
Introduction to OpenMP

Shaohao Chen

Research Computing Services

Information Services and Technology

Boston University

Outline

• Brief overview of parallel computing and OpenMP

• OpenMP Programming

Parallel constructs

Work-sharing constructs

Data clauses

Data race condition

Synchronization constructs

More clauses

 Parallel computing is a type of
computation in which many calculations
are carried out simultaneously.

 Speedup of a parallel program,

p: number of processors (or cores),

α: fraction of the program that is serial.

Parallel Computing

• Figure from: https://en.wikipedia.org/wiki/Parallel_computing

Two types of parallel parallelism

• Shared memory system

• For example, a single node on a cluster

• Open Multi-processing (OpenMP)

• Distributed memory system

• For example, mutli nodes on a cluster

• Message Passing Interface (MPI)

 Figures from the book Using OpenMP: Portable Shared Memory Parallel Programming

 OpenMP (Open Multi-Processing) is an API (application programming
interface) that supports multi-platform shared memory multiprocessing
programming.

 Supporting languages: C, C++, and Fortran.

 Consists of a set of compiler directives, library routines, and environment
variables that influence run-time behavior.

 OpenMP 4.0 supports accelerators.

OpenMP

Parallelism of OpenMP

• Fork-join model:

• Multithreading: a master thread forks a specified number of slave threads and the system divides
a task among them. The threads then run concurrently, with the runtime environment allocating
threads to different processors (or cores).

• Figure from: http://en.wikipedia.org/wiki/OpenMP

The first OpenMP program: Hello world!
• Hello world in C language

#include <omp.h>

int main() {

int id;

#pragma omp parallel private(id)

{

id = omp_get_thread_num();

if (id%2==1)

printf("Hello world from thread %d, I am odd\n", id);

else

printf("Hello world from thread %d, I am even\n", id);

}

}

• Hello world in Fortran language

program hello

use omp_lib

implicit none

integer i

!$omp parallel private(i)

i = omp_get_thread_num()

if (mod(i,2).eq.1) then

print *,'Hello from thread',i,', I am odd!'

else

print *,'Hello from thread',i,', I am even!'

endif

!$omp end parallel

end program hello

#pragma omp directive-name [clause[[,] clause]. . .]

OpenMP directive syntax

• In C/C++ programs

!$omp directive-name [clause[[,] clause]. . .]

• In Fortran programs

• Directive-name is a specific keyword, for example parallel, that defines and
controls the action(s) taken.

• Clauses, for example private, can be used to further specify the behavior.

Compile and run OpenMP programs

Compile C/C++/Fortran codes

> icc/icpc/ifort -openmp name.c/name.f90 -o name

> gcc/g++/gfortran -fopenmp name.c/name.f90 -o name

> pgcc/pgc++/pgf90 -mp name.c/name.f90 -o name

Run OpenMP programs

> export OMP_NUM_THREADS=4 # set number of threads

> ./name

> time ./name # run and measure the time.

OpenMP programming

• Synchronization constructs

Barrier Construct

Critical Construct

Atomic Construct

• More clauses:

reduction, num_thread, schedule

• Parallel Construct

• Work-Sharing Constructs

Loop Construct

Sections Construct

Single Construct

Workshare Construct (Fortran only)

• Data clauses

shared, private, lastprivate, firstprivate, default

• Construct : An OpenMP executable directive and the associated statement,
loop, or structured block, not including the code in any called routines.

#pragma omp parallel [clause[[,] clause]. . .]

…… code block

Parallel construct

• Syntax in C/C++ programs

• Syntax in Fortran programs

• Parallel construct is used to specify the computations that should be executed in parallel.

• A team of threads is created to execute the associated parallel region.

• The work of the region is replicated for every thread.

• At the end of a parallel region, there is an implied barrier that forces all threads to wait
until the computation inside the region has been completed.

!$omp parallel [clause[[,] clause]. . .]

…… code block

!$omp end parallel

Work-sharing constructs

• Many applications can be parallelized by using just a parallel region and one
or more of work-sharing constructs, possibly with clauses.

Functionality Syntax in C/C++ Syntax in Fortran

Distribute iterations #pragma omp for !$omp do

Distribute independent works #pragma omp sections !$omp sections

Use only one thread #pragma omp single !$omp single

Parallelize array syntax N/A !$omp workshare

• The parallel and work-sharing (except single) constructs can be combined.

