
Introduction to C++: Part 3

Tutorial Outline: Part 3

 Inheritance and overrides

 Virtual functions and interfaces

The formal concepts in OOP
Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

 Next up: Polymorphism

Using subclasses
 A function that takes a superclass

argument can also be called with

a subclass as the argument.

 The reverse is not true – a

function expecting a subclass

argument cannot accept its

superclass.

 Copy the code to the right and

add it to your main.cpp file.

void PrintArea(Rectangle &rT) {

cout << rT.Area() << endl ;

}

int main() {

Rectangle rT(1.0,2.0) ;

Square sQ(3.0) ;

PrintArea(rT) ;

PrintArea(sQ) ;

}

The PrintArea function

can accept the Square

object sQ because

Square is a subclass of

Rectangle.

Overriding Methods
 Sometimes a subclass needs to have the

same interface to a method as a

superclass with different functionality.

 This is achieved by overriding a method.

 Overriding a method is simple: just re-

implement the method with the same

name and arguments in the subclass.

In C::B open project:

CodeBlocks Projects Part 2 Virtual Method Calls

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

Super sP ;

sP.PrintNum() ; // Prints 1

Sub sB ;

sB.PrintNum() ; // Prints 2

Overriding Methods

 Seems simple, right?

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

Super sP ;

sP.PrintNum() ; // Prints 1

Sub sB ;

sB.PrintNum() ; // Prints 2

How about in a function call…

 Using a single function to operate

on different types is

polymorphism.

 Given the class definitions, what

is happening in this function call?

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

void FuncRef(Super &sP) {

sP.PrintNum() ;

}

Super sP ;

Func(sP) ; // Prints 1

Sub sB ;

Func(sB) ; // Hey!! Prints 1!!

“C++ is an insult to the human brain”

– Niklaus Wirth (designer of Pascal)

Type casting

 The Func function passes the argument as a reference (Super &sP).

 What’s happening here is dynamic type casting, the process of converting from

one type to another at runtime.

 Same mechanism as the dynamic_cast<type>() function

 The incoming object is treated as though it were a superclass object in

the function.

 When methods are overridden and called there are two points where

the proper version of the method can be identified: either at compile

time or at runtime.

void FuncRef(Super &sP) {

sP.PrintNum() ;

}

Virtual methods
 When a method is labeled as virtual and

overridden the compiler will generate

code that will check the type of an object

at runtime when the method is called.

 The type check will then result in the

expected version of the method being

called.

 When overriding a virtual method in a

subclass, it’s a good idea to label the

method as virtual in the subclass as well.

 …just in case this gets subclassed again!

class SuperVirtual

{

public:

virtual void PrintNum()

{

cout << 1 << endl ;

}

} ;

class SubVirtual : public SuperVirtual

{

public:

// Override

virtual void PrintNum()

{

cout << 2 << endl ;

}

} ;

void Func(SuperVirtual &sP)

{

sP.PrintNum() ;

}

SuperVirtual sP ;

Func(sP) ; // Prints 1

SubVirtual sB ;

Func(sB) ; // Prints 2!!

Early (static) vs. Late (dynamic) binding

 Leaving out the virtual keyword on a

method that is overridden results in the

compiler deciding at compile time which

version (subclass or superclass) of the

method to call.

 This is called early or static binding.

 At compile time, a function that takes a

superclass argument will only call the

non-virtual superclass method under

early binding.

 Making a method virtual adds code

behind the scenes (that you, the

programmer, never interact with directly)

 Lookups in a hidden table, called the

vtable, are done to figure out what version

of the virtual method should be run.

 This is called late or dynamic binding.

 There is a small performance penalty for

late binding due to the vtable lookup.

 This only applies when an object is

referred to by a reference or pointer.

Behind the scenes – vptr and vtable

 C++ classes have a hidden pointer (vptr)

generated that points to a table of virtual

methods associated with a class (vtable).

 When a virtual class method (base class

or its subclasses) is called by reference (

or pointer) when the program is running

the following happens:

 The object’s class vptr is followed to its class

vtable

 The virtual method is looked up in the vtable

and is then called.

 One vptr and one vtable per class so minimal

memory overhead

 If a method override is non-virtual it won’t be in

the vtable and it is selected at compile time.

