
Intermediate Usage of
Shared Computing Cluster (SCC)

Charles Jahnke
Research Computing Services

Information Services & Technology

Topics for Today
● Introduction

● The Cluster

● Running Jobs

● Monitoring Jobs

● Resource Bottlenecks

● Workflow and Job Management

● Bonus Material

● Not Hands-on

● Present concepts

● Discuss common challenges

● Please ask questions

● Time at the end for personal help

Research Computing Services

This will be quick.

Research Computing Services (RCS)
A group within Information Services & Technology at Boston University provides
computing, storage, and visualization resources and services to support research
that has specialized or highly intensive computation, storage, bandwidth, or
graphics requirements.

Three Primary Services:

● Research Computation
● Research Visualization
● Research Consulting and Training

Me
● Systems Programmer and Administrator

● Background in biomedical engineering, technology, and bioinformatics

● Office on the Boston University Medical Campus
○ We also have staff on the Charles River Campus

● Contact:
○ Email: cjahnke@bu.edu
○ Phone: 617-638-7727
○ Office: 801 Mass Ave, Boston, Suite 485

Our whole team: help@scc.bu.edu

mailto:cjahnke@bu.edu
mailto:help@scc.bu.edu

You
● Who just came from the Intro to SCC tutorial?

● Who has an account on SCC?

● Who has used SCC for more than 1 month?

● 6 months?

● 1 year?

● Who has used other compute clusters?

The Shared Computing Cluster

Shared Computing Cluster
● Shared - Transparent multi-user and multi-tasking environment

 - Also, buy-in

● Computing - Heterogeneous environment for
○ Interactive jobs
○ Single processor and parallel jobs

○ Graphics job

● Cluster - Many connected computers
○ Connected via fast local area network
○ Jobs scheduler coordinates work loads.

Massachusetts Green High Performance Computing Center

Shared Computing Cluster

Server Cabinets Rear View

Ethernet Switch

Infiniband Switch

Compute Nodes

SCC Architecture

Login
Nodes

Compute
Nodes

SCC1 SCC2 SCC3 SCC4

File
Storage

Public Network

Private Network

VPN only >3PB

500 nodes
9000 CPUs
100,000 GPUs

SCC Resources
● Processors: Intel and AMD
● CPU Architecture: bulldozer, sandybridge, ivybridge, haswell, broadwell
● Ethernet connection: 1 or 10 Gbps
● Infiniband: FDR, QDR (or none)
● GPUs: NVIDIA Tesla K40m, M2070 and M2050
● Number of cores: 8, 12, 16, 20, 64 / node
● Memory: 24GB – 1TB / node
● Scratch Disk: 244GB – 886GB /node

http://www.bu.edu/tech/support/research/computing-resources/tech-summary/

http://www.bu.edu/tech/support/research/computing-resources/tech-summary/
http://www.bu.edu/tech/support/research/computing-resources/tech-summary/

Running Jobs
Interactive, Interactive Graphics, Batch

The Login Nodes
Login nodes are designed for light work:

● Text editing
● Light debugging
● Program compilation
● File transfer

Anything else should be done on a compute node with a “Job”

Running Jobs: Types of Jobs

Interactive job
● Interactive shell, run GUI applications, code debugging, benchmarking of

serial and parallel code performance.

Interactive Graphics job
● Interactive shell with GPU and hardware acceleration for software with

advanced graphics.

Non-Interactive “Batch” Job
● Controlled script or binary execution.

Interactive Jobs

“qrsh” - Request from the queue (q) a remote (r) shell (sh)

●
●
●
●

(qrsh)

[cjahnke@scc1 ~]$ qrsh -P project
**
 This machine is governed by the University policy on ethics.
 http://www.bu.edu/tech/about/policies/computing-ethics/

 This machine is owned and administered by
 Boston University.

 See the Research Computing web site for more information about our facilities.
 http://www.bu.edu/tech/support/research/

 Please send questions and report problems to "help@scc.bu.edu".

**

[cjahnke@scc-pi4 ~]$

Interactive Jobs
Multiple Interactive Modes!

● Mostly do the same thing.

● We usually teach qrsh

○ Doesn’t require X11

● You have options.

(qrsh)

qsh qlogin /
qrsh

X-forwarding is required ✓ —

Session is opened in a
separate window ✓ —

Allows X-Forwarding ✓ ✓

Current environment
variables passed to session ✓ —

Batch-system environment
variables ($NSLOTS, etc.) ✓ ✓

Interactive Jobs

Request appropriate resources for the interactive job:

● Some software (like MATLAB, STATA-MP) might use multiple cores.

● Make sure to request enough time if you need more than 12 hours.

● Make sure to request enough RAM (4GB min) is often not enough.

(qrsh)

More on this later.

Interactive Graphics (VirtualGL) Jobs
Preface: The majority of graphical applications perform well using VNC.

● Some require OpenGL for full 3D hardware acceleration
○ fMRI Applications
○ Molecular Modeling

● This job type combines dedicated GPU resources with VNC.

● VirtualGL offering is a very limited resource.
● Most applications (MATLAB, RStudio, QGIS, etc) do NOT need this.

