
Introduction to OpenACC

Shaohao Chen

Research Computing Services

Information Services and Technology

Boston University

Outline

• Introduction to GPU and OpenACC

• Basic syntax and the first OpenACC program: SAXPY

• Kernels vs. parallel directives

• An example: Laplace solver in OpenACC

The first try

Data transfer between GPU and CPU/host

Data race and the reduction clause

• GPU and OpenACC task granularities

GPU and GPGPU
• Originally, graphics processing unit (GPU) is dedicated for manipulating computer graphics and

image processing. Traditionally GPU is known as “video card”.

• GPU’s highly parallel structure makes it efficient for parallel programs. Nowadays GPUs are used
for tasks that were formerly the domain of CPUs, such as scientific computation. This kind of
GPU is called general-purpose GPU (GPGPU) .

• In many cases, a parallel program runs faster on GPU than on CPU. Note that a serial program
runs slower on GPU than on CPU.

• The most popular type of GPU in the high-performance computing world is NVIDIA GPU. We will
only focus on NVIDIA GPU here.

GPU is an accelerator

• GPU is a device on a CPU-based system. GPU is connected to CPU through PCI bus.

• Computer program can be parallelized and thus accelerated on GPU.

• CPU and GPU have separated memories. Data transfer between CPU and GPU is required in programming.

Three ways to accelerate applications on GPU

What is OpenACC

• OpenACC (for Open Accelerators) is a programming standard for parallel
computing on accelerators (mostly on NIVDIA GPU).

• It is designed to simplify GPU programming.

• The basic approach is to insert special comments (directives) into the code so as
to offload computation onto GPUs and parallelize the code at the level of GPU
(CUDA) cores.

• It is possible for programmers to create an efficient parallel OpenACC code with
only minor modifications to a serial CPU code.

What are compiler directives?

 The directives tell the compiler or runtime to ……

 Generate parallel code for GPU

 Allocate GPU memory and copy input data

 Execute parallel code on GPU

 Copy output data to CPU and deallocate GPU memory

// ... serial code ...

#pragma acc kernels

for (int i= 0; i<n; i++) {

//... parallel code ...

}

// ... serial code ...

 The first OpenACC directive: kernels

 ask the compiler to generate a GPU code

 let the compiler determine safe
parallelism and data transfer .

GPU

OpenACC Directive syntax

• C

#pragma acc directive [clause [,] clause] …]…

often followed by a structured code block

• Fortran

!$acc directive [clause [,] clause] …]...

often paired with a matching end directive surrounding a structured code block

!$acc end directive

The first OpenACC program: SAXPY

 Example: Compute a*x + y, where x and y are vectors, and a is a scalar.

int main(int argc, char **argv){

int N=1000;

float a = 3.0f;

float x[N], y[N];

for (int i = 0; i < N; ++i) {

x[i] = 2.0f;

y[i] = 1.0f;

}

#pragma acc kernels

for (int i = 0; i < N; ++i) {

y[i] = a * x[i] + y[i];

}

}

program main

integer :: n=1000, i

real :: a=3.0

real, allocatable :: x(:), y(:)

allocate(x(n),y(n))

x(1:n)=2.0

y(1:n)=1.0

!$acc kernels

do i=1,n

y(i) = a * x(i) + y(i)

enddo

!$acc end kernels

end program main

C Fortran

Use OpenACC on BU SCC (1): Get GPU resources

• Login BU SCC

% ssh username@scc1.bu.edu

• Request an interactive session with one CPU core and one GPU:

% qlogin –l gpus=1

• Load a PGI compiler:

% module load pgi/16.5

• Get GPU information

% pgaccelinfo

% nvidia-smi

Use OpenACC on BU SCC (2): Compile and Run

• On SCC, only the Portland Group compiler supports OpenACC

• Compile an OpenACC source code:

% pgcc -acc –Minfo=accel name.c –o exename

% pgf90 -acc –Minfo=accel name.f90 –o exename

• Note: the option –Minfo=accel is for printing useful information about
accelerator region targeting.

• Run the executable:

% ./exename

1) Login BU SCC and get an interactive session with GPU resources.

2) Provided a serial SAXPY code in C or Fortran, parallelize it using
OpenACC directives.

3) Compile and run the SAXPY program.