Func(SuperVirtual &sP)

sP is a reference to a…

SuperVirtual SubVirtual

SuperVirtual’s

vptr

SubVirtual’s

vptr

Vtable

& SuperVirtual::PrintNum()

Vtable

& SubVirtual::PrintNum()

Let’s run this through the debugger

 Open the project: Parts 2-

3/Virtual Method Calls.

 Everything here is

implemented in one big

main.cpp

 Place a breakpoint at the first

line in main() and in the two

implementations of Func()

 Make sure the “Watches”

debugging window is open.

When to make methods virtual

 If a method will be (or might be)

overridden in a subclass, make it virtual

 There is a minor performance penalty.

Will that even matter to you?
 i.e. Have you profiled and tested your code to

show that virtual method calls are a performance

issue?

 When is this true?
 Almost always! Who knows how your code will

be used in the future?

 Constructors are never virtual in C++.

 Destructors in a base class should

always be virtual.

 Also – if any method in a class is virtual,

make the destructor virtual

 These are important when dealing with

objects via reference and it avoids some

subtleties when manually allocating

memory.

Why all this complexity?

 Late binding allows for code libraries to be updated for new functionality. As methods are identified

at runtime the executable does not need to be updated.

 This is done all the time! Your C++ code may be, for example, a plugin to an existing simulation

code.

 Greater flexibility when dealing with multiple subclasses of a superclass.

 Most of the time this is the behavior you are looking for when building class hierarchies.

void FuncLate(SuperVirtual sP)

{

sP.PrintNum() ;

}

void FuncEarly(SuperVirtual &sP)

{

sP.PrintNum() ;

}

 Called by reference – late binding

to PrintNum()
 Called by value – early binding to

PrintNum even though it’s virtual!

 Remember the Deadly Diamond of

Death? Let’s explain.

 Look at the class hierarchy on the right.

 Square and Circle inherit from Shape

 Squircle inherits from both Square and Circle

 Syntax:

class Squircle : public Square, public Circle

 The Shape class implements an empty

Area() method. The Square and Circle

classes override it. Squircle does not.

 Under late binding, which version of Area

is accessed from Squircle?

Square.Area() or Circle.Area()?

Shape

virtual float Area() {}

Square

virtual float

Area() {…}

Circle

virtual float

Area() {…}

Squircle

Interfaces

 Another pitfall of multiple inheritance: the

fragile base class problem.

 If many classes inherit from a single base

(super) class then changes to methods in the

base class can have unexpected

consequences in the program.

 This can happen with single inheritance but it’s

much easier to run into with multiple

inheritance.

 Interfaces are a way to have your

classes share behavior without them

sharing actual code.

 Gives much of the benefit of multiple

inheritance without the complexity and

pitfalls

Shape

Square Circle

 Example: for debugging you’d like each class

to have a Log() method that would write some

info to a file.

 Implement with an interface.

Log

Interfaces

 An interface class in C++ is called a pure virtual class.

 It contains virtual methods only with a special syntax.

Instead of {} the function is set to 0.
 Any subclass needs to implement the methods!

 Modified square.h shown.

 What happens when this is compiled?

 Once the LogInfo() is uncommented it will compile.

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Log {

virtual void LogInfo()=0 ;

};

class Square : public Rectangle, Log

{

public:

Square(float length);

virtual ~Square();

// virtual void LogInfo() {}

protected:

private:

};

#endif // SQUARE_H

(…error…)

include/square.h:10:7: note: because the following virtual

functions are pure within 'Square':

class Square : public Rectangle, Log

^

include/square.h:7:18: note: virtual void Log::LogInfo()

virtual void LogInfo()=0 ;

 C++ offers another fix for the diamond problem, Virtual inheritance. See: https://en.wikipedia.org/wiki/Virtual_inheritance

Putting it all together

 Now let’s revisit our Shapes

project.

 In the directory of C::B Part 2-3

projects, open the “Shapes with

Circle” project.

 This has a Shape base class with a

Rectangle and a Square

 Add a Circle class to the class

hierarchy in a sensible fashion.

Shape

Rectangle

Square

 Hint: Think first, code second.

