
Python for Data Analysis
Research Computing Services

Katia Oleinik (koleinik@bu.edu)



Tu
to

ri
al

 C
o

n
te

n
t

2

Overview of Python Libraries for Data 
Scientists

Reading Data; Selecting and Filtering the Data; Data manipulation, 
sorting, grouping, rearranging 

Plotting the data

Descriptive statistics

Inferential statistics



Python Libraries for Data Science

Many popular Python toolboxes/libraries:
• NumPy
• SciPy
• Pandas
• SciKit-Learn

Visualization libraries
• matplotlib
• Seaborn

and many more …
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All these libraries are 
installed on the SCC



Python Libraries for Data Science

NumPy:
 introduces objects for multidimensional arrays and matrices, as well as 

functions that allow to easily perform advanced mathematical and statistical 
operations on those objects

 provides vectorization of mathematical operations on arrays and matrices 
which significantly improves the performance

 many other python libraries are built on NumPy
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Link: http://www.numpy.org/

http://www.numpy.org/


Python Libraries for Data Science

SciPy:
 collection of algorithms for linear algebra, differential equations, numerical 

integration, optimization, statistics and more

 part of SciPy Stack

 built on NumPy
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Link: https://www.scipy.org/scipylib/

https://www.scipy.org/scipylib/


Python Libraries for Data Science

Pandas:
 adds data structures and tools designed to work with table-like data (similar 

to Series and Data Frames in R)

 provides tools for data manipulation: reshaping, merging, sorting, slicing, 
aggregation etc.

 allows handling missing data
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Link: http://pandas.pydata.org/

http://pandas.pydata.org/


Link: http://scikit-learn.org/

Python Libraries for Data Science

SciKit-Learn:
 provides machine learning algorithms: classification, regression, clustering, 

model validation etc.

 built on NumPy, SciPy and matplotlib
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http://scikit-learn.org/stable/


matplotlib:
 python 2D plotting library which produces publication quality figures in a 

variety of hardcopy formats

 a set of functionalities similar to those of MATLAB

 line plots, scatter plots, barcharts, histograms, pie charts etc.

 relatively low-level; some effort needed to create advanced visualization

Link: https://matplotlib.org/

Python Libraries for Data Science
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https://matplotlib.org/


Seaborn:
 based on matplotlib

 provides high level interface for drawing attractive statistical graphics

 Similar (in style) to the popular ggplot2 library in R

Link: https://seaborn.pydata.org/

Python Libraries for Data Science
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https://seaborn.pydata.org/


Login to the Shared Computing Cluster

• Use your SCC login information if you have SCC account

• If you are using tutorial accounts see info on the blackboard

Note: Your password will not be displayed while you enter it.
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Selecting Python Version on the SCC

# view available python versions on the SCC

[scc1 ~] module avail python

# load python 3 version

[scc1 ~] module load python/3.6.2
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Download tutorial notebook

# On the Shared Computing Cluster

[scc1 ~] cp /project/scv/examples/python/data_analysis/dataScience.ipynb .

# On a local computer save the link:

http://rcs.bu.edu/examples/python/data_analysis/dataScience.ipynb
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http://rcs.bu.edu/examples/python/data_analysis/dataScience.ipynb


Start Jupyter nootebook

# On the Shared Computing Cluster

[scc1 ~] jupyter notebook

13



In [ ]:

Loading Python Libraries
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#Import Python Libraries

import numpy as np

import scipy as sp

import pandas as pd

import matplotlib as mpl

import seaborn as sns

Press Shift+Enter to execute the jupyter cell



In [ ]:

Reading data using pandas
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#Read csv file

df = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/Salaries.csv")

There is a number of pandas commands to read other data formats:

pd.read_excel('myfile.xlsx',sheet_name='Sheet1', index_col=None, na_values=['NA'])

pd.read_stata('myfile.dta')

pd.read_sas('myfile.sas7bdat')

pd.read_hdf('myfile.h5','df')

Note: The above command has many optional arguments to fine-tune the data import process.