Exercise 1: SAXPY

Analysis of the compiling output

 Accelerator kernel is generated. The loop computation is offloaded to (Tesla) GPU
and is parallelized.

 The keywords copy and copyin are involved with data transfer. The keywords gang
and vector are involved with tasks granularity. We will cover these later.

$ pgcc -acc -Minfo=accel saxpy_acc.c -o saxpy_acc

main:

17, Generating copyin(x[:1000])

Generating copy(y[:1000])

19, Loop is parallelizable

Accelerator kernel generated

Generating Tesla code

19, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

Data dependency

 The loop is not parallelized if there is data dependency. For example,

#pragma acc kernels

for (int i = 0; i < N-1; i++) {

x[i] = a * x[i+1] ;

}

 The compiling output:

……

14, Loop carried dependence of x-> prevents parallelization

Loop carried backward dependence of x-> prevents vectorization

Accelerator scalar kernel generated

Loop carried backward dependence of x-> prevents vectorization

 The compiler creates a serial program, which runs slower on GPU than on CPU!

Pointer aliasing in C (1)

 An improper version of the SAXPY code (using pointers):

int N=1000;

float a = 3.0f;

float * x = (float*)malloc(N * sizeof(float));

float * y = (float*)malloc(N * sizeof(float));

for (int i = 0; i < N; ++i) {

x[i] = 2.0f;

y[i] = 1.0f;

}

#pragma acc kernels

for (int i = 0; i < N; ++i) {

y[i] = a * x[i] + y[i];

}

Pointer aliasing: Different
pointers are allowed to access
the same object. This may
induce implicit data dependency
in a loop.

 In this case, it is possible that the
pointers x an y access to the
same object. Potentially there is
data dependency in the loop.

 The compiler refuses to parallelize the loop that is involved with pointer aliasing.

 Compiling output of the improper SAXPY code:

……

20, Loop carried dependence of y-> prevents parallelization

Complex loop carried dependence of x-> prevents parallelization

Loop carried backward dependence of y-> prevents vectorization

Accelerator scalar kernel generated

Pointer aliasing in C (2)

Use restrict to avoid pointer aliasing

 A proper version of the SAXPY code (using pointers):

int N=1000;

float a = 3.0f;

float *x = (float*)malloc(N * sizeof(float));

float * restrict y = (float*)malloc(N * sizeof(float));

for (int i = 0; i < N; ++i) {

x[i] = 2.0f;

y[i] = 1.0f;

}

#pragma acc kernels

for (int i = 0; i < N; ++i) {

y[i] = a * x[i] + y[i];

}

 To avoid pointer aliasing, use
the keyword restrict.

 restrict means: For the
lifetime of the pointer ptr, only
it or a value directly derived
from it (such as ptr + 1) will be
used to access the object to
which it points.

Parallel directive (1)

 An improper version of SAXPY code (using parallel directive):

#pragma acc parallel

for (int i = 0; i < N; ++i) {

y[i] = a * x[i] + y[i];

}

The parallel directive tells the compiler to create a parallel region. But differently from the
kernels region, the code in the parallel region (the loop in this case) is executed (by all
gangs) redundantly. There is no work sharing!

!$acc parallel

do i=1,n

y(i) = a*x(i)+y(i)

enddo

!$acc end parallel

C Fortran

Parallel directive (2)

 A proper version of SAXPY code (using parallel loop directive):

#pragma acc parallel loop

for (int i = 0; i < N; ++i) {

y[i] = a * x[i] + y[i];

}

 It is necessary to add the keyword to loop to share the work (among gangs).

 In Fortran, the keyword loop can be replaced by do here.

 In C, the keyword loop can be replaced by for here.

!$acc parallel loop

do i=1,n

y(i) = a*x(i)+y(i)

enddo

!$acc end parallel loop

C Fortran

kernels vs. parallel (1)

 kernels

• More implicit.

• Gives the compiler more freedom to find and map parallelism.

• Compiler performs parallel analysis and parallelizes what it believes safe.

 parallel

• More explicit.

• Requires analysis by programmer to ensure safe parallelism

• Straightforward path from OpenMP

kernels vs. parallel (2)

 Parallelize a code block with two loops:

#pragma acc kernels

{

for (i=0; i<n; i++)

a[i] = 3.0f*(float)(i+1);

for (i=0; i<n; i++)

b[i] = 2.0f*a[i];

}

 Generate two kernels

 There is an implicit barrier between the two
loops: the second loop will start after the first
loop ends.