Circle

???

New pure virtual Shape class

 Slight bit of trickery:

 An empty constructor is defined in shape.h

 No need to have an extra shape.cpp file if these

functions do nothing!

 Q: How much code can be in the header file?

 A: Most of it with some exceptions.

 .h files are not compiled into .o files so a

header with a lot of code gets re-compiled

every time it’s referenced in a source file.

#ifndef SHAPE_H

#define SHAPE_H

class Shape

{

public:

Shape() {}

virtual ~Shape() {}

virtual float Area()=0 ;

protected:

private:

};

#endif // SHAPE_H

Give it a try

 Add inheritance from Shape

to the Rectangle class

 Add a Circle class, inheriting

from wherever you like.

 Implement Area() for the

Circle

 If you just want to see a

solution, open the project

“Shapes with Circle solved”

A Potential Solution

 A Circle has one dimension

(radius), like a Square.

 Would only need to override the

Area() method

 But…

 Would be storing the radius in the

members m_width and m_length.

This is not a very obvious to

someone else who reads your code.

 Maybe:

 Change m_width and m_length

names to m_dim_1 and m_dim_2?

 Just makes everything more muddled!

Shape

Rectangle

Square

Circle

A Better Solution

 Inherit separately from the Shape

base class

 Seems logical, to most people a

circle is not a specialized form of

rectangle…

 Add a member m_radius to store

the radius.

 Implement the Area() method

 Makes more sense!

 Easy to extend to add an Oval

class, etc.

Shape

Rectangle

Square

Circle

New Circle class

 Also inherits from Shape

 Adds a constant value for p

 Constant values can be defined right in the

header file.

 If you accidentally try to change the value of PI

the compiler will throw an error.

#ifndef CIRCLE_H

#define CIRCLE_H

#include "shape.h"

class Circle : public Shape

{

public:

Circle();

Circle(float radius) ;

virtual ~Circle();

virtual float Area() ;

const float PI = 3.14;

float m_radius ;

protected:

private:

};

#endif // CIRCLE_H

 circle.cpp

 Questions?

#include "circle.h"

Circle::Circle()

{

//ctor

}

Circle::~Circle()

{

//dtor

}

// Use a member initialization list.

Circle::Circle(float radius) : m_radius{radius}

{}

float Circle::Area()

{

// Quiz: what happens if this line is

// uncommented and then compiled:

//PI=3.14159 ;

return m_radius * m_radius * PI ;

}

Quiz time!

 What happens behind

the scenes when the

function PrintArea is

called?

 How about if PrintArea’s

argument was instead:

void PrintArea(Shape shape)

void PrintArea(Shape &shape) {

cout << "Area: " << shape.Area() << endl ;

}

int main()

{

Square sQ(4) ;

Circle circ(3.5) ;

Rectangle rT(21,2) ;

// Print everything

PrintArea(sQ) ;

PrintArea(rT) ;

PrintArea(circ) ;

return 0;

}

Quick mention…

 Aside from overriding functions it

is also possible to override

operators in C++.

 As seen in the C++ string. The +

operator concatenates strings:

 It’s possible to override +,-,=,<,>,

brackets, parentheses, etc.

 Syntax:

 Recommendation:

 Generally speaking, avoid this. This

is an easy way to generate very

confusing code.

 A well-named function will almost

always be easier to understand than

an operator.

 An exceptions is the assignment

operator: operator=

string str = "ABC" ;

str = str + "DEF" ;

// str is now "ABCDEF"

MyClass operator*(const MyClass& mC) {...}

Summary

 C++ classes can be created in hierarchies via

inheritance, a core concept in OOP.

 Classes that inherit from others can make use

of the superclass’ public and protected

members and methods

 You write less code!

 Virtual methods should be used

whenever methods will be overridden in

subclasses.

 Avoid multiple inheritance, use interfaces

instead.

 Subclasses can override a superclass

method for their own purposes and can still

explicitly call the superclass method.

 Abstraction means hiding details when they

don’t need to be accessed by external code.
 Reduces the chances for bugs.

 While there is a lot of complexity here – in

terms of concepts, syntax, and application –

keep in mind that OOP is a highly successful

way of building programs!