(qvgl)

http://www.bu.edu/tech/support/research/system-usage/running-jobs/virtual-gl/

http://www.bu.edu/tech/support/research/system-usage/running-jobs/virtual-gl/
http://www.bu.edu/tech/support/research/system-usage/running-jobs/virtual-gl/

Non-Interactive “Batch” Jobs
● Using a Script

● Using a Binary

(qsub)

[cjahnke@scc1 ~]$ qsub test.qsub
Your job 9253374 ("test") has been submitted
[cjahnke@scc1 ~]$
[cjahnke@scc1 ~]$ ls
test.qsub test.o9253374 results

Submit script to scheduler

After completion, we get an
output file.

[cjahnke@scc1 ~]$ qsub -b y cal -y
Your job 542359 ("cal") has been submitted
[cjahnke@scc1 ~]$
[cjahnke@scc1 ~]$ ls
cal.e542359 cal.o542359

Submit binary “cal”

Non-Interactive “Batch” Scripts
#!/bin/bash -l

#$ -P rcs
#$ -N test
#$ -j y
#$ -m bae

echo "==="
echo "Starting on : $(date)"
echo "Running on node : $(hostname)"
echo "Current directory : $(pwd)"
echo "Current job ID : $JOB_ID"
echo "Current job name : $JOB_NAME"
echo "==="

module load R
sleep 10

echo "==="
echo "Finished on : $(date)"
echo "========= =="

Script Interpreter

Scheduler Directives

Task Commands

(qsub)

Scheduler Options - General Directives
General Directives

Directive Description

-P project_name Project to which this jobs is to be assigned. Mandatory for all users associated with any BUMC project.

-N job_name Specifies the job name. The default is the script or command name.

-o outputfile File name for the stdout output of the job.

-e errfile File name for the stderr output of the job.

-j y Merge the error and output stream files into a single file.

-m b|e|a|s|n
Controls when the batch system sends email to you. The possible values are – when the job begins (b), ends (e), is
aborted (a), is suspended (s), or never (n) – default.

-M user_email Overwrites the default email address used to send the job report.

-V All current environment variables should be exported to the batch job.

-v env=value Set the runtime environment variable env to value.

-hold_jid job_list
Setup job dependency list. job_list is a comma separated list of job ids and/or job names which must complete before
this job can run. See Advanced Batch System Usage for more information.

http://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/

Scheduler Options - Resource Directives
Directives to request SCC resources

Directive Description

-l h_rt=hh:mm:ss Hard runtime limit in hh:mm:ss format. The default is 12 hours.

-l mem_total =#G
Request a node that has at least this amount of memory. Current possible choices include 94G, 125G, 252G
504G.

-l mem_per_core =#G Request a node that has at least these amount of memory per core.

-l cpu_arch=ARCH Select a processor architecture (sandybridge, nehalem, etc). See Technical Summary for all available choices.

-l cpu_type=TYPE
Select a processor type (E5-2670, E5-2680, X5570, X5650, X5670, X5675). See Technical Summary for all
available choices.

-l gpus=G/C
Requests a node with GPU. G/C specifies the number of GPUs per each CPU requested and should be
expressed as a decimal number. See Advanced Batch System Usage for more information.

-l gpu_type=GPUMODEL Current choices for GPUMODEL are M2050, M2070 and K40m.

-l eth_speed=N Ethernet speed (1 or 10 Gbps).

-l scratch_free=#G Request a node that has at least this amount of available disc space in scratch. Note that the amount changes!

-pe omp N
Request multiple slots for Shared Memory applications (OpenMP, pthread). This option can also be used to
reserve larger amount of memory for the application. N can vary from 1 to 16.

-pe mpi_#_tasks_per_node N
Select multiple nodes for MPI job. Number of tasks can be 4, 8, 12 or 16 and N must be a multiple of this value.
See Advanced Batch System Usage for more information.

http://www.bu.edu/tech/support/research/computing-resources/tech-summary/
http://www.bu.edu/tech/support/research/computing-resources/tech-summary/
http://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/
http://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/

SCC General limits
Default:
● Login nodes are limited to 15min. of CPU time
● Default Compute Job: 1 CPU core, 4GB RAM, 12 hours.

Upper Limits:
● 1 processor job (batch or interactive) 720 hours
● omp job (16 processors or less) 720 hours
● mpi job (multi-node job) 120 hours
● gpu job 48 hours
● Interactive Graphics job (virtual GL) 48 hours

These will come up again.

Delete Jobs
● “qdel” - Delete a job from the queue

If you have a lot of jobs -- delete them all by user

[cjahnke@scc1 ~]$ qdel -j 12345
cjahnke has deleted job 12345

[cjahnke@scc1 ~]$ qdel -u cjahnke
cjahnke has deleted job 12345
cjahnke has deleted job 12346
cjahnke has deleted job 12347
cjahnke has deleted job 12348
cjahnke has deleted job 12349

Monitoring a Job

Monitoring: Running Jobs

● “qstat” - Show the status of Grid Engine jobs and queues

(qstat)

[cjahnke@scc1 ~]$ qstat -u cjahnke
job-ID prior name user state submit/start at queue slots ja-task-ID
--
336431 0.10059 phy.24 cjahnke r 09/03/2016 18:02:32 l@scc-ka4.scc.bu.edu 16
336432 0.10059 phy.25 cjahnke qw 09/03/2016 18:00:00 16