#pragma acc parallel

{

#pragma acc loop

for (i=0; i<n; i++) a[i] = 3.0f*(float)(i+1);

#pragma acc loop

for (i=0; i<n; i++) b[i] = 2.0f*a[i];

}

kernels parallel

 Generate one kernel

 There is no barrier between the two loops: the
second loop may start before the first loop ends.
(This is different from OpenMP).

Laplace Solver (1)

• Two-dimensional Laplace equation

• The solution on one point is the average of its four neighbor points:

• Discretize the Laplacian with first-order differential method and express the solution as

• Use Jacobi iterative algorithm to obtain a convergent solution.

• Jacobi iterative algorithm:

1. Give a trial solution A according to a provided initial condition.

2. Compute a new solution, that is A_new(i,j), based on the old values of the four
neighbor points.

3. Update the solution, i.e. A=A_new,

4. Iterate steps 2 and 3 until converged, i.e. max(| A_new(i,j)-A(i,j)|) < tolerance.

5. Finally the converged solution is stored at A.

Laplace Solver (2)

Laplace Solver (serial C)

Loops for computing a new
solution

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

for(i = 1; i <= ROWS; i++)

for(j = 1; j <= COLUMNS; j++) {

A_new[i][j] = 0.25 * (A[i+1][j] + A[i-1][j] +A[i][j+1] + A[i][j-1]);

}

dt = 0.0;

for(i = 1; i <= ROWS; i++)

for(j = 1; j <= COLUMNS; j++){

dt = fmax(fabs(A_new[i][j]-A[i][j]), dt);

A[i][j] = A_new[i][j];

}

iteration++;

}

Loops for updating the solution
and finding the max error.

A Loop for Jacobi iterations.

Laplace Solver (serial Fortran)

Loops for computing a new
solution

do while (dt > max_temp_error .and. iteration <= max_iterations)

do j=1,columns

do i=1,rows

A_new(i,j)=0.25*(A(i+1,j)+A(i-1,j)+ A(i,j+1)+A(i,j-1))

enddo

enddo

dt=0.0

do j=1,columns

do i=1,rows

dt = max(abs(A_new(i,j) - A(i,j)), dt)

A(i,j) = A_new(i,j)

enddo

enddo

iteration = iteration+1

enddo

Loops for updating the solution
and finding the max error.

A Loop for Jacobi iterations.

Exercise 2: Laplace Solver in OpenACC

 Provided a serial code (in C or Fortran) for solving the two-dimensional Laplace
equation, parallelize it using OpenACC directives. Then compare the performance
between the serial code and the OpenACC code.

• Hints:

1. Find the “hot spots”, the most time-consuming parts of the code. Usually they
are loops.

2. Analyze parallelism. Which loops are parallelizable?

3. What directives should be used? Where to insert the directives?

Laplace Solver (OpenACC in C, version 1)

These loops are parallelizable.
Create a kernel region and ask
the compiler to determine
parallelism and data transfer.

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

#pragma acc kernels

for(i = 1; i <= ROWS; i++)

for(j = 1; j <= COLUMNS; j++) {

A_new[i][j] = 0.25 * (A[i+1][j] + A[i-1][j] +A[i][j+1] + A[i][j-1]);

}

dt = 0.0;

#pragma acc kernels

for(i = 1; i <= ROWS; i++)

for(j = 1; j <= COLUMNS; j++){

dt = fmax(fabs(A_new[i][j]-A[i][j]), dt);

A[i][j] = A_new[i][j];

}

iteration++;

}

These loops are parallelizable.
Create a kernel region and ask
the compiler to determine
parallelism and data transfer.

This loop is not parallelizable
due to data dependency.

Laplace Solver (OpenACC in Fortran, version 1)

These loops are parallelizable.
Create a kernel region and ask
the compiler to parallelize it
and transfer data.

do while (dt > max_temp_error .and. iteration <= max_iterations)

!$acc kernels

do j=1,columns

do i=1,rows

A_new(i,j)=0.25*(A(i+1,j)+A(i-1,j)+ A(i,j+1)+A(i,j-1))

enddo

enddo

!$acc end kernels

dt=0.0

!$acc kernels

do j=1,columns

do i=1,rows

dt = max(abs(A_new(i,j) - A(i,j)), dt)

A(i,j) = A_new(i,j)

enddo

enddo

!$acc end kernels

iteration = iteration+1

enddo

These loops are parallelizable.
Create a kernel region and ask
the compiler to parallelize it
and transfer data.

