https://cyberduck.io
http://www.bu.edu/tech/support/research/system-usage/getting-started/connect-ssh

Microsoft Windows

You need software that emulates an “X” terminal and
that connects using the “SSH” Secure Shell protocol.

● Recommended: MobaXterm
○ Download: http://mobaxterm.mobatek.net/

● Alternatives:
○ SSH/X-Windows: X-Win32

https://www.bu.edu/tech/services/support/desktop/distribution/xwindows/
○ SFTP: Filezilla

https://filezilla-project.org/

SCC Help: http://www.bu.edu/tech/support/research/system-usage/getting-started/connect-ssh

http://mobaxterm.mobatek.net/
https://www.bu.edu/tech/services/support/desktop/distribution/xwindows/
https://filezilla-project.org/
http://www.bu.edu/tech/support/research/system-usage/getting-started/connect-ssh

Apple macOS
● SSH: Terminal

○ Built in to macOS
Applications > Utilities > Terminal

● X-Windows: XQuartz
○ Download: https://www.xquartz.org/
○ Note: This install requires a logout.

● SFTP: Your choice
○ Filezilla: https://filezilla-project.org/ (Cross-platform, open-source)
○ Cyberduck: https://cyberduck.io (macOS native, drag-and-drop)
○ Many others

SCC Help: http://www.bu.edu/tech/support/research/system-usage/getting-started/connect-ssh

Built in!
Apple macOS is built on
Darwin -- a derivative of
4.4BSD-Lite2 and FreeBSD

https://www.xquartz.org/
https://filezilla-project.org/
https://cyberduck.io
http://www.bu.edu/tech/support/research/system-usage/getting-started/connect-ssh

Linux
● SSH: Terminal

○ Built in to Linux
Applications > System > Terminal

● X-Windows: X11
○ Built in to Linux
○ Use your package manager.

● SFTP: Your choice
○ Usually has one Built in.
○ Alternate: Filezilla (https://filezilla-project.org/)

SCC Help: http://www.bu.edu/tech/support/research/system-usage/getting-started/connect-ssh

https://filezilla-project.org/
http://www.bu.edu/tech/support/research/system-usage/getting-started/connect-ssh

Connecting

● Use your Shared Computing Cluster account if you have one.

● Tutorial accounts if you need one.
○ Username:
○ Password:

[local_prompt]$ ssh username@scc1.bu.edu
username@scc1.bu.edu’s Password:
[username@scc1 ~]$

Tutorial credentials blocked for print.
This box disappears during presentation

Get supplementary files

● At the command prompt, type the following:

[username@scc1 ~]$ cd ~

[username@scc1 ~]$ tar xf /scratch/linux-materials.tar

[username@scc1 ~]$ ls

c data haystack scripts

Linux Interaction
Shell, Prompt, Commands and System Use

Linux: The Shell

● Program that interprets commands and sends them to the OS

● Provides:
○ Built-in commands
○ Programming control structures
○ Environment variables

● Linux supports multiple shells.
○ The default on SCC is Bash.

“Bash” = “Bourne-again Shell”
(GNU version of ~1977 shell written by Stephen Bourne)

Linux: The “prompt”

[username@scc1 ~]$

Your Username

The System Name

Current Directory

(In Linux “ ~ ” is a shorthand for your home directory.)

Input

Linux: Command Basics

● Command: Command/program that does one thing

● Options: Change the way a command does that one thing
○ Short form: Single-dash and one letter e.g. ls -a

○ Long form: Double-dash and a word e.g. ls --all

● Argument: Provides the input/output that the command interacts with.

For more information about any command, use man or info (e.g. “man ls”)

[username@scc1 ~]$ command --option argument

Commands: Hands-On

● After you connect, type
○ whoami # my login
○ hostname # name of this computer
○ echo “Hello, world” # print characters to screen
○ echo $HOME # print environment variable
○ echo my login is $(whoami) # replace $(xx) with program output
○ date # print current time/date
○ cal # print this month’s calendar
○ shazam # bad command

Commands: Hands-On Options
● Commands have three parts; command, options and arguments/parameters.

Example: cal –j 3 1999. “cal” is the command, “-j” is an option (or switch), “3”
and “1999” are arguments/parameters.

● What is the nature of the prompt?
● What was the system’s response to the command?

[username@scc1 ~]$ cal -j 3 1999

Commands

“Small programs that do one thing well”

● The Unix Programming Environment, Kernighan and Pike

… at its heart is the idea that the power of a system comes more from the
relationships among programs than from the programs themselves. Many
UNIX programs do quite trivial things in isolation, but, combined with other
programs, become general and useful tools.