Monitoring: Running Jobs In-Depth
● “-s {p|r|s|...}” -- Prints only jobs in the specified state

● “-r” -- Prints extended information about the resource requirements

(qstat)

[cjahnke@scc1 ~]$ qstat -r -u cjahnke

job-ID prior name user state submit/start at queue slots ja-task-ID
--
336431 0.10059 phy.24 cjahnke r 09/03/2016 18:02:32 l@scc-ka4.scc.bu.edu 16
 Full jobname: phy.24.ortho1.pbs
 Master Queue: linga@scc-ka4.scc.bu.edu
 Requested PE: omp16 16
 Granted PE: omp16 16
 Hard Resources: h_rt=2588400 (0.000000)
 mem_free=8g (0.000000)
 job=1 (default)
 Soft Resources: buyin=TRUE

[cjahnke@scc1 ~]$ qstat -s r -u cjahnke
job-ID prior name user state submit/start at queue slots ja-task-ID
--
336431 0.10059 phy.24 cjahnke r 09/03/2016 18:02:32 l@scc-ka4.scc.bu.edu 16

[cjahnke@scc4 ~]$ qstat -j 336431
==
job_number: 336431
exec_file: job_scripts/336431
submission_time: Sat Sep 3 18:02:22 2016
owner: cjahnke
uid: 157672
group: scv
gid: 2630
sge_o_home: /usr3/bustaff/cjahnke
sge_o_log_name: cjahnke
sge_o_path: /share/apps/6.0/cufflinks/2.2.0/bin:/share/pkg/r/3.1.1/install/bin:/.../:/.../
sge_o_shell: /bin/bash
sge_o_workdir: /projectnb/scv/test
sge_o_host: scc4
account: sge
cwd: /projectnb/scv/test
merge: y
hard resource_list: h_rt=2588400,mem_free=8g
soft resource_list: buyin=TRUE
mail_options: be
mail_list: cjahnke@bu.edu
notify: FALSE
job_name: phy.24.ortho1.pbs
stdout_path_list: NONE:NONE:phy.24.ortho1.pbs.qlog
jobshare: 0
shell_list: NONE:/bin/bash
env_list: PATH=/share/apps/6.0/cufflinks/2.2.0/bin:/share/pkg/r/3.1.1/install/bin:/.../:/.../
script_file: phy.24.ortho1.pbs
parallel environment: omp16 range: 16
project: scv
usage 1: cpu=174:11:55:06, mem=67369810.71167 GBs, io=0.05496, vmem=4.584G, maxvmem=4.584G
scheduling info: (Collecting of scheduler job information is turned off)

Monitoring: Running Jobs In-Depth
Can look at your processes directly on the compute-node

1. Login to the compute node

2. Run top command

3. Exit from the compute node

scc1 % ssh scc-ca1

scc-ca1 % exit

scc-ca1 % top -u <userID>

top - 9:50:04 up 18 days, 6:38, 3 users, load average: 7.77, 8.24, 7.98
Tasks: 422 total, 6 running, 416 sleeping, 0 stopped, 0 zombie
Cpu(s): 56.2%us, 0.1%sy, 0.0%ni, 43.6%id, 0.0%wa, 0.0%hi ...
Mem: 132064100k total, 126879140k used, 5184960k free, 402380k buffers
Swap: 8388604k total, 21320k used, 8367284k free, 110327144k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 38680 cjahnke 20 0 2024m 391m 26m R 399.8 0.3 1:06.27 pscf
 38681 cjahnke 20 0 12.4g 12g 1708 R 100.0 9.8 1:06.26 p0.out
 46777 cjahnke 20 0 13404 1528 948 R 0.3 0.0 0:00.03 top
 46696 cjahnke 20 0 88256 1812 896 S 0.0 0.0 0:00.00 sshd
 46697 cjahnke 20 0 9680 1820 1360 S 0.0 0.0 0:00.00 bash

top - 9:50:04 up 18 days, 6:38, 3 users, load average: 7.77, 8.24, 7.98
Tasks: 422 total, 6 running, 416 sleeping, 0 stopped, 0 zombie
Cpu(s): 56.2%us, 0.1%sy, 0.0%ni, 43.6%id, 0.0%wa, 0.0%hi ...
Mem: 132064100k total, 126879140k used, 5184960k free, 402380k buffers
Swap: 8388604k total, 21320k used, 8367284k free, 110327144k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 38680 cjahnke 20 0 2024m 391m 26m R 399.8 0.3 1:06.27 pscf
 38681 cjahnke 20 0 12.4g 12g 1708 R 100.0 9.8 1:06.26 p0.out
 46777 cjahnke 20 0 13404 1528 948 R 0.3 0.0 0:00.03 top
 46696 cjahnke 20 0 88256 1812 896 S 0.0 0.0 0:00.00 sshd
 46697 cjahnke 20 0 9680 1820 1360 S 0.0 0.0 0:00.00 bash