This loop is not parallelizable
due to data dependency.

Analysis of performance (version 1)

 Compare the computation time (for 1000*1000 grids):

• Serial code: 17.610445 seconds.

• OpenACC code (version 1): 48.796347 seconds

 The OpenACC code is much slower than the serial code. What went wrong?

 We need to further analyze the parallelism and data transfer.

Profiling (version 1)

• There are four data transfers
between host(CPU) memory
and GPU memory in every
iteration of the outer while
loop.

• The total time for data
transfer is around 23.6
seconds, which is much
larger than the computing
time around 2.5 seconds!

time(us): 25,860,945

61: compute region reached 3372 times

63: kernel launched 3372 times

grid: [32x250] block: [32x4]

device time(us): total=1,006,028 max=312 min=296 avg=298

elapsed time(us): total=1,149,681 max=862 min=337 avg=340

61: data region reached 6744 times

61: data copyin transfers: 3372

device time(us): total=4,570,063 max=1,378 min=1,353 avg=1,355

69: data copyout transfers: 3372

device time(us): total=4,217,959 max=1,987 min=1,248 avg=1,250

72: compute region reached 3372 times

74: kernel launched 3372 times

grid: [32x250] block: [32x4]

device time(us): total=1,143,160 max=342 min=325 avg=339

elapsed time(us): total=1,300,500 max=1,128 min=373 avg=385

74: reduction kernel launched 3372 times

grid: [1] block: [256]

device time(us): total=67,550 max=21 min=20 avg=20

elapsed time(us): total=146,840 max=436 min=42 avg=43

72: data region reached 6744 times

72: data copyin transfers: 6744

device time(us): total=9,567,773 max=1,648 min=1,346 avg=1,418

81: data copyout transfers: 3372

device time(us): total=5,176,980 max=1,553 min=1,534 avg=1,535

 export PGI_ACC_TIME=1
to activate profiling, then
run again.

Analysis of data transfer (version 1)

Copy in: A and A_new is
copied from host to GPU.

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

#pragma acc kernels

for(i = 1; i <= ROWS; i++)

for(j = 1; j <= COLUMNS; j++) {

A_new[i][j] = 0.25 * (A[i+1][j] + A[i-1][j] +A[i][j+1] + A[i][j-1]);

}

dt = 0.0;

#pragma acc kernels

for(i = 1; i <= ROWS; i++)

for(j = 1; j <= COLUMNS; j++){

dt = fmax(fabs(A_new[i][j]-A[i][j]), dt);

A[i][j] = A_new[i][j];

}

iteration++;

}

Copy out: A and A_new is
copied from GPU to host.

Copy in: A and A_new is
copied from host to GPU.

Copy out: A and A_new is
copied from GPU to host.

 These data transfers happen every iteration of the outer while loop!

Data clauses

 copy (list): Allocates memory on GPU and copies data from host to GPU when entering region
and copies data to the host when exiting region.

 copyin(list): Allocates memory on GPU and copies data from host to GPU when entering region.

 copyout(list): Allocates memory on GPU and copies data to the host when exiting region.

 create(list): Allocates memory on GPU but does not copy.

 present(list): Data is already present on GPU.

• Syntax for C

#pragma acc data copy(a[0:size]) copyin(b[0:size]), copyout(c[0:size]) create(d[0:size]) present(d[0:size])

• Syntax for Fortran

!$acc acc data copy(a(0:size)) copyin(b(0:size]), copyout(c(0:size)) create(d(0:size)) present(d(0:size))

!$acc end data

• If the compiler can determine the size of arrays, it is unnecessary to specify the size explicitly.

Laplace Solver (OpenACC in C , version 2)

Create a kernel region here to
parallelize the for loops, but there
is no data transfer.