Commands: Selected text processing utilities
● awk Pattern scanning and processing language
● cat Display file(s)
● cut Extract selected fields of each line of a file
● diff Compare two files
● grep Search text for a pattern
● head Display the first part of files
● less Display files on a page-by-page basis
● sed Stream editor (esp. search and replace)
● sort Sort text files
● split Split files
● tail Display the last part of a file
● tr Translate/delete characters
● uniq Filter out repeated lines in a file
● wc Line, word and character count

Just a few of the
commands for
text processing

Variables and Environment Variables

● Variables are named storage locations.
○ USER=augustin

○ foo=“this is foo’s value”

● “Environment variables” are variables used and shared by the shell
○ For example, $PATH tells the system where to find commands.

● Environment variables are shared with programs that the shell runs.

Bash variables
● To create a new variable, use the assignment operator ‘=‘

● The foo variable can be printed with echo

● To make $foo visible to programs run by the shell (i.e., make it an
“environment variable”), use export:

[username@scc1 ~]$ foo=“this is foo’s value”

[username@scc1 ~]$ echo $foo
this is foo’s value

[username@scc1 ~]$ export foo

Environment Variables

● To see all currently defined environment variable, use printenv:
[username@scc1 ~]$ printenv
HOSTNAME=scc1
TERM=xterm-256color
SHELL=/bin/bash
HISTSIZE=1000
TMPDIR=/scratch
SSH_CLIENT=168.122.9.131 37606 22
SSH_TTY=/dev/pts/191
USER=cjahnke
MAIL=/var/spool/mail/cjahnke
PATH=/usr3/bustaff/cjahnke/apps/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin
PWD=/usr3/bustaff/cjahnke/linux-materials
LANG=C
MODULEPATH=/share/module/bioinformatics:/share/module/chemistry
SGE_ROOT=/usr/local/ogs-ge2011.11.p1/sge_root
HOME=/usr3/bustaff/cjahnke

Command History and Command Line Editing
● Try the history command

● Choose from the command history using the up ↑ and down ↓ arrows

● To redo your last command, try !!

● To go further back in the command history try !, then the number as shown
by history (e.g., !132). Or, !ls, for example, to match the most recent ‘ls’
command.

● What do the left ← and right → arrow do on the command line?

● Try the and <Backspace> keys

Help with Commands

● Type
○ date –-help

○ man date

○ info date

● BASH built-ins
○ A little different from other commands
○ Just type the command ‘help’
○ Or ‘man bash’

Yes, you can always Google it.

On using ‘man’ with ‘less’

● The man command outputs to a pager called less, which supports
many ways of scrolling through text:
○ Space, f # page forward
○ b # page backward
○ < # go to first line of file
○ > # go to last line of file
○ / # search forward (n to repeat)
○ ? # search backward (N to repeat)
○ h # display help
○ q # quit help

I/O Redirection

I/O redirection with pipes

● Many Linux commands print to “standard output”, which defaults to
the terminal screen. The ‘|’ (pipe) character can be used to divert or
“redirect” output to another program or filter.
○ w # show who’s logged on
○ w | less # pipe into the ‘less’ pager
○ w | grep ‘tuta’ # pipe into grep, print lines containing ‘tuta’
○ w | grep –v ‘tuta’ # print only lines not containing ‘tuta’
○ w | grep ‘tuta’ | sed s/tuta/scholar/g

replace all ‘tuta’ with ‘scholar’

More examples of I/O redirection

● Try the following (use up arrow to avoid retyping each line):
○ w | wc # count lines
○ w | cut –d ‘ ’ –f1 | sort # sort users
○ w | cut –d ‘ ’ –f1 | sort | uniq # eliminate duplicates

● We can also redirect output into a file:
○ w | cut –d ‘ ’ –f1 | sort | uniq > users

● Note that ‘awk’ can be used instead of ‘cut’:
○ w | awk ‘{print $1;}’ | sort | uniq > users

● Quiz:
○ How might we count the number of distinct users currently logged in?

For extra credit, how can we avoid over-counting by 2? (Hint: use ‘tail’.)

The Filesystem

The Linux File System

● The structure resembles an upside-down tree
● Directories (a.k.a. folders) are collections of files and other directories.
● Every directory has a parent except for the root directory.
● Many directories have subdirectories.

Navigating the File System

● Essential navigation commands:
○ pwd print current directory
○ ls list files
○ cd change directory

Navigating the File System

We use pathnames to refer to files and directories in the Linux file system.