Monitoring: Completed Jobs

● qacct - query the accounting system

○ Usually, job specific

○ Can summarize information

[cjahnke@scc1 ~]$ qacct -j 9253374
==
qname linga
hostname scc-ka4.scc.bu.edu
group sibs
owner cjahnke
project sibs
department defaultdepartment
jobname test
jobnumber 9253374
taskid undefined
account sge
priority 0
qsub_time Wed Jun 29 12:35:21 2016
start_time Wed Jun 29 12:35:37 2016
end_time Wed Jun 29 12:35:47 2016
granted_pe NONE
slots 1
failed 0
exit_status 0
ru_wallclock 10
...
cpu 0.126
mem 0.000
io 0.000
iow 0.000
maxvmem 13.953M
arid undefined

Monitoring: Completed Jobs In-depth
● User Summary

● Project Summary

● Time/Date

(qacct)

[cjahnke@scc1 ~]$ qacct -d 30
Total System Usage
 WALLCLOCK UTIME STIME CPU MEMORY IO IOW
==
 2618582489 6901132453 222669927 8346277146.776 147078894593.431 76658298.739 0.000

[cjahnke@scc1 ~]$ qacct -o cjahnke -P
OWNER PROJECT WALLCLOCK UTIME STIME CPU MEMORY IO IOW
==
cjahnke adsp 819153 527036 20364 548526 607738 64984 0
cjahnke fhspl 42707 64479 3364 67844 80656 7401 0
cjahnke scv 5490737 8019616 528385 9124199 44585143 4661583 0
cjahnke sprnaseq 678025 1401724 59668 1527681 4754390 16354 0

[cjahnke@scc1 ~]$ qacct -o cjahnke
OWNER WALLCLOCK UTIME STIME CPU MEMORY IO IOW
===
cjahnke 7292588 11181866 640582 12466059 78805572 4763667 0

Monitoring: Accounting Tool
● A “Service Unit” (SU) is a normalized measure of CPU time usage.

○ Used for project management, allocation, and accounting.
○ Some processors are faster than others.
○ There is no monetary charge.

● Use acctool to get the information about SU (service units) usage:

[cjahnke@scc1 ~]$ acctool -host shared -b 9/01/16 y
Hostname Time Jobs
shared 3190.72 235

[cjahnke@scc4 ~]$ acctool -b 9/01/16 y
Hostname Time Jobs
shared 3190.72 235
linga 896.07 203
jcvi 538.73 122
TOTAL 5866.51 607

Project SU Balance
scv 874.0952
charges 37538.8022
linga_admin 2398.3860
fhspl 41304.6475

[cjahnke@scc4 ~]$ acctool -p scv -b 9/01/16 y
Hostname Time Jobs
shared 2596.14 42
jcvi 337.75 55
TOTAL 3562.13 128

Project SU Balance
scv 874.0952

(acctool)

Monitoring: Email Notifications
The system can send email notifications

● Use “-m” qsub option
○ b = when job begins,
○ a = if job aborts
○ e = when job ends

For example:

qsub -P project -m bae spline.qsub

To: cjahnke@bu.edu
From: nobody@scc.bu.edu
Subject: Job 7883980 (spline) Complete

User = cjahnke
Queue = p@scc-pi2.scc.bu.edu
Host = scc-pi2.scc.bu.edu
Start Time = 08/29/2016 13:18:02
End Time = 08/29/2016 13:58:59
User Time = 01:05:07
System Time = 00:03:24
Wallclock Time = 00:40:57
CPU = 01:08:31
Max vmem = 6.692G
Exit Status = 0

mailto:cjahnke@bu.edu
mailto:nobody@bu.edu

Bottlenecks

Bottleneck: Time

SCC General limits
Default:
● Login nodes: 15 min
● Compute Job: 12 hours

Upper Limits:
● 1 Processor job (batch or interactive) 720 hours
● OMP job (16 processors or less) 720 hours
● MPI job (multi-node job) 120 hours
● GPU job 48 hours
● Interactive Graphics job (virtual GL) 48 hours

Bottleneck: Time
Policies regarding time usage on SCC protect the system (and you).

● Keep high occupancy nodes running
○ Compute time limited to 15 minutes on login nodes.

○ Prevents a single user (or several users combined) from bogging down a system that many

other people are using for administrative tasks.

● Prevent runaway processes or endless loops
○ Default runtime of jobs limited to 12 hours.

Bottleneck: Time - Login Node

Example: You need to run a
compute process for >15 min

Solution: Interactive Job

[cjahnke@scc4 ~]$ qrsh -P proj
[cjahnke@scc-pi2 ~]$

To: cjahnke@bu.edu
From: nobody@scc.bu.edu
Subject: Message from the process reaper on SCC4

The following process, running on SCC4, has been terminated
because it exceeded the limits for interactive use. An
interactive process is killed if its total CPU time is greater
than 15 minutes and greater than 25% of its lifetime.
Processes which may exceed these limits should be submitted
through the batch system.

See http://www.bu.edu/tech/support/research/system-
usage/running-jobs for more information.

COMMAND STATE PID PPID TIME RATE(%) SIZE RSS START TIME
MATLAB S 127687 127592 17 101 8427 5562 09/14 12:27:34

Please email help@scc.bu.edu for assistance.

mailto:cjahnke@bu.edu
mailto:nobody@bu.edu
http://www.bu.edu/tech/support/research/system-usage/running-jobs
http://www.bu.edu/tech/support/research/system-usage/running-jobs
http://www.bu.edu/tech/support/research/system-usage/running-jobs

Bottleneck: Time - Compute Job

Example: You need to run a job for >12
hours.