#pragma acc data copy(A), create(A_new)

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

#pragma acc kernels

for(i = 1; i <= ROWS; i++)

for(j = 1; j <= COLUMNS; j++) {

A_new[i][j] = 0.25 * (A[i+1][j] + A[i-1][j] + A[i][j+1] + A[i][j-1]);

}

dt = 0.0;

#pragma acc kernels

for(i = 1; i <= ROWS; i++)

for(j = 1; j <= COLUMNS; j++){

dt = fmax(fabs(A_new[i][j]-A[i][j]), dt);

A[i][j] = A_new[i][j];

}

iteration++;

}

Create a data region here. A is copied in
before the while loop starts and is copied out
after the while loop ends. A_new is allocated
on GPU memory directly and is unnecessary
to be copied to the host memory.

Create a kernel region here to
parallelize the for loops, but there
is no data transfer.

Laplace Solver (OpenACC in Fortran , version 2)

Create a kernel region here to
parallelize the do loops, but there
is no data transfer.

!$acc data copy(A), create(A_new)

do while (dt > max_temp_error .and. iteration <= max_iterations)

!$acc kernels

do j=1,columns

do i=1,rows

A_new(i,j)=0.25*(A(i+1,j)+A(i-1,j)+ A(i,j+1)+A(i,j-1))

enddo

enddo

!$acc end kernels

dt=0.0

!$acc kernels

do j=1,columns

do i=1,rows

dt = max(abs(A_new(i,j) - A(i,j)), dt)

A(i,j) = A_new(i,j)

enddo

enddo

!$acc end kernels

iteration = iteration+1

enddo

Create a data region here. A is copied in
before the while loop starts and is copied out
after the while loop ends. A_new is allocated
on GPU memory directly and is unnecessary
to be copied to the host memory.

Create a kernel region here to
parallelize the do loops, but there
is no data transfer.

Profiling (version 2)

• There are only 2 times data
movement (of arrays) in total.

• There are data movements
for the variable dt, but it is a
scalar and thus the transfer
processes cost very little time.

• The total time for data
movement is around 0.09
second, which is much
smaller than the computing
time (around 2.5 seconds)!

time(us): 2,374,331

59: data region reached 2 times

59: data copyin transfers: 1

device time(us): total=1,564 max=1,564 min=1,564 avg=1,564

91: data copyout transfers: 1

device time(us): total=1,773 max=1,773 min=1,773 avg=1,773

63: compute region reached 3372 times

65: kernel launched 3372 times

grid: [32x250] block: [32x4]

device time(us): total=1,005,947 max=313 min=296 avg=298

elapsed time(us): total=1,102,391 max=946 min=324 avg=326

74: compute region reached 3372 times

74: data copyin transfers: 3372

device time(us): total=20,344 max=16 min=6 avg=6

76: kernel launched 3372 times

grid: [32x250] block: [32x4]

device time(us): total=1,150,552 max=344 min=327 avg=341

elapsed time(us): total=1,235,344 max=856 min=352 avg=366

76: reduction kernel launched 3372 times

grid: [1] block: [256]

device time(us): total=67,484 max=21 min=19 avg=20

elapsed time(us): total=151,147 max=358 min=43 avg=44

76: data copyout transfers: 3372

device time(us): total=68,104 max=46 min=17 avg=20

 export PGI_ACC_TIME=1
to activate profiling, then
run again.

Analysis of performance (version 2)

 Compare the computation time (for 1000*1000 grids):

• Serial code: 17.610445 seconds.

• OpenACC code (version 1): 48.796347 seconds

• OpenACC code (version 2): 2.592581 seconds

 The OpenACC code (version 2) is around 6.8 times faster than the serial code.
Cheers!

 The speed-up would be even larger if the size of the problem increase.

 Note: The maximum size of GPU memory (typically 6 GB or 12 GB) is much
smaller than regular CPU memory (e.g. 128 GB on BU SCC).

Reduction
 As we can see from the profiling results, a reduction kernel is created by the compiler.

What is reduction and why is it necessary?

 In the previous example, the variable dt can be modified by multiple workers (warps) simultaneously.

This is called a data race condition. If data race happened, an incorrect result will be returned.

 To avoid data race, a reduction clause is required to protect the concerned variable.

 Fortunately, the compiler is smart enough to create a reduction kernel and avoid the data race

automatically!

dt = 0.0;

#pragma acc kernels

for(i = 1; i <= ROWS; i++)

for(j = 1; j <= COLUMNS; j++){

dt = fmax(fabs(A_new[i][j]-A[i][j]), dt);

A[i][j] = A_new[i][j];

}

Laplace Solver (OpenACC in C , version 3)

Create a parallel region here
and parallelize the for loops.