● There are two types of pathnames:

○ Absolute – The full path to a directory or file; begins with /

○ Relative – A partial path that is relative to the current working directory;

does not begin with /

Navigating the File System

● Special characters interpreted by the shell for filename expansion:
○ ~ your home directory (e.g., /usr1/tutorial/tuta1)
○ . current directory
○ .. parent directory
○ * wildcard matching any filename
○ ? wildcard matching any character
○ TAB try to complete (partially typed) filename

Navigating the File System

● Examples:
○ cd /usr/local Change directory to /usr/local/lib
○ cd ~ Change to home directory (could just type ‘cd’)
○ pwd Print working (current) directory
○ cd .. Change directory to the “parent” directory
○ cd / Change directory to the “root”
○ ls –d pro* Listing of only the directories starting with “pro”

The ls Command
● Useful options for the “ls” command:

○ ls -a List all files, including hidden files beginning with a “.”
○ ls -ld * List details about a directory and not its contents
○ ls -F Put an indicator character at the end of each name
○ ls –l Simple long listing
○ ls –lR Recursive long listing
○ ls –lh Give human readable file sizes
○ ls –lS Sort files by file size
○ ls –lt Sort files by modification time (very useful!)

Some Useful File Commands
● cp [file1] [file2] copy file
● mkdir [name] make directory
● rmdir [name] remove (empty) directory
● mv [file] [destination] move/rename file
● rm [file] remove (-r for recursive)
● file [file] identify file type
● less [file] page through file
● head -n N [file] display first N lines
● tail -n N [file] display last N lines
● ln –s [file] [new] create symbolic link
● cat [file] [file2…] display file(s)
● tac [file] [file2…] display file in reverse order
● touch [file] update modification time
● od [file] display file contents, esp. binary

Manipulating files and directories
● Examples:

○ cd # The same as cd ~
○ mkdir test
○ cd test
○ echo ‘Hello everyone’ > myfile.txt
○ echo ‘Goodbye all’ >> myfile.txt
○ less myfile.txt
○ mkdir subdir1/subdir2 # Fails. Why?
○ mkdir -p subdir1/subdir2 # Succeeds
○ mv myfile.txt subdir1/subdir2
○ cd ..
○ rmdir test # Fails. Why?
○ rm –rf test # Succeeds

Symbolic links
● Sometimes it is helpful to be able to access a file from multiple locations

within the hierarchy. On a Windows system, we might create a “shortcut.” On
a Linux system, we can create a symbolic link:

○ mkdir foo # make foo directory
○ touch foo/bar # create empty file
○ ln –s foo/bar . # create link in current dir.

Finding a needle in a haystack
● The find command has a rather unfriendly syntax, but can be exceedingly

helpful for locating files in heavily nested directories.

● Examples:
○ find ~ -name bu –type d # search for “bu” directories in ~
○ find . –name my-file.txt # search for my-file.txt in .
○ find ~ -name ‘*.txt’ # search for “*.txt” in ~

● Quiz:
○ Can you use find to locate a file called “needle” in your haystack directory?
○ Extra credit: what are the contents of the “needle” file?

Processes & Job Control

Processes and Job Control

● As we interact with Linux, we create numbered instances of running programs
called “processes.” You can use the ‘ps’ command to see a listing of your
processes (and others!). To see a long listing, for example, of all processes
on the system try:

● To see all the processes owned by you and other members of the class, try:

[username@scc1 ~]$ ps -ef

[username@scc1 ~]$ ps -ef | grep tuta

Processes and job control

● Use “top” to see active processes.

Tasks: 408 total, 1 running, 407 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.3%us, 0.1%sy, 0.0%ni, 99.6%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 99022756k total, 69709936k used, 29312820k free, 525544k buffers
Swap: 8388604k total, 0k used, 8388604k free, 65896792k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND .
 7019 root 20 0 329m 137m 4852 S 4.0 0.1 217:01.56 sge_qmaster
 38246 isw 20 0 88724 2764 1656 S 0.7 0.0 0:01.28 sshd
 41113 cjahnke 20 0 13672 1512 948 R 0.7 0.0 0:00.03 top
 2324 root 20 0 0 0 0 S 0.3 0.0 0:21.82 kondemand/2
 7107 nobody 20 0 89572 10m 2400 S 0.3 0.0 2:18.05 gmond
 27409 theavey 20 0 26652 1380 880 S 0.3 0.0 0:34.84 tmux
 1 root 20 0 25680 1604 1280 S 0.0 0.0 0:05.74 init
 2 root 20 0 0 0 0 S 0.0 0.0 0:00.07 kthreadd
 3 root RT 0 0 0 0 S 0.0 0.0 0:00.89 migration/0
 4 root 20 0 0 0 0 S 0.0 0.0 0:01.72 ksoftirqd/0
 5 root RT 0 0 0 0 S 0.0 0.0 0:00.00 stopper/0

(refreshes every 2 seconds)

Foreground/background

● Thus far, we have run commands at the prompt and waited for them
to complete. We call this running in the “foreground.”