Solution:
Increase the “Hard Runtime Limit” with
the “-l h_rt=HH:MM:SS”
qsub option.

$ qsub -P proj -l h_rt=24:00:00 script.qsub

To: cjahnke@bu.edu
From: nobody@scc.bu.edu
Subject: Job 9022506 (myJob) Aborted

Job 3828407 (sRNA_intersection) Aborted
 Exit Status = 137
 Signal = KILL
 User = cjahnke
 Queue = b@scc-he1.scc.bu.edu
 Host = scc-he1.scc.bu.edu
 Start Time = 03/06/2016 00:32:16
 End Time = 03/06/2016 12:32:17
 CPU = 11:56:32
 Max vmem = 379.809M
failed assumedly after job because:
job 3828407 died through signal KILL(9)

mailto:cjahnke@bu.edu
mailto:nobody@bu.edu

Bottleneck: Time - Compute Job

Unfortunately, not. Once running, the job parameters cannot be modified.

Dear Admins,

I submitted a job and it takes longer than I expected.
Is it possible to extend the time limit?

-- Advanced User

Bottleneck: CPU

Bottleneck: CPU Optimization
Writing code from scratch?
 → Optimize it!

● There are a best-practices and techniques
for every language.

● There are also some specifics in running
the code on the cluster.

● Do this before parallelizing your code!

○ Parallelized bad code is still bad code.

● Discuss with us at help@scc.bu.edu

Are you compiling your code?

Modern CPUs can handle complex instructions,
but you need to use non-default compilers.

Compiler Options and Versions:
● GCC

○ 4.8.1, 4.9.2, 5.1.0, 5.3.0
● PGI

○ 13.5, 16.5
● Intel

○ 2015, 2016

mailto:help@scc.bu.edu

Bottleneck: CPU Optimization (program debug)
Integrated Development Environments (IDE)

● codeblocks
● geany
● Eclipse

Debuggers:

● gdb
● ddd
● TotalView
● OpenSpeedShop

Bottleneck: CPU Parallelization
Parallelization
● OpenMP: Single node using multiple processes

○ Common with scripts when the user only wants a single job.

● OpenMP: Single node threading a single process

○ Commonly built into applications.

● OpenMPI: Multi-node, many CPU, shared memory processing

○ Very powerful computation, not used much on BUMC.

● Tasks/Arrays

○ We will discuss this later

Bottleneck: CPU Parallelization
OpenMP: Single node with multiple processes run simultaneously.

Example: User only wants to manage one job, but wants to run a script on 4 files.

top - 9:50:04 up 18 days, 6:38, 3 users, load average: 7.77, 8.24, 7.98
Tasks: 422 total, 6 running, 416 sleeping, 0 stopped, 0 zombie
Cpu(s): 56.2%us, 0.1%sy, 0.0%ni, 43.6%id, 0.0%wa, 0.0%hi ...
Mem: 132064100k total, 126879140k used, 5184960k free, 402380k buffers
Swap: 8388604k total, 21320k used, 8367284k free, 110327144k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 38681 cjahnke 20 0 12.4g 12g 1708 R 100.0 9.8 1:06.26 python
 38682 cjahnke 20 0 12.3g 12g 1708 R 100.0 9.7 1:06.26 python
 38683 cjahnke 20 0 12.2g 12g 1708 R 100.0 9.6 1:06.27 python
 38684 cjahnke 20 0 11.6g 12g 1708 R 100.0 8.4 1:06.27 python
 46777 cjahnke 20 0 13404 1528 948 R 0.3 0.0 0:00.03 top
 46696 cjahnke 20 0 88256 1812 896 S 0.0 0.0 0:00.00 sshd
 46697 cjahnke 20 0 9680 1820 1360 S 0.0 0.0 0:00.00 bash

#!/bin/bash -l

#$ -pe omp 4

module load python
python script.py file1 &
python script.py file2 &
python script.py file3 &
python script.py file4 &
wait

On compute node: 4 processes running simultaneously

Background process

Bottleneck: CPU Parallelization
Background processes with distinct processes aren’t the best way to do this.

● Could also be done in python itself
○ “import subprocess” - spawn new processes
○ “from joblib import parallel” - runs functions in parallel
○ “from multiprocessing import Pool” -- pools processing

● Also in R
○ “library(parallel)” - Basic parallel package
○ “library(snowfall)” - Easier cluster computing (based on snow)
○ Go to R tutorials next week.