• Following is the syntax for combined parallel and work-sharing constructs,

Combine parallel construct with … Syntax in C/C++ Syntax in Fortran

Loop construct #pragma omp parallel for !$omp parallel do

Sections construct #pragma omp parallel sections !$omp parallel sections

Workshare construct N/A !$omp parallel workshare

#pragma omp for [clause[[,] clause]. . .]

…… for loop

Loop construct

• Syntax in C/C++ programs

• Syntax in Fortran programs

• The terminating !$omp end do directive in Fortran is optional but recommended.

!$omp do [clause[[,] clause]. . .]

…… do loop

[!$omp end do]

• The loop construct causes the iterations of the loop immediately following it to be
executed in parallel.

• Distribute iterations in a parallel region

#pragma omp parallel for shared(n,a) private(i)

for (i=0; i<n; i++)

a[i] = i + n;

• shared clause: All threads can read from and write to a shared variable.

• private clause: Each thread has a local copy of a private variable.

• The maximum iteration number n is shared, while the iteration number i is private.

• Each thread executes a subset of the total iteration space i = 0, . . . , n − 1

• The mapping between iterations and threads can be controlled by the schedule clause.

• Two work-sharing loops in one parallel region

#pragma omp parallel shared(n,a,b) private(i)

{

#pragma omp for

for (i=0; i<n; i++) a[i] = i+1;

// there is an implied barrier

#pragma omp for

for (i=0; i<n; i++) b[i] = 2 * a[i];

} /*-- End of parallel region --*/

• The distribution of iterations to threads could be different for the two loops.
• The implied barrier at the end of the first loop ensures that all the values of a[i]

are updated before they are used in the second loop.

Exercise 1

The SAXPY program is to add a scalar multiple of a real vector to another real vector:

s = a*x + y.

1. Provided a serial SAXPY code, parallelize it using OpenMP directives.

2. Compare the performance between serial and OpenMP codes.

• SAXPY in OpenMP:

#pragma omp sections [clause[[,] clause]. . .]

{

[#pragma omp section]

…… code block 1

[#pragma omp section

…… code block 2]

. . .

}

Sections construct
• Syntax in C/C++ programs • Syntax in Fortran programs

• The work in each section must be independent.

• Each section is distributed to one thread.

!$omp sections [clause[[,] clause]. . .]

[!$omp section]

…… code block 1

[!$omp section

…… code block 2]

. . .

!$omp end sections

• Example of parallel sections

#pragma omp parallel sections

{

#pragma omp section

funcA();

#pragma omp section

funcB();

} /*-- End of parallel region --*/

• The most common use of the sections construct is probably to execute function
or subroutine calls in parallel.

• There is a load-balancing problem, if the amount of work in different sections
are not equal.

#pragma omp single [clause[[,] clause]. .
.

…… code block

Single construct

• Syntax in C/C++ programs • Syntax in Fortran programs

• The code block following the single construct is executed by one thread only.

• The executing thread could be any thread (not necessary the master one).

• The other threads wait at a barrier until the executing thread has completed.

!$omp single [clause[[,] clause]. . .]

…… code block

!$omp end single

• An example of the single construct

#pragma omp parallel shared(a,b) private(i)

{

#pragma omp single

{

a = 10;

}

/* A barrier is automatically inserted here */

#pragma omp for

for (i=0; i<n; i++)

b[i] = a;

} /*-- End of parallel region --*/

• Only one thread initializes the
shared variable a.

• If the single construct is omitted
here, multiple threads could assign
the value to a at the same time,
potentially resulting in a memory
problem.

• The implicit barrier at the end of
the single construct ensures that
the correct value is assigned to the
variable a before it is used by all
threads.

Workshare construct

• Syntax in Fortran programs

• It is used to parallelize Fortran array operations.

!$omp workshare [clause[[,] clause]. . .]

…… code block

!$omp end workshare

• Workshare construct is only available for Fortran.

• An example of workshare construct

!$OMP PARALLEL SHARED(n,a,b,c)

!$OMP WORKSHARE

b(1:n) = b(1:n) + 1

c(1:n) = c(1:n) + 2

a(1:n) = b(1:n) + c(1:n)

!$OMP END WORKSHARE

!$OMP END PARALLEL

• These array operations are parallelized.

• The OpenMP compiler must generate code such that the updates of b and c have
completed before a is computed.

Lastprivate clause

#pragma omp parallel for private(i) lastprivate(a)

for (i=0; i<n; i++) {

a = i+1;

printf("Thread %d has a value of a = %d for i = %d\n", omp_get_thread_num(),a,i);

} /*-- End of parallel for --*/

printf(“After parallel for: i = %d , a = %d\n", i, a);

• private clause: The values of data can no longer be accessed after the region terminates.