In [3]:

Exploring data frames
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#List first 5 records

df.head()

Out[3]:



Hands-on exercises
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 Try to read the first 10, 20, 50 records;

Can you guess how to view the last few records;              Hint:



Data Frame data types

Pandas Type Native Python Type Description

object string The most general dtype. Will be 
assigned to your column if column 
has mixed types (numbers and 
strings).

int64 int Numeric characters. 64 refers to 
the memory allocated to hold this 
character.

float64 float Numeric characters with decimals. 
If a column contains numbers and 
NaNs(see below), pandas will 
default to float64, in case your 
missing value has a decimal.

datetime64, timedelta[ns] N/A (but see the datetime module 
in Python’s standard library)

Values meant to hold time data. 
Look into these for time series 
experiments.
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http://doc.python.org/2/library/datetime.html


In [4]:

Data Frame data types
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#Check a particular column type

df['salary'].dtype

Out[4]: dtype('int64')

In [5]: #Check types for all the columns

df.dtypes

Out[4]: rank             
discipline  
phd
service      
sex              
salary         
dtype: object

object
object
int64
int64
object
int64



Data Frames attributes
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Python objects have attributes and methods.

df.attribute description

dtypes list the types of the columns

columns list the column names

axes list the row labels and column names

ndim number of dimensions

size number of elements 

shape return a tuple representing the dimensionality 

values numpy representation of the data



Hands-on exercises
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 Find how many records this data frame has;

How many elements are there?     

What are the column names?

What types of columns we have in this data frame?



Data Frames methods
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df.method() description

head( [n] ), tail( [n] ) first/last n rows

describe() generate descriptive statistics (for numeric columns only)

max(), min() return max/min values for all numeric columns

mean(), median() return mean/median values for all numeric columns

std() standard deviation

sample([n]) returns a random sample of the data frame

dropna() drop all the records with missing values

Unlike attributes, python methods have parenthesis.
All attributes and methods can be listed with a dir() function: dir(df)



Hands-on exercises
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Give the summary for the numeric columns in the dataset

Calculate standard deviation for all numeric columns;

What are the mean values of the first 50 records in the dataset? Hint: use 

head() method to subset the first 50 records and then calculate the mean



Selecting a column in a Data Frame

Method 1:   Subset the data frame using column name:

df['sex']

Method 2:   Use the column name as an attribute:

df.sex

Note: there is an attribute rank for pandas data frames, so to select a column with a name 
"rank" we should use method 1.
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Hands-on exercises
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Calculate the basic statistics for the salary column;

 Find how many values in the salary column (use count method);

Calculate the average salary;



Data Frames groupby method
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Using "group by" method we can:

• Split the data into groups based on some criteria
• Calculate statistics (or apply a function) to each group
• Similar to dplyr() function in R

In [ ]: #Group data using rank

df_rank = df.groupby(['rank'])

In [ ]: #Calculate mean value for each numeric column per each group

df_rank.mean()



Data Frames groupby method
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Once groupby object is create we can calculate various statistics for each group:

In [ ]: #Calculate mean salary for each professor rank:

df.groupby('rank')[['salary']].mean()

Note: If single brackets are used to specify the column (e.g. salary), then the output is Pandas Series object. 
When double brackets are used the output is a Data Frame



Data Frames groupby method

28

groupby performance notes:

- no grouping/splitting occurs until it's needed. Creating the groupby object 
only verifies that you have passed a valid mapping
- by default the group keys are sorted during the groupby operation. You may 
want to pass sort=False for potential speedup:

In [ ]: #Calculate mean salary for each professor rank:

df.groupby(['rank'], sort=False)[['salary']].mean()



Data Frame: filtering
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To subset the data we can apply Boolean indexing. This indexing is commonly 
known as a filter.  For example if we want to subset the rows in which the salary 
value is greater than $120K: 

In [ ]: #Calculate mean salary for each professor rank:

df_sub = df[ df['salary'] > 120000 ]

In [ ]: #Select only those rows that contain female professors:

df_f = df[ df['sex'] == 'Female' ]

Any Boolean operator can be used to subset the data:
>   greater; >= greater or equal;
<   less;           <= less or equal;
== equal;        != not equal;  



Data Frames: Slicing
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There are a number of ways to subset the Data Frame:
• one or more columns
• one or more rows
• a subset of rows and columns

Rows and columns can be selected by their position or label 



Data Frames: Slicing
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When selecting one column, it is possible to use single set of brackets, but the 
resulting object will be  a Series (not a DataFrame): 

In [ ]: #Select column salary:

df['salary']

When we need to select more than one column and/or make the output to be a 
DataFrame, we should use double brackets:

In [ ]: #Select column salary:

df[['rank','salary']]



Data Frames: Selecting rows
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If we need to select a range of rows, we can specify the range using ":" 

In [ ]: #Select rows by their position:

df[10:20]

Notice that the first row has a position 0, and the last value in the range is omitted:
So for 0:10 range the first 10 rows are returned with the positions starting with 0 
and ending with 9



Data Frames: method loc
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If we need to select a range of rows, using their labels we can use method loc:

In [ ]: #Select rows by their labels:

df_sub.loc[10:20,['rank','sex','salary']]

Out[ ]:



Data Frames: method iloc
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If we need to select a range of rows and/or columns, using their positions we can 
use method iloc:

In [ ]: #Select rows by their labels:

df_sub.iloc[10:20,[0, 3, 4, 5]]

Out[ ]:



Data Frames: method iloc (summary)
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df.iloc[0]  # First row of a data frame

df.iloc[i]  #(i+1)th row 

df.iloc[-1] # Last row 

df.iloc[:, 0]  # First column

df.iloc[:, -1] # Last column 

df.iloc[0:7]       #First 7 rows 

df.iloc[:, 0:2]    #First 2 columns

df.iloc[1:3, 0:2]  #Second through third rows and first 2 columns

df.iloc[[0,5], [1,3]]  #1st and 6th rows and 2nd and 4th columns



Data Frames: Sorting

36

We can sort the data by a value in the column. By default the sorting will occur in 
ascending order and a new data frame is return. 

In [ ]: # Create a new data frame from the original sorted by the column Salary

df_sorted = df.sort_values( by ='service')

df_sorted.head()

Out[ ]:



Data Frames: Sorting
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We can sort the data using 2 or more columns:

In [ ]: df_sorted = df.sort_values( by =['service', 'salary'], ascending = [True, False])

df_sorted.head(10)

Out[ ]:



Missing Values
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Missing values are marked as NaN

In [ ]: # Read a dataset with missing values

flights = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/flights.csv")

In [ ]: # Select the rows that have at least one missing value

flights[flights.isnull().any(axis=1)].head()

Out[ ]:



Missing Values
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There are a number of methods to deal with missing values in the data frame:

df.method() description

dropna() Drop missing observations

dropna(how='all') Drop observations where all cells is NA

dropna(axis=1, how='all') Drop column if all the values are missing

dropna(thresh = 5) Drop rows that contain less than 5 non-missing values

fillna(0) Replace missing values with zeros

isnull() returns True if the value is missing

notnull() Returns True for non-missing values



Missing Values
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• When summing the data, missing values will be treated as zero
• If all values are missing, the sum will be equal to NaN
• cumsum() and cumprod() methods ignore missing values but preserve them in 

the resulting arrays
• Missing values in GroupBy method are excluded (just like in R)
• Many descriptive statistics methods have skipna option to control if missing 

data should be excluded . This value is set to True by default (unlike R)



Aggregation Functions in Pandas
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Aggregation - computing a summary statistic about each group, i.e.
• compute group sums or means
• compute group sizes/counts

Common aggregation functions:

min, max
count, sum, prod
mean, median, mode, mad
std, var



Aggregation Functions in Pandas
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agg() method are useful when multiple statistics are computed per column:

In [ ]: flights[['dep_delay','arr_delay']].agg(['min','mean','max'])

Out[ ]:



Basic Descriptive Statistics
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df.method() description

describe Basic statistics (count, mean, std, min, quantiles, max)

min, max Minimum and maximum values

mean, median, mode Arithmetic average, median and mode

var, std Variance and standard deviation

sem Standard error of mean

skew Sample skewness

kurt kurtosis



Graphics to explore the data
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To show graphs within Python notebook include inline directive:

In [ ]: %matplotlib inline

Seaborn package is built on matplotlib but provides high level 
interface for drawing attractive statistical graphics, similar to ggplot2 
library in R. It specifically targets statistical data visualization



Graphics

45

description

distplot histogram

barplot estimate of central tendency for a numeric variable

violinplot similar to boxplot, also shows the probability density of the 
data

jointplot Scatterplot

regplot Regression plot

pairplot Pairplot

boxplot boxplot

swarmplot categorical scatterplot

factorplot General categorical plot



Basic statistical Analysis
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statsmodel and scikit-learn - both have a number of function for statistical analysis

The first one is mostly used for regular analysis using R style formulas, while   scikit-learn is 
more tailored for Machine Learning.

statsmodels: 
• linear regressions
• ANOVA tests
• hypothesis testings
• many more ...

scikit-learn:
• kmeans
• support vector machines
• random forests
• many more ...

See examples in the Tutorial Notebook



Conclusion

Thank you for attending the tutorial.

Please fill the evaluation form:

http://scv.bu.edu/survey/tutorial_evaluation.html

Questions:

email: koleinik@bu.edu (Katia Oleinik)
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http://scv.bu.edu/survey/tutorial_evaluation.html
mailto:koleinik@bu.edu