● And most languages

http://scv.bu.edu/examples/SCC/par/python/par.py

http://scv.bu.edu/examples/SCC/par/python/par.py
http://scv.bu.edu/examples/SCC/par/python/par.py

Bottleneck: CPU Parallelization
OpenMP: Single Process Threading
● Many applications have this built in -- Look for a “threads” option

top - 9:50:04 up 18 days, 6:38, 3 users, load average: 7.77, 8.24, 7.98
Tasks: 422 total, 6 running, 416 sleeping, 0 stopped, 0 zombie
Cpu(s): 56.2%us, 0.1%sy, 0.0%ni, 43.6%id, 0.0%wa, 0.0%hi ...
Mem: 132064100k total, 126879140k used, 5184960k free, 402380k buffers
Swap: 8388604k total, 21320k used, 8367284k free, 110327144k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 38681 cjahnke 20 0 12.4g 12g 1708 R 200.0 9.8 1:06.26 bowtie2
 46777 cjahnke 20 0 13404 1528 948 R 0.3 0.0 0:00.03 top
 46696 cjahnke 20 0 88256 1812 896 S 0.0 0.0 0:00.00 sshd
 46697 cjahnke 20 0 9680 1820 1360 S 0.0 0.0 0:00.00 bash

On compute node: A single process using 200% CPU#!/bin/bash -l

#$ -pe omp 2

module load bowtie2
bowtie2 --threads 2 -x <bt2-idx>

Bottleneck: CPU Parallelization

Bottleneck: CPU Parallelization
Some applications parallelize automatically (use all cores on node).

● Examples: Matlab, stata-mp
● This is bad behavior and your job will be killed

○ Instruct them not to (if possible) or request the whole node.

The $NSLOTS Variable

● When using “-pe omp #” the $NSLOTS variable is set equal the “#”.
● This allows you to change the number of threads and not edit the script

bowtie2 --threads $NSLOTS -x <bt2-idx>

matlab -nodisplay -singleCompThread -r “commands”

Bottleneck: CPU -- Process Reaper
What happens if you use more slots than
requested?

● We kill it to preserve other jobs running on
that node.

If you have email notifications enabled, you will
receive a notice that the job was aborted.

● Note that it ran for 9 minutes and the CPU
ran for 22.

You will also receive an explanation email.

To: cjahnke@bu.edu
From: nobody@scc.bu.edu
Subject: Job 9022506 (myJob) Aborted

Job 2885976 (rnaseq.ngs) Aborted
 Exit Status = 137
 Signal = KILL
 User = cjahnke
 Queue = b@scc-hc2.scc.bu.edu
 Host = scc-hc2.scc.bu.edu
 Start Time = 02/01/2016 15:51:07
 End Time = 02/01/2016 16:00:01
 CPU = 00:22:03
 Max vmem = 1.026G
failed assumedly after job because:
job 2885976 died through signal KILL(9)

mailto:cjahnke@bu.edu
mailto:nobody@bu.edu

Bottleneck: CPU -- Process Reaper
To: cjahnke@bu.edu
From: nobody@scc.bu.edu
Subject: Message from the process reaper on scc-gb11
__

The following batch job, running on SCC-GB11, has been terminated because it was using 5.5 processors but was
allocated only 1. Please resubmit the job using an appropriate PE specification.

See http://www.bu.edu/tech/support/research/system-usage/running-jobs for more information.

job 461082.1: owner: cjahnke pe: none type: "Qsh interactive" slots: 1
 sge_gid: 1000791 job_pid: 8447
 cputime: 42 min. rate: 548.39% starttime: 09/14 11:57:17
COMMAND STATE PID PPID TIME(min.) RATE(%) SIZE RSS START TIME
TSF_process.x64 R 8483 8473 4 268 68 13 09/14 11:58:54
TSF_process.x64 R 8482 8473 4 174 68 13 09/14 11:58:54
TSF_process.x64 R 8481 8473 4 68 68 13 09/14 11:58:54
xterm S 8447 8446 0 0 53 3 09/14 11:57:17

Please email help@scc.bu.edu for assistance.

http://www.bu.edu/tech/support/research/system-usage/running-jobs

Bottleneck: Memory

Memory Optimization
First things first, optimize memory usage in your code

● Many languages allow operations on vectors/matrices

● Pre-allocate arrays before accessing or writing

○ Especially within loops.

● Reuse variables when possible

● Delete variables that are not needed.

● Access elements within your code according to the storage pattern in this language

(FORTRAN, MATLAB, R – in columns; C, C++ - rows)

Some of this can be tricky, our applications team is happy to assist. Email help@scc.bu.edu

Huge in
 R

mailto:help@scc.bu.edu

Memory Limits

The memory on each node in the SCC is shared by all the jobs on that node.

Memoryslot = Memorytotal / Ncores

Using too much memory

● Will slow down your job
● Could cause your job to fail (process is killed automatically)
● Could bring down the node (causing yours and others job to fail)

Memory Availability

SCC is Heterogenous!
(Which is good, but makes this complicated)

Shared Nodes
8 cores 24 GB RAM 3 GB/slot

12 cores 48 GB RAM 4 GB/slot
20 cores 128 GB RAM 6 GB/slot
16 cores 128 GB RAM 8 GB/slot

8 cores 96 GB RAM 12 GB/slot
16 cores 256 GB RAM 16 GB/slot

Medical Campus Only
64 cores 256 GB RAM 4 GB/slot
64 cores 512 GB RAM 8 GB/slot

Buy-In Nodes
16 cores 64 GB RAM 4 GB/slot
12 cores 96 GB RAM 8 GB/slot
20 cores 256 GB RAM 12 GB/slot
16 cores 1024 GB RAM 64 GB/slot

http://www.bu.edu/tech/support/research/computing-resources/tech-summary/

http://www.bu.edu/tech/support/research/computing-resources/tech-summary/
http://www.bu.edu/tech/support/research/computing-resources/tech-summary/

Memory Requests
Example: You’ve profiled your job and expect it to use 10 GB

Solution:

1. Request single slot on node with >10GB/slot
(e.g. an 8 core/96GB node = 12GB/slot)

#$ -l mem_per_core=10G

2. Request multiple slots on a more common node
(e.g. 2 slots on a 16 core/128GB node = 16GB/2slots)

#$ -pe omp 2
#$ -l mem_per_core=5G

There are >100 of
these nodes lower
memory nodes. Less
time in queue.