• lastprivate clause: The sequentially last value is accessible outside the region.

• For loop construct, “last” means the iteration of the loop that would be last in a sequential
execution.

• For sections construct, “last” means the lexically last sections construct.

• Lastprivate clause is not available for parallel construct, since “last” can not be defined.

• Alternative code with shared clause

#pragma omp parallel for private(i, a) shared(a_shared)

for (i=0; i<n; i++) {

a = i+1;

if (i == n-1) a_shared = a;

} /*-- End of parallel for --*/

• All behavior of the lastprivate clause can be reproduced by the shared clause, but
the lastprivate clause is more recommended.

• The use of lastprivate results in a performance penalty, because the OpenMP library
needs to keep track of which thread executes the last iteration.

Firstprivate clause

int i, vtest=10, n=20;

#pragma omp parallel for private(i) firstprivate(vtest) shared(n)

for(i=0; i<n; i++) {

printf("thread %d: initial value = %d\n", omp_get_thread_num(), vtest);

vtest=i;

}

printf("value after loop = %d\n", vtest);

• private clause: Preinitialized value of variables are not passed to the parallel region.

• firstprivate clause: Each thread has a preinitialized copy of the variable. This variable is still
private, so threads can update it individually.

• Firstprivate clause is available for parallel, loop, sections and single constructs.

Default clause

• The default clause is used to give variables a default data-sharing attribute.

• It is applicable to the parallel construct only.

• Syntax in Fortran programs default (none | shared | private)

• Syntax in C programs default (none | shared)

#pragma omp parallel for default(shared) private(a,b,c)

• An example: declares all variables to be shared, with the some exceptions.

• If default(none) is specified, the programmer is forced to specify a data-sharing
attribute for each variable in the construct.

#pragma omp barrier

Barrier construct

• Syntax in C/C++ programs • Syntax in Fortran programs

• Threads wait for each other at a barrier.

• No thread may proceed beyond a barrier until all threads in the team have reached the
barrier.

!$omp barrier

Two important restrictions apply to the barrier construct:

• Each barrier must be encountered by all threads in a team, or by none at all.

• The sequence of work-sharing regions and barrier regions encountered must be the
same for every thread in the team.

• Also, a barrier should not be in a work-sharing construct, a critical section, or a master construct.

#pragma omp parallel

{

if (omp_get_thread_num() == 0){

.....

#pragma omp barrier // Correction: the barrier should be out of the if-else region

}

else{

.....

#pragma omp barrier

}

// #pragma omp barrier // The barrier should be added here.

} /*-- End of parallel region --*/

• The barrier is not encountered by all threads in the team, and therefore this is not illegal.

• An example: Illegal use of the barrier

work1(){

/*-- Some work performed here --*/

#pragma omp barrier // Correction: remove this barrier

}

work2(){

/*-- Some work performed here --*/

}

main(){

#pragma omp parallel sections

{

#pragma omp section

work1();

#pragma omp section

work2();

} // An implicit barrier

}

• If executed by two threads,
this program never finishes.

• Thread1 executing work1
waits forever in the explicit
barrier, which thread2 will
never encounter.

• Thread2 executing work2
waits forever in the implicit
barrier at the end of the
parallel sections construct,
which thread1 will never
encounter.

• Note: Do not insert a barrier
that is not encountered by all
threads of the same team.

• A dead lock situation

#pragma omp master

…… code block …..

Master construct

• Syntax in C/C++ programs • Syntax in Fortran programs

• The master construct defines a block of code that is guaranteed to be executed by the
master thread only.

• It does not have an implied barrier on entry or exit. In the cases where a barrier is not
required, the master construct may be preferable compared to the single construct.

!$omp master

…… code block …..

!$omp end master

• The master construct is often used (in combination with barrier construct) to initialize data.

• This code fragment implicitly assumes that variable Xinit is available to all threads
after it is initialized by the master thread. This is incorrect. The master thread might
not have executed the assignment when another thread reaches it.

int Xinit, Xlocal;

#pragma omp parallel shared(Xinit) private(Xlocal)

{

#pragma omp master // correct version 1: use single construct instead, #pragma omp single

{

Xinit = 10;

}

// correct version 2: insert a barrier here, #pragma omp barrier

Xlocal = Xinit; /*-- Xinit might not be available for other threads yet --*/

} /*-- End of parallel region --*/

• An example: Incorrect use of master construct

Data race condition

• Data race conditions arise when multithreads read or write the same shared data
simultaneously.

• Example: two threads each increases the value of a shared integer variable by one.