● Use the “&” operator, to run programs in the “background”,

○ Prompt returns immediately without waiting for the command to complete:

[username@scc1 ~]$ mycommand &
[1] 54356
[username@scc1 ~]$

← process id

Process Control Practice
● Let’s look at the “countdown” script, in your scripts folder for practice

● Make the script executable with chmod:

● First, run it for a few seconds, then kill with Control-C.

[username@scc1 ~]$ cd ~/scripts
[username@scc1 ~]$ cat countdown

[username@scc1 ~]$ chmod +x countdown

[username@scc1 ~]$./countdown 100
100
99
98
^C ← Ctrl-C = (^C)

Process control
● Now, let’s try running it in the background with &:

● The program’s output is distracting, so redirect it to a file:

[username@scc1 ~]$./countdown 60 &
[1] 54355
[username@scc1 ~]$
60
59

[username@scc1 ~]$ countdown 60 > c.txt &
[1] 54356
[username@scc1 ~]$

Process control
● Type ‘ps’ to see your countdown process.

● Also, try running ‘jobs’ to see any jobs running in the background from this
bash shell.

● To kill the job, use the ‘kill’ command, either with the five-digit process id:
○ kill 54356

● Or, you can use the job number (use ‘jobs’ to see list) with ‘%’:
○ kill %1

Backgrounding a running job with C-z and ‘bg’
● Sometimes you start a program, then decide to run it in the background.

[username@scc1 scripts]$./countdown 200 > c.out
^Z
[1]+ Stopped ./countdown 200 > c.out

[username@scc1 scripts]$ bg
[1]+ ./countdown 200 > c.out &

[username@scc1 scripts]$ jobs
[1]+ Running ./countdown 200 > c.out &

[username@scc1 scripts]$

← Ctrl-Z = (^Z)

Editors

Regular expressions
● Many Linux tools, such as grep and sed, use strings that describe sequences

of characters. These strings are called regular expressions.
Here are some examples:

○ ^foo # line begins with “foo”
○ bar$ # line ends with “bar”
○ [0-9]\{3\} # 3-digit number
○ .*a.*e.*i.*o.*u.* # words with vowels in order*

File Editors
● gedit

○ Notepad-like editor with some programming features (e.g., syntax highlighting). Requires
X-Windows.

● nano
○ Lightweight editor. Non-Xwindows.

● emacs
○ Swiss-army knife, has modes for all major languages, and can be customized. Formerly steep

learning curve has been reduced with introduction of menu and tool bars. Can be used under
Xwindows or not.

● vim
○ A better version of ‘vi’ (an early full-screen editor). Very fast, efficient. Steep learning curve.

Popular among systems programmers. Terminal or X-Windows.

Creating and Running Code

“Hello, world” in C
● cd to “~/c”, and read hello.c into your editor of choice.
● Modify the text on the printf line between “[“ and “]” and save the file.
● Produce an executable file called “hello” by compiling the program with gcc:

● Run the program at the command line:

● Optional: modify countdown script to run hello program

[username@scc1 ~]$./hello

[username@scc1 ~]$ gcc –o hello hello.c

Obtaining the Supplementary Course Material

● In browser, navigate to http://rcs.bu.edu/tutorials
○ Scroll to Introduction to Linux and select “Cheat Sheets”.

● See also other Linux tutorials:
○ http://www.tutorialspoint.com/unix/
○ Edx Linux intro [Google “edx linux”]
○ http://www.cse.sc.edu/~okeefe/tutorials/unixtut/

http://rcs.bu.edu/tutorials
http://www.tutorialspoint.com/unix/
http://www.cse.sc.edu/~okeefe/tutorials/unixtut/

Getting Help

How to Get Help
Support Website
● http://rcs.bu.edu (http://www.bu.edu/tech/support/research/)

Upcoming Tutorials:
● http://rcs.bu.edu/tutorials

Email (Submit a Ticket):
● help@scc.bu.edu

Email Direct:
● augustin@bu.edu

http://rcs.bu.edu
http://www.bu.edu/tech/support/research/
http://rcs.bu.edu/tutorials
mailto:help@scc.bu.edu
mailto:cjahnke@bu.edu

Questions?

Research Computing Services Website
http://rcs.bu.edu

RCS Tutorial Evaluation

http://rcs.bu.edu/eval

http://rcs.bu.edu
http://scv.bu.edu/survey/tutorial_evaluation.html

Questions?