Bottleneck: Disk

Bottleneck: Disk Space
The most common disk bottleneck is a full directory.

● Depending on the program, the error can be relatively cryptic error message
● Check both your home directory and project space.

[cjahnke@scc1 ~]$ quota -s
Home Directory Usage and Quota:
Name GB quota limit grace | files quota limit in_doubt grace
Cjahnke 7.37 10.0 11.0 none | 39144 200000 200000 40 none

[cjahnke@scc1 ~]$ pquota rcs
 quota quota usage usage
project space (GB) (files) (GB) (files)
----------------------------------- ------ -------- --------- --------
/project/rcs 50 1638400 21.00 687
/projectnb/rcs 1050 33554432 2.01 1454

Bottleneck: Disk Optimization

SCC has a large distributed file system shared
to compute nodes on a high speed network, but
transactions on disk can be slow (compared to
other transactions).

● Reduce transactions
● Use a local disk (/scratch)

Bottleneck: Disk -- Optimize Read/Write
● Reduce the number of I/O to the home

directory/project space (if possible)

● Group small I/O transactions into blocks.
○ Don’t: open file, read line, close file,

process, open file, write line, close file.
○ Do: open, read whole file, process, write.

● Optimize the seek pattern to reduce the
amount of time waiting for disk seeks.

○ Sequential vs Random

● If possible, read and write numerical data
in a binary format.

Bottleneck: Disk -- Use /scratch
If you can’t do that or it’s not enough

● Avoid the network entirely!
● Utilize local /scratch space
● The $TMPDIR environment variable refers

a job specific directory in scratch space.
This directory is deleted at the end of the
job.

● Scratch files are kept for 30 days, with no
guarantees.

#!/bin/bash -l

copy data to scratch
cp /project/proj/file $TMPDIR/

cd $TMPDIR

module load bowtie2
bowtie2 -x $TMPDIR/file fastq1 fastq2

Copy results back to project space
cp $TMPDIR/resultsfile /project/proj/dir

https://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/#scratch

https://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/#scratch
https://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/#scratch

Bottleneck: Network

Bottleneck: Network
Request a node with 10Gbps network connectivity

● Not a common bottleneck
● Useful if you know that you will be moving a lot of data

○ Great for moving lots of big files within the cluster
○ I’ll talk about a better way to do this if you are downloading data from external sources

[cjahnke@scc1 ~]$ qsub -l eth_speed=10 script.qsub

Job Management and Workflows

Decide where to run jobs
Typically, job requirements dictate the resources needed, but you have options.

Example: Your job needs 4 cores, 40 GB RAM and will take 20 hours.

Literal needs

#$ -pe omp 4
#$ -mem_per_core=10
#$ -l h_rt=20:00:00

Pro:
● Simple

Con:
● 256 GB nodes are rare
● Buy-in nodes limit 12 hr

Run on 128GB nodes

#$ -pe omp 8
#$ -mem_per_core=5
#$ -l h_rt=20:00:00

Pro:
● Use common value node

Con:
● Wastes some CPU
● Still exceeds 12 hour limit

Make it 2 Jobs

#$ -pe omp 4
#$ -mem_per_core=5
#$ -l h_rt=10:00:00

Pro:
● 128 GB = common node
● <12 hr = use shared node

Con
● Not always possible

x2

How to decide what to request
Information about our resources

● Technical Summary:
http://www.bu.edu/tech/support/research/computing-resources/tech-summary/

● “qconf -sc” - Show the resources that can be requested

● “qhost” - Show the status of hosts, queues and jobs

● “qselect” - Show the nodes that support specified options

● See cheat sheet.

● If your job is complicated → email help@scc.bu.edu.

Very technical.
For advanced

users.

http://www.bu.edu/tech/support/research/computing-resources/tech-summary/
http://www.bu.edu/tech/support/research/computing-resources/tech-summary/
mailto:help@scc.bu.edu

Command Line Arguments
Submit a job with extra arguments.

Your script.qsub could contain:

scc1 % qsub -P scv script.qsub 1 two “3 word string” file.txt

#!/bin/bash -l

echo $1
echo $2
echo $3
Rscript my_R_program.R $4

The output would be:

1
two
3 word string
R would have run a script on file.txt

Very useful for using a generic script on multiple files or parameters -- but wait until you see “tasks”!

Job Dependency
Pipeline: Some jobs may be required to run in a specific order

Example: or this application, the job dependency can be controlled using "-hold_jid" option:

Post-Processing: A job might need to wait until a group of jobs have completed.