Thread 1 Thread 2 value

0

read value ← 0

Increase value 0

write back → 1

read value ← 1

increase value 1

write back → 2

Thread 1 Thread 2 value

0

read value ← 0

read value ← 0

increase value 0

increase value 0

write back → 1

write back → 1

Correct sequence Incorrect sequence

• Example of data racing: sums up elements of a vector

Different threads read and write the shared data sum simultaneously.

A data race condition arises!

The final result of sum could be incorrect!

sum = 0;

#pragma omp parallel for shared(sum,a,n) private(i)

for (i=0; i<n; i++)

{

sum = sum + a[i];

} /*-- End of parallel for --*/

printf("Value of sum after parallel region: %f\n",sum);

#pragma omp atomic

…… a single statement …..

Atomic construct

• Syntax

Fortran programs

• The atomic construct allows multiple threads to safely update a shared variable.

• The memory update (such as write) in the next instruction will be performed atomically.
It does not make the entire statement atomic. Only the memory update is atomic.

• It is applied only to the (single) assignment statement that immediately follows it.

!$omp atomic

…… a single statement …..

!$omp end atomic

• Supported operators +, *, -, /, &, ^, |, <<, >>. +, *, -, /, .AND., .OR., .EQV., .NEQV. .

C/C++ programs

• The atomic construct avoids the data racing condition. Therefore the result is correct.

• But all elements are added sequentially, and there is performance penalty for using
atomic, because the system coordinates all threads.

• This code is even slower than a serial code!

sum = 0;

#pragma omp parallel for shared(n,a,sum) private(i) // Optimization: use reduction instead
of atomic

for (i=0; i<n; i++)

{

#pragma omp atomic

sum += a[i];

} /*-- End of parallel for --*/

printf("Value of sum after parallel region: %d\n",sum);

• The first try to solve the data-race problem: use atomic (correct but slow)

• A partially parallel scheme to avoid data race

Step 1: Calculate local sums in parallel

Thread 1

a0

a1

am-1

+

+

+

=
…

LS1

Thread 2

am

am+1

a2m-1

+

+

+

=
…

LS2

Thread m

an-m-1

an-m

an

+

+

+

=
…

LSm

m: number of

threads

n: array length

LS: local sum

……

……

……

……

……

Step 2: Update total sum sequentially

Thread 1 Thread 2 …… Thread m

Read initial S

S = S + LS1

Write S

Read S

S = S + LS2

Write S

……

Read S

S = S + LSm

Write S

m: number of

threads

LS: local sum

S: total sum

• Each thread adds up its local sum.

• The atomic is only applied for adding up local sums to obtain the total sum.

sum = 0;

#pragma omp parallel shared(n,a,sum) private(sumLocal)

{

sumLocal = 0;

#pragma omp for

for (i=0; i<n; i++) sumLocal += a[i];

#pragma omp atomic

sum += sumLocal;

} /*-- End of parallel region --*/

printf("Value of sum after parallel region: %d\n",sum);

• The second try to solve the data-race problem: use atomic (correct and fast)

#pragma omp critical [(name)]

…… code block …..

Critical construct

• Syntax in C/C++ programs • Syntax in Fortran programs

• The critical construct provides a means to ensure that multiple threads do not
attempt to update the same shared data simultaneously.

• The enclosed code block will be executed by only one thread at a time.

• When a thread encounters a critical construct, it waits until no other thread is
executing a critical region with the same name.

!$omp critical [(name)]

…… code block …..

!$omp end critical [(name)]

• Each thread adds up its local sum.

• The critical region is used to avoid a data race condition when updating the total sum.

sum = 0;

#pragma omp parallel shared(n,a,sum) private(sumLocal)

{

sumLocal = 0;

#pragma omp for

for (i=0; i<n; i++) sumLocal += a[i];

#pragma omp critical (update_sum)

{

sum += sumLocal;

printf("TID=%d: sumLocal=%d sum = %d\n", omp_get_thread_num(), sumLocal, sum);

}

} /*-- End of parallel region --*/

printf("Value of sum after parallel region: %d\n",sum);

• The third try to solve the data-race problem: use critical (correct and fast)

• Another example of critical construct: avoid garbled output

A critical region helps to avoid intermingled output when multiple threads
print from within a parallel region.

#pragma omp parallel private(TID)

{

TID = omp_get_thread_num();

#pragma omp critical (print_tid)

{

printf("Thread %d : Hello, ",TID);

printf(“world!\n");

}

} /*-- End of parallel region --*/

Reduction clause

• The reduction variable is protected to avoid data race.