#pragma acc data copy(A), create(A_new)

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

#pragma acc parallel loops

for(i = 1; i <= ROWS; i++)

for(j = 1; j <= COLUMNS; j++) {

A_new[i][j] = 0.25 * (A[i+1][j] + A[i-1][j] + A[i][j+1] + A[i][j-1]);

}

dt = 0.0;

#pragma parallel loops reduction(max:dt)

for(i = 1; i <= ROWS; i++)

for(j = 1; j <= COLUMNS; j++){

dt = fmax(fabs(A_new[i][j]-A[i][j]), dt);

A[i][j] = A_new[i][j];

}

iteration++;

}

Create a data region here.

Create a parallel region here and
parallelize the for loops. Explicitly
specify the reduction operator
and variable.

Laplace Solver (OpenACC in Fortran , version 3)

Create a parallel region here
and parallelize the do loops.

!$acc data copy(A), create(A_new)

do while (dt > max_temp_error .and. iteration <= max_iterations)

!$acc parallel loop

do j=1,columns

do i=1,rows

A_new(i,j)=0.25*(A(i+1,j)+A(i-1,j)+ A(i,j+1)+A(i,j-1))

enddo

enddo

!$acc end parallel loop

dt=0.0

!$acc parallel loop reduction(max:dt)

do j=1,columns

do i=1,rows

dt = max(abs(A_new(i,j) - A(i,j)), dt)

A(i,j) = A_new(i,j)

enddo

enddo

!$acc end parallel loop

iteration = iteration+1

enddo

Create a data region here.

Create a parallel region here and
parallelize the do loops. Explicitly
specify the reduction operator
and variable.

Analysis of performance (version 3)

 Compare the computation time (for 1000*1000 grid):

• Serial code: 17.610445 seconds.

• OpenACC code (version 1): 48.796347 seconds

• OpenACC code (version 2): 2.592581 seconds

• OpenACC code (version 3): 2.259797 seconds

 Using parallel directive is a little faster than using kernel directive in this case
(mostly due to different task granularities).

 It is a good practice to explicitly specify reduction operators and variables.

NVIDIA GPU (CUDA) Task Granularity

• GPU device -- CUDA grids:

Kennels/grids are assigned to a device.

• Streaming Multiprocessor (SM) -- CUDA thread blocks:

Blocks are assigned to a SM.

• CUDA cores -- CUDA threads:

Threads are assigned to a core.

 Warp: a unit that consists 32 threads.

Blocks are divided into warps.

The SM executes threads at warp granularity.

OpenACC Task Granularity

• Gang --- block

• Worker – warp

• Vector – thread

 Syntax for C

#pragma acc kernels loop gang(n) worker(m) vector(k)

#pragma acc parallel loop num_gangs(n) num_workers(m) vector_length(k)

 Syntax for Fortran

!$acc kernels loop gang(n) worker(m) vector(k)

!$acc parallel loop num_gangs(n) num_workers(m) vector_length(k)

• Submit a batch job:

% qsub job.sh

• A typical script for OpenACC jobs is like the following:

#!/bin/bash

#$ -l gpus=1

#$ -l h_rt=01:30:00

#$ -P project_name

#$ -N job_name

./executable

Appendix A: Submit a GPU job on SCC

 To request 4 CPU cores and 1 GPU

-pe omp 4 -l gpus=0.25

 To request 12 CPU cores and 1 GPU (e.g. for budge node)

-pe omp 12 -l gpus=0.08

 To request a whole budge node (12 CPU cores and 8 GPUs)

-pe omp 12 -l gpus=0.6

 To request 2 nodes with 12 CPU cores and 8 GPUs on each node

-pe mpi_12_tasks_per_node 24 -l gpus=0.6

 To request 1 node with 2 K40 GPUs

-pe omp 16 –l gpus=0.125 –l gpu_type=K40m

Appendix B: More options for requesting GPU resources on SCC

What is not covered

• Architecture of GPU

• Advanced OpenACC (vector, worker, gang, synchronization, etc)

• Using OpenACC with CUDA

• Using OpenACC with OpenMP (to use a few GPUs on one node)

• Using OpenACC with MPI (to use many GPUs on multiple nodes)

Further information

 OpenACC official website: http://www.openacc.org/node/1

Help
help@scc.bu.edu
shaohao@bu.edu

http://openmp.org/wp/