In this example, “lastJob” won’t start until job1, job2, and job3 have completed.

scc1 % qsub -N job1 script1
scc1 % qsub -N job2 -hold_jid job1 script2
scc1 % qsub -N job3 -hold_jid job2 script3

scc1% qsub -N job1 script1
scc1% qsub -N job2 script2
scc1% qsub -N job3 script3
scc1 % qsub -N lastJob -hold_jid "job*" script4

Job Arrays / Tasks
Let’s say you have some “embarrassingly parallel” code

● Simulations - want 1000 runs, using different seed
● Chromosome Analysis - same analysis, different chromosome files
● Large File - divide and conquer / scatter-gather / map-reduce

Array Jobs (qsub option “-t”)

● One “array job” has many related “tasks”.
● Each task runs the same job script, but is has a unique ID to work with.
● Task is placed on the cluster independently (different nodes).

Job Arrays / Task Variables
Submit a 10 task array job, numbered 1 to 10:

Your <my_script> could contain:

Which would run my_R_program.R 10 times,
each one using a number from 1 to 10.

Batch environment variables:

● SGE_TASK_FIRST=1

● SGE_TASK_STEPSIZE=1

● SGE_TASK_LAST=3

● SGE_TASK_ID=2

scc1 % qsub -t 1-10 <my_script>

#!/bin/bash -l

Rscript my_R_program.R $SGE_TASK_ID

Bonus Material
VNC, Data transfer, Buy-In, Hadoop

VNC - Remote Desktop
VNC (Virtual Network Computing) is a graphical desktop sharing system that
allows users to remotely work on another computer. It works by transmitting the
keyboard and mouse events from your local machine to the remote machine

● Graphics compression Allows responsive graphics interaction
● Persistent Sessions Disconnect and reconnect later

http://www.bu.edu/tech/support/research/system-usage/getting-started/remote-desktop-vnc/

http://www.bu.edu/tech/support/research/system-usage/getting-started/remote-desktop-vnc/
http://www.bu.edu/tech/support/research/system-usage/getting-started/remote-desktop-vnc/

[local_prompt ~]$ ssh user@scc1.bu.edu
[cjahnke@scc4 ~]$ vncpasswd
Password:
Verify:

[local ~]$ ssh user@scc4.bu.edu -L 7000:localhost:5901

From your local system, forward the port

From your local system, open the VNC session

Password from “vncpasswd”

[cjahnke@scc4 ~]$ vncstart
===
 *** Your VNC server is now running! ***
 VNC desktop number: 1
 VNC Port number: 5901
===
To connect via VNC client:
 1. On your local machine execute the following:

 ssh cjahnke@scc4.bu.edu -L XXXX:localhost:5901

 where XXXX - some number greater than 1023.
 You will be prompted to enter your SCC password.

 2. Start your local VNC Client application and
 enter the following address in VNC server field:

 localhost:XXXX

 where XXXX is the number you selected in step 1.
 When prompted, use your VNC password.

To terminate VNC server, execute command (in your scc1
terminal window):

 vncserver -kill :1
===
[cjahnke@scc4 ~]$

Transfer Node: scc-globus.bu.edu
● High-bandwidth node for data transfer to and from the SCC

● Has 10 Gbps Ethernet connection to internet

● Designed for Globus Connect Service

○ Can setup endpoints on project spaces.

● Supports other protocols

○ Aspera,Globus, GridFTP, AWS, you name it

https://www.bu.edu/tech/support/research/system-usage/getting-started/globus-online/

https://www.bu.edu/tech/support/research/system-usage/getting-started/globus-online/
https://www.bu.edu/tech/support/research/system-usage/getting-started/globus-online/

Service Models – Shared and Buy-In

Shared: Centrally funded by BU and
university-wide grants. Resources are
free to the entire BU Research
Computing community.

Buy-In: purchased by individual
faculty or research groups through
the Buy-In program with priority
access for the purchaser. 65%

35%

SCC Compute Nodes
Buy-in nodes:

● All buy-in nodes have a hard limit of 12 hours for non-member jobs. The time
limit for group member jobs is set by the PI of the group

● About 60% of all nodes are buy-in nodes. Setting time limit for a job larger
than 12 hours automatically excludes all buy-in nodes from the available
resources;

● All nodes in a buy-in queue do not accept new non-member jobs if a project
member submitted a job or running a job anywhere on the cluster.

Hadoop
● Pilot Cluster
● Must request access
● Limited support
● Bioinformatics software soon

If you know what Hadoop is, you
might be a good test user.

Support Links and Email

● RCS Website: http://rcs.bu.edu

● RCS Software: http://rcs.bu.edu/software/

● RCS Examples: http://rcs.bu.edu/examples/

● RCS Tutorials: http://rcs.bu.edu/tutorials/

Please contact us at help@scc.bu.edu if you have any problem or question

http://rcs.bu.edu/software/
http://rcs.bu.edu/software/
http://rcs.bu.edu/examples/
http://rcs.bu.edu/tutorials/
mailto:help@scc.bu.edu

Questions?

Research Computing Services Website
http://rcs.bu.edu

RCS Tutorial Evaluation

http://rcs.bu.edu/survey/tutorial_evaluation.html

http://rcs.bu.edu
http://rcs.bu.edu
http://scv.bu.edu/survey/tutorial_evaluation.html
http://scv.bu.edu/survey/tutorial_evaluation.html