• The partially parallel scheme mentioned before is applied behind the scene.

• An OpenMP compiler will generate a roughly identical machine code for using reduction
clause (the code in this page) and for using critical construct (the code in a previous page).

• The reduction variable is shared by default and it is not necessary to specify it explicitly as
“shared”.

#pragma omp parallel for default(none) shared(n,a) private(i) reduction(+:sum)

for (i=0; i<n; i++)

sum += a[i];

/*-- End of parallel reduction --*/

• The fourth try to solve the data-race problem: use reduction (correct, fast and simple)

• Operators and statements supported by the reduction clause

C/C++ Fortran

Typical statements x = x op expr
x binop = expr
x = expr op x (except for subtraction)
x++
++x
x--
--x

x = x op expr
x = expr op x (except for subtraction)
x = intrinsic (x, expr_list)
x = intrinsic (expr_list, x)

op could be +, *, -, &, ^, |, &&, or || +, *, -, .and., .or., .eqv., or .neqv.

binop could be +, *, -, &, ^, or | N/A

Intrinsic function could be N/A max, min, iand, ior, ieor

Exercise 2

• Compute the value of pi:

The integration can be numerically approximated as
the sum of a number of rectangles.

1. Provided the serial code for computing the value of pi,
parallelize it using OpenMP directives.

2. Compare the performance between seral and OpenMP
codes.

Num_threads clause

• It is supported on the parallel construct only and

• It is used to specify the number of threads in the parallel region.

omp_set_num_threads(4);

#pragma omp parallel if (n > 5) num_threads(n) default(none) shared(n)

{

#pragma omp single

{

printf("Number of threads in parallel region: %d\n", omp_get_num_threads());

}

printf("Print statement executed by thread %d\n", omp_get_thread_num());

} /*-- End of parallel region --*/

Schedule clause

• Specifies how iterations of the loop are assigned to the threads in the team.

• Supported on the loop construct only.

• The iteration space is divided into chunks. A chunk is a contiguous nonempty subset of
the iteration space. It represents the granularity of workload distribution.

• Syntax schedule(kind [,chunk_size])

• The static schedule works best for regular workloads. It is the default schedule on
many OpenMP compilers.

• The dynamic and guided schedules are useful for handling poorly balanced and
unpredictable workloads. There is a performance penalty for using dynamic or
guided schedules.

type description

static The chunks are assigned to the threads statically in a round-robin manner, in the order
of the thread number.

dynamic The chunks are assigned to threads as the threads request them. When a thread
finishes, it will be assigned the next chunk that hasn’t been executed yet.

guided Similar to the dynamic schedule, except that the chunk size changes at run time. It
begins with big chunks, but then adjusts to smaller chunk sizes if the workload is
imbalanced.

runtime The schedule and (optional) chunk size are set through the OMP_SCHEDULE
environment variable.

• Schedule type

• An example of schedule clause:

In this code, the workload in the inner loop depends on the value of the outer loop
iteration variable i. Therefore, the workload is not balanced, and the static schedule is
not the best choice. Dynamic or guided schedules are required.

#pragma omp parallel for default(none) schedule(runtime) private(i,j) shared(n)

for (i=0; i<n; i++)

{

printf("Iteration %d executed by thread %d\n", i, omp_get_thread_num());

for (j=0; j<i; j++)

system("sleep 1");

}

Appendix A: OpenMP built-in functions

• List of OpenMP functions:

omp_set_num_threads(integer) : set the number of threads

omp_get_num_threads(): returns the number of threads

omp_get_thread_num(): returns the number of the calling thread.

omp_set_dynamic(integer|logical): dynamically adjust the number of threads

omp_get_num_procs(): returns the total number of available processors when it is called.

omp_in_parallel(): returns true if it is called within an active parallel region. False otherwise.

• Enable the usage of OpenMP functions:

C/C++ program: include omp.h .

Fortran program: include omp_lib.h or use omp_lib module.

Appendix B: OpenMP runtime variables

OMP_NUM_THREADS : the number of threads (=integer)

OMP_SCHEDULE : the schedule type (=kind,chunk . Kind could be static, dynamic or guided)

OMP_DYNAMIC : dynamically adjust the number of threads (=true | =false).

KMP_AFFINITY : only for intel compiler, to bind OpenMP threads to physical processing units.

(=compact | =scatter | =balanced).

Example usage: export KMP_AFFINITY= compact,granularity=fine,verbose .

Further information

References

 OpenMP official website: http://openmp.org/wp/

Help
help@scc.bu.edu
shaohao@bu.edu

http://openmp.org/wp/

